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Abstract

These lectures are devoted to a description of anomalies in quantum
field theory from the point of view of noncommutative geometry and topol-
ogy. We will in particular introduce the basic methods of cyclic cohomol-
ogy and explain the noncommutative counterparts of the Atiyah-Singer
index theorem.
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1 Introduction

The aim of these lectures is to provide a modest insight into the interplay be-
tween Quantum Field Theory and Noncommutative Geometry [10]. We choose
to focus on the very specialized problem of chiral anomalies in gauge theories
[1, 4, 23], from the viewpoint of noncommutative index theorems. In fact both
subjects can be considered as equivalent, the link is essentially given by Bott
periodicity in K-theory [7]. On one side, chiral anomalies arise as the lack of
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gauge invariance for a quantum field theory after renormalization. This confers
a fundamental local nature to anomalies, in a geometric sense. One the other
hand, a particular attention has been drawn in the last years to local index
formulas in noncommutative geometry, as formulated by Connes and Moscovici
[15]. We propose to explain in these notes how local index formulas can be
extracted from quantum anomalies. This is achieved by putting together cyclic
cohomology and regularized traces [2, 24].

These lectures are organized as follows. In the first section, we recall some
basic material on quantum field theory, and explain how chiral anomalies ap-
pear. The second section deals with noncommutative geometry, in particular K-
theory and cyclic cohomology. In the third section we review the Chern-Connes
character construction and establish the link between the noncommutative local
index theorem and chiral anomalies.

2 Quantum Field Theory and Anomalies

Gauge theories form one of the most important class of quantum field theories.
They are relevant both in physics, especially in the description of fundamental
interactions between elementary particles, and in mathematics due to their deep
interplay with geometry and topology. The quantization of gauge fields requires
some care because we must take into account the presence of symmetries. We
recall below the classical and quantum formulation of gauge theory and explain
how anomalies arise. For consistency with index theory (elliptic operators), the
model will be formulated on a riemannian manifold with positive definite met-
ric, although physics requires pseudoriemannian manifolds.

2.1 Classical gauge theory

Let us start with a riemannian manifold M of dimension n. We suppose M is
provided with a spin structure, which means that we can speak about spinor
fields over M . It is sufficient to formulate all that in a local coordinate system
{xµ}, µ = 1, . . . n. It provides a local basis of one-forms (sections of the cotan-
gent bundle) {dxµ} in the following sense: any smooth one-form α ∈ C∞(T ∗M)
is written uniquely as a linear combination

α =
∑
µ

αµ(x)dxµ , (1)

the coefficients αµ being smooth functions. We introduce also a system of
orthonormal frames {ea}, a = 1, . . . n, which provides locally another basis of
one-forms. One thus has

ea =
∑
µ

eaµ(x)dxµ , (2)

where the coefficients functions eaµ(x) are the components of an invertible n×n
matrix at any point x. The Levi-Civita connection is the unique torsion-free
affine connection

∇LC : C∞(T ∗M)→ C∞(T ∗M ⊗ T ∗M) (3)
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preserving the riemannian metric. Its action on the orthonormal frame {ea}
may be written in terms of its component functions ωµab

∇LCea = −
∑
µ,b

ωµab(x) dxµ ⊗ eb . (4)

Because the Levi-Civita connection preserves the metric, the antisymmetry con-
dition ωµab = −ωµba holds. Now any smooth one-form α ∈ C∞(T ∗M) may be
decomposed in the orthonormal basis

α =
∑
a

αa(x)ea , (5)

so that we have

∇LCα =
∑
µ,a

∇µαa(x) dxµ ⊗ ea , ∇µαa = ∂µαa +
∑
b

ωµabαb . (6)

The components of the Riemann curvature tensor are deduced from the com-
mutator of the covariant derivatives

[∇µ,∇ν ]ea = −
∑
b

Rµνabe
b , (7)

which yields

Rµνab = ∂µωνab − ∂νωµab +
∑
c

(ωµacωνcb − ωνacωµcb) . (8)

The Clifford bundle Cl(M) is the vector bundle over M whose fiber at any
point x ∈ M is the Clifford algebra of the cotangent space at x endowed with
the riemannian metric. Hence the sections of the Clifford bundle form a unital
algebra generated by a set of covectors {γµ} and the algebraic rule

γµγν + γνγµ = −2gµν(x) , (9)

where the functions gµν are the components of the metric tensor in the coor-
dinate basis {xµ}. Hence any section of the Clifford bundle may be written
uniquely as a linear combination

n∑
i=0

∑
µ1<...<µi

αµ1...µi
(x)γµ1 . . . γµi , (10)

with smooth functions coefficients αµ1...µi
. By changing to the orthonormal

base
γa =

∑
µ

eaµ(x)γµ , (11)

the new generators of the Clifford sections verify the algebraic rule

γaγb + γbγa = −2δab , (12)

and any section of the Clifford bundle may be as well decomposed linearly on
the products of the γa.
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The spinor bundle S(M) is the vector bundle over M whose fiber is the spinor
representation of the fiber of the Clifford bundle. S(M) exists globally exactly
when M has a spin structure. In the local orthonormal frame {ea}, a smooth
section ψ ∈ C∞(S) is given by a set of smooth functions with values in C

ψ = {ψj} , j = 1, . . . , 2n/2 if n = dim M is even ,

j = 1, . . . , 2(n−1)/2 if n = dim M is odd . (13)

The sections γa generating the Clifford algebra are then represented by constant
matrices on the spinor space (e.g. the Pauli matrices times i when dim M = 3
or the Dirac matrices of the euclidian space R4 when dim M = 4). The space
of smooth sections of the spinor bundle (i.e. spinor fields) is endowed with the
spin connection

∇S : C∞(S)→ C∞(T ∗M ⊗ S) (14)

locally expressed by

∇Sµ = ∂µ −
1
4

∑
a,b

ωµab(x)γaγb . (15)

We are ready now to introduce the Dirac operator as the differential operator
on spinors

D : C∞(S)→ C∞(S) (16)

defined by Clifford multiplication

D =
∑
µ

γµ∇Sµ . (17)

From now on we suppose that the manifold M has even dimension. Then the
Clifford bundle is provided with a chirality section

γ = in/2
n∏
a=1

γa , (18)

with the important property that it is an involution for the Clifford product

(γ)2 = 1 . (19)

Consequently the bundle of spinors splits into the direct sum of two subbundles
of opposite chiralities S = S+ ⊕ S−,

ψ+ =
1 + γ

2
ψ , ψ− =

1− γ
2

ψ , (20)

where 1±γ
2 is the projector onto the eigenspace of γ corresponding to the eigen-

value ±1. One checks that γ anticommutes with all the generators γa,

γγa + γaγ = 0 , (21)

hence it also anticommutes with the Dirac operator:

Dγ + γD = 0 . (22)
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An operator anticommuting with γ is called odd, which means it changes the
chirality of spinors:

D : C∞(S±)→ C∞(S∓) . (23)

We will often use the following matrix representation

ψ =
(
ψ+

ψ−

)
, D =

(
0 D−
D+ 0

)
, γ =

(
1 0
0 −1

)
. (24)

Suppose now that M is compact without boundary. The classical dynamics of
a spinor field ψ ∈ C∞(S) is governed by the action

S(ψ,ψ) =
∫
M

dx ψ(x)(D +mγ)ψ(x) , (25)

where ψ ∈ C∞(S∗) is a dual spinor, and the parameter m ∈ R defines a pseu-
doscalar mass term. The classical equations of motion come from a variational
principle

δS

δψ(x)
= (D +mγ)ψ(x) = 0 ,

δS

δψ(x)
= ψ(D +mγ) = 0 . (26)

The pseudoscalar mass term is chosen so that the operator

Q = D +mγ (27)

is invertible. Indeed, using the anticommutation relation (22), its square Q2 =
D2 +m2 is clearly a strictly positive operator, and the inverse of Q is given by

Q−1 = Q/Q2 . (28)

This is the propagator of the spinor field theory over the riemannian (spin)
manifold M . We obtain a more interesting theory by coupling the spinors to a
Yang-Mills field. Consider a hermitian complex vector bundle E of rank N over
M , provided with a hermitian connection

∇E : C∞(E)→ C∞(T ∗M ⊗ E) . (29)

In the local coordinate system {xµ}, the connection is described by a gauge field
whose components Aµ(x) are smooth functions with values in the Lie algebra
of the unitary matrix group UN (C):

∇Eµ = ∂µ +Aµ(x) . (30)

The coupling of the spinors with the gauge field is obtained by considering the
tensor product of vector bundles S ⊗ E, endowed with the connection

∇A = ∇S ⊗ 1 + 1⊗∇E : C∞(S ⊗ E)→ C∞(T ∗M ⊗ S ⊗ E) . (31)

We use the subscript A in order to recall that the connection depends on the
gauge field. Hence in the local coordinate system,

(∇A)µ = ∂µ −
1
4

∑
a,b

ωµab(x)γaγb +Aµ(x) . (32)
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The associated Dirac operator is

DA : C∞(S ⊗ E)→ C∞(S ⊗ E) , DA =
∑
µ

γµ(∇A)µ . (33)

Now a smooth section ψ of the tensor product S ⊗ E is locally given by a
collection of N spinor fields (this is not true globally on M if the vector bundle
E is not topologically trivial). The ± decomposition via the chirality operator
γ still holds in this more general setting, as well as the matricial decomposition
(24). The new action is a functional of ψ ∈ C∞(S ⊗ E), ψ ∈ C∞(S ⊗ E)∗ and
the gauge field A:

Sf (ψ,ψ,A) =
∫
M

dx ψ(x)(DA +mγ)ψ(x) . (34)

The fundamental property of this action is its local gauge invariance. Let g be
a unitary endomorphism of E. This means that g can be locally represented by
a smooth function with values in the unitary group UN (C). The corresponding
gauge transformation acts on the fields as follows,

ψ → g−1ψ , ψ → ψg , A→ Ag = g−1dg + g−1Ag , (35)

where the connection A = Aµ(x)dxµ is considered locally as a matrix-valued
one-form. These transformation laws imply that the Dirac operator transforms
equivariantly,

DAg = g−1(DA)g , (36)
and therefore the action is invariant:

Sf (g−1ψ,ψg,Ag) = Sf (ψ,ψ,A) (37)

for any unitary endomorphism g. One can add a kinetic term for the gauge field
A constructed from the curvature

(∇A)2 = Θ(A) . (38)

The curvature is a two-form over M with values in the endomorphisms of E.
One has locally

Θ(A) = dA+A2 , (39)
or in components

Θµν(A) = ∂µAν − ∂νAµ + [Aµ, Aν ] . (40)

Under a gauge transformation, the curvature changes according to the adjoint
representation

Θ(Ag) = g−1Θ(A)g . (41)
Let tr be the trace on the algebra of N ×N matrices. The functional

Sb(A) =
∫
M

dx
1

4e2
∑
µ,ν

tr(Θµν(A)Θµν(A)) (42)

is gauge-invariant. Here Θµν(A) = gµσgντΘστ (A), and e ∈ R is a coupling
constant (the “charge” of the spinor fields). The full action of our gauge theory
is therefore the sum Sb + Sf

S(ψ,ψ,A) =
∫
M

dx (
1

4e2
∑
µ,ν

tr(Θµν(A)Θµν(A)) + ψ(DA +mγ)ψ) (43)

from which the classical equations of motion for the fields ψ,ψ,A are derived.
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2.2 Quantum gauge theory

We would like now to quantize both spinors ψ,ψ and the gauge field A. It
amounts to compute the expectation value of some gauge-invariant functionals
O via a formal path integral

〈O〉 =
∫
DADψDψ O(ψ,ψ,A) e−S(ψ,ψ,A)/~ , (44)

where the integration is performed over the infinite-dimensional space of fields,
with “integration measure” DADψDψ. Such gauge-invariant functionals O are
the physical observables of the theory. For example, the action S itself is an
observable. Also, in physically relevant theories the spin-statistics theorem [20]
dictates that the one-form A must be quantized as a bosonic field, whereas the
spinors ψ,ψ must be quantized as fermionic fields. Hence the functional inte-
gration “measure” DA is, as for the scalar field, the formal euclidian measure
in the infinite-dimensional space of gauge fields A, whereas DψDψ denotes the
Berezin integrals over the anticommuting variables ψ,ψ, see [20]. Since the
action Sf depends quadratically on the fermions, it is easy to show that the
Berezin integral of e−Sf/~ is proportional to the “determinant” of the operator
QA = DA + mγ. Of course the definition of such a determinant must be clar-
ified because QA acts on an infinite-dimensional space. This is a part of the
renormalization program [20]. We must also choose a normalization factor for
Z in such a way that the Berezin integral equals one when A is equal to a fixed
background connection, say A0. With Q = QA0 , we thus have∫

DψDψ e−Sf (ψ,ψ,A)/~ = ′′ det(Q−1QA)′′ . (45)

The usual trick for computing expectation values of an observable O is to in-
troduce anticommuting sources η(x), η(x) for the fermionic fields in the action:∫

DψDψ O(ψ,ψ,A) e(−Sf (ψ,ψ,A)+
R
dx (ηψ+ψη)(x))/~ (46)

= O(~
δ

δη
,−~

δ

δη
,A)

∫
DψDψ e(−Sf (ψ,ψ,A)+

R
dx (ηψ+ψη)(x))/~

= det(Q−1QA)O(~
δ

δη
,−~

δ

δη
,A)e

R
dx dy η(x)Q−1

A (x,y)η(y)/~ .

Therefore the expectation value of O reads

〈O〉 =
∫
DA O(~

δ

δη
,−~

δ

δη
,A) e(−Sb(A)+W (η,η,A))/~|η,η=0 , (47)

where the free energy of the fermions in the presence of sources W (η, η, A) is
by definition

W (η, η, A) =
∫
dx dy η(x)Q−1

A (x, y)η(y) + ~ ln det(Q−1QA) . (48)

Subsequently, the functional integral (47) may be computed by expanding the
free energy as a formal power series in the gauge field parameter A = QA −Q,
leading to a Feynman diagram expansion of the expectation value 〈O〉. This is
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the perturbative approach to quantum gauge theory, the only setting where the
renormalization program can be performed rigorously [20]. The first term of W
involves the inverse of the operator QA = DA +mγ, which may be obtained as
a Dyson series

Q−1
A = Q−1 −Q−1AQ−1 +Q−1AQ−1AQ−1 − . . . , (49)

each order being represented by a tree diagram. The second term, proportional
to the Planck constant ~, is a quantum fluctuation. As we already noticed,
the determinant of the infinite-dimensional operator Q−1QA may not exist. In
order to understand the origin of the ambiguities in the perturbative scheme,
we first remark that the logarithm of a determinant should be the trace of the
logarithm of the operator (this is true in finite dimensions):

ln det(Q−1QA) = Tr ln(Q−1QA) . (50)

Then expand the logarithm in power series of A:

Tr ln(Q−1QA) = Tr ln(1 +Q−1A) =
∞∑
n=1

(−)n+1

n
Tr (Q−1A)n . (51)

Note that this expansion may not converge for “large” values of A. Each term
of the series yields a multiple integral over the manifold M ,

Tr (Q−1A)n =
∫
Mn

dx1 . . . dxn A(x1)Q−1(x1, x2)A(x2)Q−1(x2, x3)

. . . A(xn)Q−1(xn, x1) , (52)

with Q(xi, xj) the distributional kernel of the operator Q−1. This integral may
also diverge because the product of distributions

Q−1(x1, x2)Q−1(x2, x3) . . . Q−1(xn, x1) (53)

is not well-defined in general. The quantum part of the free energy is there-
fore represented by an expansion of one-loop Feynman diagrams (with a factor
~). Now observe the following. The operators A and Q−1 actually extend to
bounded operators on the Hilbert space of square-integrable spinors H = L2(S)
over M . Moreover, one can show that Q−1 is a compact operator which actually
lives in the Schatten class `p(H) for any p > dim M ; this means that the trace
of the operator (Q2)−p/2 is finite. The Hölder inequality implies that for any
integer n > dim M , the trace

Tr (Q−1A)n <∞ (54)

is well-defined. This is not the case, however, if n ≤ dim M : the trace diverges,
because the kernel (53) is not a distribution near the diagonal x1 = x2 . . . =
xn. Consequently only finitely many loops need to be renormalized, namely
those corresponding to a degree n ≤ dim M . This is achieved, following the
general principles of perturbative renormalization, by choosing a distributional
extention of the kernel near the diagonal. This extension is of course not unique,
but two choices of extensions differ only by a distribution with support restricted
to the diagonal. Once this is done, the free energy W is determined modulo
addition of a finite number of local counterterms, i.e. the integral over M of a
polynomial in the gauge field A and its derivatives.
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2.3 Chiral anomalies

We have seen that in the quantum theory of spinors ψ,ψ coupled to a gauge
field A, the expectation value of an observable O follows from the evaluation
of the functional integral (47). Two difficulties then appear. First, the gauge
invariance of the bosonic action Sb(A) implies that the gauge field A has no
propagator (the quadratic term in Sb(A) is not an invertible operator). This
problem can be successfully removed within a perturbative scheme using the
Faddeev-Popov procedure, which amounts to introduce ghost fields [20]. A sec-
ond difficulty is that after renormalization of the fermionic loops, the gauge
symmetry may be broken; therefore the expectation values of observables can-
not be defined consistently. This phenomenon is called an anomaly [1]. It arises
only when chiral fermions are present. We shall describe chiral gauge theories
below.

We know that on an even-dimensional spin manifold M , a spinor field ψ ∈
C∞(S ⊗ E) splits into semi-spinors of opposite chiralities:

ψ =
(
ψ+

ψ−

)
, ψ =

(
ψ+ ψ−

)
, (55)

and the Dirac is odd according to the Z2-grading of operators

DA =
(

0 (DA)−
(DA)+ 0

)
. (56)

The fermionic action with mass term may thus be written as

Sf (ψ,ψ,A) =
∫
M

dx ψ(x)(DA +mγ)ψ(x) (57)

=
∫
M

dx (ψ−(DA)+ψ+ + ψ+(DA)−ψ−

+m(ψ+ψ+ − ψ−ψ−)) .

We know perform a gauge transformation by a unitary endomorphism g ∈
End(E). Its action on spinors is an even operator, according to the Z2-graduation.
We may write

g =
(
g+ 0
0 g−

)
, (58)

where g± acts on the semi-spinor ψ±. The gauge transformation

ψ → g−1ψ , ψ → ψg , DA → DAg = g−1DAg (59)

leaves the fermionic action Sf invariant, but the quantum part of the free energy

W (A) = ~ ln det(Q−1QA) , QA = DA +mγ (60)

transforms as
ln det(Q−1QA)→ ln det(Q−1g−1QAg) . (61)

If we naively assume that the determinant is multiplicative, as in finite di-
mensions, then we expect W (Ag) = W (A). However, the determinant is not
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well-defined and the renormalization procedure may a priori break this gauge
invariance. Fortunately, one can show there always exists renormalized determi-
nants (i.e. choices of distributional extensions of the kernel (53)) which preserve
gauge-invariance. Hence there is no anomaly for these theories. The situation
is different if we consider chiral gauge transformations. The latter affect only
half of the spinors and are defined as(

ψ+

ψ−

)
→

(
g−1
+ 0
0 1

)(
ψ+

ψ−

)
, (62)

(
ψ+ ψ−

)
→

(
ψ+ ψ−

)( 1 0
0 g−

)
,

so that Sf will remain invariant if we transform the operator QA = DA + mγ
according to

QA → g−1
− QAg+ . (63)

The free energy then changes as

ln det(Q−1QA)→ ln det(Q−1g−1
− QAg+) . (64)

It should be noted that the transformation (63) cannot be absorbed by a change
of potential A, unless we enlarge the space of potentials itself. Chiral transfor-
mations are of physical interest, however: at the limit m→ 0, the semi-spinors
of opposite chirality become independent and the action splits into the sum of
two terms

Sf (ψ,ψ,A) =
∫
M

dxψ−(DA)+ψ+ +
∫
M

dxψ+(DA)−ψ−

= S+
f (ψ+, ψ−, A) + S−f (ψ−, ψ+, A) (65)

Hence we can consider a gauge theory involving only half of the fermions via
the chiral action S+

f for example. S+
f is invariant under the chiral gauge trans-

formations

ψ+ → g−1
+ ψ+ , ψ− → ψ−g− , A→ g−1dg + g−1Ag . (66)

In this chiral gauge theory, we are thus led to calculate functional integrals of
the type

〈O〉 =
∫
DADψ+Dψ− O(ψ+, ψ−, A) e−(Sb(A)+S+

f (ψ+,ψ−,A))/~ . (67)

This is performed in exactly the same way as before. The Berezin integral over
chiral fermions yields a determinant∫

Dψ+Dψ− e
−S+

f (ψ+,ψ−,A)/~ = det(D−1
+ (DA)+) , (68)

where D is the chiral Dirac operator associated to a background connection.
For m = 0 one has QA = DA, Q = D so that

ln det(Q−1QA) = ln det(D−1
+ (DA)+) + ln det(D−1

− (DA)−) . (69)

10



Applying a chiral gauge transformation

DA → g−1
− DAg+ , (DA)+ → g−1

− (DA)+g+ , (DA)− → (DA)− (70)

shows that the variation of the free energy of the chiral gauge theory W+(A) =
~ ln det(D−1

+ (DA)+) is the limit m→ 0 of

~ ln det(Q−1g−1
− QAg+)− ~ ln det(Q−1QA) . (71)

There are topological reasons for which this variation cannot vanish. It is related
to the first homotopy of the group of gauge transformations G ⊂ End(E). Let us
consider a smooth family of gauge transformations parametrized by the circle:

g : S1 → G , t 7→ g(t) . (72)

This yields a smooth family of free energies

W (Ag) = ~ ln det(Q−1g−1
− QAg+) . (73)

According to the preceding section, W (Ag) will be defined as a formal power
series of the operator Ã = g−1

− QAg+ −Q:

ln det(Q−1g−1
− QAg+) = Tr ln(Q−1g−1

− QAg+) = Tr ln(1 +Q−1Ã)

=
∞∑
n=1

(−)n+1

n
Tr (Q−1Ã)n , (74)

where only the first few terms need to be renormalized. Once this is done, we also
expect that the series does not converge for “large” values of Ã when n → ∞,
since it is the expansion of a logarithm. Denote by s : C∞(S1) → Ω1(S1) the
de Rham differential on the circle and introduce the operator-valued one-form

ω = g−1sg . (75)

(We have chosen the notation s to stress the link with the BRS operator [16, 23].
The Maurer-Cartan form ω then corresponds to the Faddeev-Popov ghost). We
can show that the variation of the free energy along the loop may be expressed
in terms of ω,

sW (Ag) = ∆(ω,Ag) , (76)

where the one-form ∆(ω,Ag), unlike W (Ag), involves only finitely many terms.
Its cohomology class, as an element of H1(S1) does not vanish because the log-
arithm of the determinant is not uniquely determined over the circle in general
(a fact expressed by the divergence of the formal power series in Ã). In other
words the integral

1
2πi

∮
∆(ω,Ag) =

1
2πi

∮
sW (Ag) ∈ Z (77)

is an integer which counts the winding number of the C-valued determinant
function eW (Ag)/~ over the circle. We call this winding number the topological
anomaly of the loop g. It is clearly defined at the level of homotopy classes of
loops in the gauge group G. The thus obtained map

π1(G)→ Z , g 7→ 1
2πi

∮
∆(ω,Ag) (78)
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can be related to the Atiyah-Singer index theorem for families of Dirac operators,
as shown in [4] (they use a zeta-function regularisation for the determinant
function, see also [6]). The proof relies on the K-theory of the orbit space of
gauge potentials for the action of the gauge group. One can use the local form
of the index theorem to calculate cohomology class of the anomaly. One finds

∆(ω,Ag) = 2πi
∫
M

Â(R) cs(Θ(Ag), Ag, ω) (79)

where Â(R) ∈ H4k(M) is the Atiyah-Hirzebruch genus of the manifold M , and
cs is a polynomial in the ghost field ω, the connection Ag and its curvature Θ.
We will show in the rest of these notes that the link between chiral anomalies
and index theory actually holds in the completely general framework of non-
commutative geometry, even without use of the orbit space topology of gauge
potentials. It also sheds some light on the role of locality.

3 Noncommutative Geometry

3.1 Noncommutative spaces

The aim of noncommutative geometry is to extend the tools of classical geome-
try to more general “spaces” represented by associative algebras. This principle
is systematically used in Connes’ fundamental book [10]. The basic observa-
tion comes from the fact that an ordirary space X, viewed as a set of points
with an additional structure (for example a measure, or a topology, or a differ-
entiable structure), is entirely characterized by a suitable algebra of functions
f : X → C. For example

1) A space X endowed with a measure Ω is described by the algebra L∞(X,Ω)
of essentially bounded measurable functions over X.

2) A locally compact topological space X is described by the algebra C0(X) of
continuous functions vanishing at infinity.

3) A smooth manifold X is described by the algebra C∞c (X) of smooth functions
with compact support on it.

In all the above cases, the algebra of functions is commutative, the product
being given by pointwise multiplication:

(f1f2)(x) = f1(x)f2(x) ∀x ∈ X . (80)

The idea of noncommutative geometry is that any algebra, not necessarily com-
mutative, should be thought of as a kind of noncommutative “space” X. Of
course such an X is no longer given by a set of points. The examples above
motivate the following definitions of different types of noncommutative spaces:

1) Noncommutative measurable spaces = von Neumann algebras.

2) Noncommutative topological spaces = C∗-algebras.
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3) Noncommutative differentiable manifolds = “smooth” subalgebras of C∗-
algebras.

It is worth mentioning that these algebras are often realized as subalgebras of
bounded operators on a separable Hilbert space. It allows to use the powerful
tools of functional analysis. The force of noncommutative geometry is that
singular spaces, generally badly behaved as set of points, become more tractable
when described by noncommutative algebras. We list below some well-known
examples of noncommutative spaces (see [10, 17]).

Example 3.1 The dual of a discrete group. Let G be a discrete (countable)
group. The convolution algebra A = Cc(G) of G is the space of functions
f : G→ C with finite support, endowed with the convolution product

(f1f2)(g) =
∑
h∈G

f1(h)f2(h−1g) ∀g ∈ G . (81)

The convolution algebra is always associative. It is commutative exactly when
G is abelian. A is represented by bounded operators on the Hilbert space H =
`2(G) of square-integrable functions on G, via the left regular representation

(fξ)(g) =
∑
h∈G

f(h)ξ(h−1g) ∀ f ∈ A , ξ ∈ H . (82)

The completion ofA in the operator norm is the reduced C∗-algebra of the group
C∗r (G). When G is commutative, C∗r (G) is isomorphic, by Fourier transform,
to the commutative algebra of continuous functions over the Pontrjagin dual Ĝ
(the compact space of characters of G):

C∗r (G) ∼= C(Ĝ) . (83)

the product on C(Ĝ) is given by pointwise multiplication. This shows that
when G is not abelian, the noncommutative topological space described by the
C∗-algebra C∗r (G) may be considered as the “Pontrjagin dual” of G. It bears
essential information about the representation theory of G, and is therefore of
great importance [5].

Example 3.2 Groupoids. Groupoids provide an extremely rich class of non-
commutative spaces, ranging from groups at one end, to ordinary (commutative)
spaces at the other end. A groupoid G is a small category in which all the arrows
are invertible. In other words, there is a distinguished subset X ⊂ G of the set
G, and two maps r, s : G ⇒ X, the range and source maps. r and s restricted
to the subset X are the identity map. An element γ ∈ G is represented by an
arrow from s(γ) to r(γ):

r(γ) s(γ)

γ

��
(84)

The structure of the groupoid is given by an associative composition law of
compatible arrows: if γ1, γ2 ∈ G are such that s(γ1) = r(γ2), there is a composite
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arrow γ1γ2 ∈ G such that r(γ1γ2) = r(γ1) and s(γ1γ2) = s(γ2):

r(γ1) s(γ1) = r(γ2)

γ1

��
s(γ2)

γ2

��

γ1γ2

ff
(85)

Moreover, the elements of X are units for the composition law, and any arrow
γ ∈ G has an inverse γ−1 ∈ G such that γγ−1 = r(γ) and γ−1γ = s(γ). The
inverse is necessarily unique. Therefore, one can think of G as the space of units
X whose points are connected by invertible arrows.
The convolution algebra of the groupoid is the associative algebra A = Cc(G)
of functions f : G→ C with finite support, endowed with the product

(f1f2)(γ) =
∑

γ=γ1γ2

f1(γ1)f2(γ2) . (86)

There are two extremal cases. When the space of units X is reduced to only
one element e ∈ G, then all the arrows of G can be composed. Hence there is
an associative composition law G×G→ G, a unit element e and all the arrows
are invertible: it means that G is a group. The algebra A coincides with the
convolution algebra of the group. Another extremal case is when X = G. Then
each arrow is a unit and can be composed only with itself: the structure of the
groupoid G reduces to an ordinary set of points X, and the algebra A becomes
the commutative algebra of functions over X, with pointwise multiplication.
In general, the noncommutative space described by the convolution algebra A
corresponds to the space of units X, whose points are identified in a complicated
way via the arrows. A encodes these relations. More generally X and G can
be topological spaces or manifolds, in which case the convolution algebra will
be obtained from a suitable space of continuous, or differentiable, functions
f : G → C. Groupoids are extremely useful in a wide range of geometric
situations, including for example group actions on manifolds, quotient spaces
by an equivalence relation, or foliations [8].

Example 3.3 Almost commutative geometries. If X is a compact man-
ifold, we can take the tensor product of the commutative algebra of smooth
functions over M with a matrix algebra:

A = C∞(M)⊗MN (C) . (87)

Then A is noncommutative, but does not differs very much from C∞(M). This
kind of noncommutative spaces are called almost commutative geometries. They
appeared as an attempt to describe the standard model of elementary particles
from first principles of noncommutative geometry [10, 11].

The reader interested in other examples of noncommutative spaces can also
look at [12, 13] and references therein.

As we have seen, a smooth algebra A describes a noncommutative “mani-
fold”, whereas its C∗-completion detects only the underlying noncommutative
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“topological space”. If one wants to refine further the geometric description of
a noncommutative space, including for example the notion of distance or rie-
mannian metric, it is necessary to bring new elements into play. The correct
definition of a noncommutative riemannian manifold is introduced by Connes
as a spectral triple

(A,H, D) (88)

where A is a “smooth” ∗-algebra represented as bounded operators on a sepa-
rable Hilbert space H, and D is a selfadjoint, unbounded operator on H such
that

i) (1 +D2)−1/2 is a compact operator,
ii) For any a ∈ A, the commutator [D, a] extends to a bounded operator on H.

In addition, the spectral triple is said to be of even degree if there is an involu-
tive operator γ, γ2 = 1, inducing a Z2-grading on H, such that D is odd and A
is represented by even operators. If there is no such γ the spectral triple is said
to be of odd degree.

The classical commutative example is provided by a riemannian, closed, spin
manifold M . Here A = C∞(M) is the algebra of smooth functions acting by
pointwise multiplication on the Hilbert space H = L2(S) of square-integrable
sections of the spinor bundle, and D : C∞(S) → C∞(S) is the usual Dirac
operator. The degree of the spectral triple corresponds to the parity of the
dimension of M . It is remarkable that the geodesic distance on M and the
riemannian metric can be extracted from the Dirac operator and the Hilbert
space representation of A [10]. In fact spin manifold correspond more or less
to commutative spectral triples (provided the latter are endowed with some
additional properties like a real structure), see [17]. Spectral triples thus offer
the possibility to generalize all the tools of ordinary differential and riemannian
geometry to noncommutative spaces, using functional analysis methods.

3.2 K-theory and index theory

We know that an associative algebra A is the noncommutative generalization of
a manifold. It would be convenient to extend the classical notions of algebraic
topology, K-theory, characteristic classes, etc ... to the realm of noncommu-
tative geometry. This is indeed possible [9]. In this section we will discuss
the noncommutative version of K-theory, whose classical counterpart provides
topological invariants of manifolds, and the corresponding index theory.

We first review the classical K-theory of manifolds (this works more gener-
ally for locally compact spaces). In order to avoid unnecessary complications,
we suppose that M is a compact manifold. Consider the set Vect(M) of iso-
morphism classes of complex vector bundles E →M with finite rank. There is
a natural semigroup structure on Vect(M) given by direct sum

[E] + [F ] = [E ⊕ F ] , (89)

and the vector bundle of rank zero [0] is obviously a neutral element. The
Grothendieck group K0(M) is the abelian group generated by Vect(M). Its
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elements are obtained by considering pairs of isomorphism classes of vector
bundles ([E], [F ]) subject to the addition law

([E], [F ]) + ([E′], [F ′]) = ([E ⊕ E′], [F ⊕ F ′]) (90)

and the equivalence relation

([E], [F ]) ∼ ([E′], [F ′])⇔ ∃G such that [E ⊕ F ′ ⊕G] = [E′ ⊕ F ⊕G] . (91)

The equivalence class of the pair ([E], [F ]) for this relation is by definition the
difference [E]− [F ] ∈ K0(M). The opposite of the difference [E]− [F ] is given
by [F ]− [E]. Hence K0(M) is indeed an abelian group. We would like to obtain
the same group directly from the commutative algebra of smooth functions

A = C∞(M) . (92)

Hence we must know how to describe vector bundles over M in terms of A. It
turns out that vector bundles exactly correspond to finitely generated projective
modules over A [26]. Indeed, the space of smooth sections C∞(E) is a (say,
right) module over A, for the action given by pointwise multiplication:

C∞(E)×A → C∞(E) , (ξa)(x) = ξ(x)a(x) ∀ξ ∈ C∞(E), a ∈ A . (93)

This right A-module completely describes the vector bundle E. Equivalently,
finitely generated projective modules correspond to idempotents in the matrix
algebra over A. On obtains an idempotent from a vector bundle E of rank
n as follows. Since M is compact, there exists a finite open covering {Ui},
i = 1, . . . ,m of M such that E is trivial over each Ui:

E|Ui
∼= Ui × Cn . (94)

For any pair i, j, let gij : Ui ∩Uj → Gln(C) be the transition functions defining
E. They fulfill the cocycle condition gijgjk = gik for any i, j, k. Choose a
partition of unity {ρi} relative to the open covering. Each ρi is a positive
real-valued function with compact support on Ui such that:

m∑
i=1

ρi(x) = 1 ∀x ∈M . (95)

Then the following matrix e ∈Mm(Mn(A)) defines an idempotent:

eij =
√
ρi gij

√
ρj ∀i, j = 1, . . . ,m . (96)

Indeed, each component eij is an element of the matrix algebra Mn(A) and the
cocycle condition implies∑

j

eijejk =
∑
j

√
ρigijρjgjk

√
ρk = (

∑
j

ρj)
√
ρigik

√
ρk = eik . (97)

Hence e is an idempotent of the matrix algebra MN (A) with N = mn. We
have shown that any vector bundle E gives rise to an idempotent of the matrix
algebra MN (A), for a given size N . Conversely, any idempotent e ∈ MN (A)
always determines a vector bundle over M : let 1N denote the trivial complex
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line bundle of rank N over M . Then e is an idempotent endomorphism of 1N .
Its range yields a vector bundle E as a direct summand:

1N = E ⊕ F , E = Im(e) , F = Im(1− e). (98)

Two idempotents e, f in the matrix algebra M∞(A) = ∪N∈NMN (A) are said to
be isomorphic if there exists two matrices u and v such that

e = uv and f = vu . (99)

It is not hard to show [17] that the isomorphism classes of vector bundles over M
are in one-to-one correspondence with the isomorphism classes of idempotents
in the matrix algebra M∞(A). The set of isomorphism classes of idempotents
is naturally a semigroup under the direct sum

e⊕ f =
(
e 0
0 f

)
. (100)

Hence the K-theory of M may be alternatively defined as the Grothendieck
group of the semigroup of equivalence classes of idempotents in the matrix
algebra M∞(A). This motivates the definition of the K-theory of any associative
(not necessarily commutative) algebra.

Definition 3.4 Let A be an associative algebra. The K-theory group K0(A) is
the Grothendieck group associated to the semigroup of isomorphism classes of
idempotents in the matrix algebra M∞(A).

K0(A) is the first of a hierarchy of abelian groups Kn(A), n ≥ 0 [26]. For our
purposes we will only work with K0.

Remark 3.5 When A is a C∗-algebra, we obtain the same K0-group if we
replace idempotents by projectors (i.e. selfadjoint idempotents e = e2 = e∗)
[7]. Since C∗-algebras are the main subject of interest in index theory, we will
always consider K-theory classes represented by projectors even when A is only
a ∗-algebra.

In the classical case of a manifold M , elliptic pseudodifferential operators
provide invariants of the K-theory group K0(M). This is the content of the
celebrated Atiyah-Singer index theorem [3]. In the noncommutative context,
the Dirac operator of a spectral triple (A,H, D) plays the rôle of an elliptic
operator for the ∗-algebra A. We will restrict our attention to spectral triples of
even degree only. Hence, H = H+ ⊕H− is a Z2-graded Hilbert space on which
A acts as bounded operators of even degree, and D is a selfadjoint unbounded
operator of odd degree verifying the conditions listed in section 3.1. An index
pairing gives rise to an additive map

[D] : K0(A)→ Z . (101)

The latter is constructed as follows. Let e ∈MN (A) be a self-adjoint idempotent
representing a K-theory element of A. At the expense of replacing A by MN (A),
H by H ⊗ CN and D by D ⊗ 1, we may assume that e belongs to A. Hence
e = e2 = e∗ defines a projector on the Hilbert space H. Define the bounded
selfadjoint operator

F = D/(1 +D2)1/2 . (102)
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The commutator [F, e] is a compact, as well as the difference F 2−1. We regard
the compression eFe as a bounded operator of odd degree on the Hilbert space
H′ = eH = H′+ ⊕H′−. It is written in 2× 2 matrix notation

eFe =
(

0 P
Q 0

)
, (103)

with Q : H′+ → H′− and P : H′− → H′+. One shows that PQ − 1 and
QP − 1 are compact operators, hence Q is a Fredholm operator [19]: it has
finite-dimensional kernel and cokernel. We define the index of D against the
idempotent e as the integer

〈[D], [e]〉 = dim KerQ− dim CokerQ ∈ Z . (104)

One can show [7] that this number only depends on the K-theory class of e.
This gives rise to the index map (101). The aim of cyclic cohomology is to
provide tools for the computation of this map, and to obtain explicit formulas
generalizing the Atiyah-Singer index theorem in the noncommutative setting.

3.3 Cyclic cohomology

Cyclic homology and cohomology is the noncommutative generalization of de
Rham cohomology. It was introduced by Connes in the context of index theory
for noncommutative spaces [9], and independently by Tsygan in an additive
approach to algebraic K-theory.

Noncommutative differential forms

A convenient way to introduce cyclic (co)homology is via noncommutative dif-
ferential forms. It also makes the link with de Rham theory more transparent.
Let A be an associative algebra over C, and Ã = A ⊕ C denote the algebra
obtained by adding a unit 1 (even if A is already unital). The space of noncom-
mutative differential forms is the direct sum

ΩA =
⊕
n≥0

ΩnA (105)

with ΩnA = Ã⊗A⊗n for n ≥ 1 and Ω0A = A. It is customary to denote a string
a0⊗...⊗an ∈ ΩnA (resp. 1⊗a1...⊗an) by the differential form a0da1...dan (resp.
da1...dan). A differential d : ΩA → Ωn+1A is uniquely specified by setting

d(a0da1...dan) = da0da1...dan , d(da1...dan) = 0 , (106)

which automatically implies d2 = 0. We endow the space ΩA with the natural
product coming from the usual multiplication of differential forms:

(a0da1 . . . dan)(an+1dan+2 . . . dan+p) = (107)
a0da1 . . . d(anan+1)dan+2 . . . dan+p − a0da1 . . . d(an−1an)dan+1 . . . dan+p +
. . .+ (−)na0a1da2 . . . dandan+1 . . . dan+p .

Then ΩA becomes a differential algebra graded over N, that is, the product
satisfies the Leibniz rule

d(ω0ω1) = dω0 ω1 + (−)|ω0|ω0dω1 , (108)
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for any differential forms ω0, ω1 ∈ ΩA, where |ω0| ∈ N is the degree of ω0. It
turns out that ΩA is a universal differential graded (DG) algebra over A in
the following sense. Let Ω be any DG algebra and ρ : A → Ω0 an algebra
homomorphism. Then there exists a unique DG algebra homomorphism φ :
ΩA → Ω which extends ρ in a commutative diagram

A Ω

ΩA

J
Ĵ 



�

-ρ

φ

(109)

Here the arrow A → ΩA is the canonical inclusion coming from the identifica-
tion A = Ω0A.

Let us now describe the cyclic bicomplex. The Hochschild operator b :
Ωn+1A → ΩnA is defined by

b(ωda) = (−)n[ω, a] , ∀ω ∈ ΩnA , a ∈ A , (110)

and b = 0 on Ω0A. It is easy to check that b2 = 0 and the complex

. . . −→ ΩnA b−→ Ωn−1A b−→ . . . −→ Ω1A b−→ A −→ 0 (111)

calculates the Hochschild homology of A with coefficients in the bimodule A,
see [22].
Next we introduce the Karoubi operator k : ΩnA → ΩnA and Connes’ boundary
B : ΩnA → Ωn+1A by:

k = 1− (bd+ db) , B = (1 + k + ...+ kn)d . (112)

One has
B2 = 0 , b2 = 0 , bB +Bb = 0 , (113)

whence the existence of the so-called (b, B)-bicomplexy y y y
Ω3A B←−−−− Ω2A B←−−−− Ω1A B←−−−− A

b

y b

y b

y
Ω2A B←−−−− Ω1A B←−−−− A

b

y b

y
Ω1A B←−−−− A

b

y
A

(114)

We can form the associated total complex of diagonals, indexed by N, on which
the operator b+B acts with degree +1.

Definition 3.6 The cyclic homology HC∗(A) is the homology of the total com-
plex associated to the (b, B)-bicomplex of differential forms (114).
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Passing to the dual complexes, one gets a description of cyclic cohomol-
ogy in terms of linear maps on the space of differential forms. If CCn(A) =
Hom(ΩnA,C) denotes the dual space of ΩnA, the transposed operators b, B
yield the bicomplex of cyclic cohomology:x x x x

CC3(A) B−−−−→ CC2(A) B−−−−→ CC1(A) B−−−−→ CC0(A)

b

x b

x b

x
CC2(A) B−−−−→ CC1(A) B−−−−→ CC0(A)

b

x b

x
CC1(A) B−−−−→ CC0(A)

b

x
CC0(A)

(115)

Definition 3.7 The cyclic cohomology HC∗(A) is the cohomology of the total
complex associated to the (b, B)-bicomplex (115).

There is a natural inclusion of the bicomplex (115) into itself, obtained just by
deleting the first column. It is easy to see [22] that this induces a linear map of
degree +2 on cyclic cohomology, the so-called periodicity operator

S : HCn(A)→ HCn+2(A) , ∀n ∈ N . (116)

Periodic theory

There is another version of cyclic (co)homology, also due to Connes, called the
periodic theory. It is linked with the periodicity operator S, and defined via
a slight modification of the cyclic bicomplexes. The resulting theory is gifted
with good properties, like homotopy invariance, and is really the correct gen-
eralization of de Rham theory from manifolds to noncommutative spaces. The
periodic theory will be used as a receptacle for the Chern-Connes character in
the next section.

Consider an associative algebra A and its DG algebra of noncommutative
differential forms ΩA. Let us modify the (b, B)-bicomplex (114) by adding
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infinitely many b-columns to the left, connected by the boundary B:y y y y
. . .

B←−−−− Ω3A B←−−−− Ω2A B←−−−− Ω1A B←−−−− A

b

y b

y b

y
. . .

B←−−−− Ω2A B←−−−− Ω1A B←−−−− A

b

y b

y
. . .

B←−−−− Ω1A B←−−−− A

b

y
. . .

B←−−−− A

(117)

Now the diagonals of this bicomplex have infinite length. They are no longer in-
dexed by natural integers, but are only distinguished by their parity. A diagonal
is either a sum of forms of even degree:

Deven = A⊕ Ω2A⊕ Ω4A⊕ . . . , (118)

or a sum of forms of odd degree:

Dodd = Ω1A⊕ Ω3A⊕ Ω5A⊕ . . . . (119)

Now we want to take the total complex with boundary b + B and consider its
homology. However, we must take care of the following subtlety. Since the
diagonals have infinite length, there are actually two different ways of forming a
total complex. The first one is to consider that the diagonals are indeed direct
sums, that is, their elements are finite linear combinations of differential forms:

ω ∈ Deven ⇔ ω =
n∑
k=0

ω2k (120)

for some n and ω2k ∈ Ω2kA. Unfortunately, it turns out that the homology of
this total complex with boundary b+B vanishes [22]. The second possibility is
to complete the diagonals by taking direct products

D̂even =
∞∏
k=0

Ω2kA , D̂odd =
∞∏
k=0

Ω2k+1A . (121)

It means that an element of, say, D̂even is an infinite sequence of forms of even
degree, all of which may be non-zero:

ω ∈ D̂even ⇔ ω =
∞∑
k=0

ω2k = (ω0, ω2, ω4, . . .) . (122)

Now, the total boundary b + B is still defined on these infinite diagonals. We
get this way a Z2-graded complex

Ω̂A = D̂even ⊕ D̂odd =
∞∏
n=0

ΩnA , (123)
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with boundary b + B mapping the even subspace D̂even to the odd subspace
D̂odd and conversely. The homology of this complex is nontrivial in general.

Definition 3.8 The periodic cyclic homology HP∗(A) is the homology of the
Z2-graded complex (Ω̂A, b+B) of infinite chains over A:

HPi(A) = Hi(Ω̂A) , i = 0, 1 . (124)

Hence a periodic cycle ω is an infinite sequence annihilated by the total boundary
b+B:

bωn+2 +Bωn = 0 ∀n ≥ 0 . (125)

Passing to the dual theory, we can define periodic cyclic cohomology by
considering the complex of finite cochains over A with total boundary b+B. It
is given by the direct sum of the spaces of linear maps ΩnA → C

(Ω̂A)′ =
∞⊕
n=0

Hom(ΩnA,C) , (126)

on which act the transposed of the boundaries b and B. It is crucial here to
define a periodic cochain ϕ ∈ (Ω̂A)′ as a finite linear combination of maps
ϕn : ΩnA → C, so that its pairing with a periodic chain ω =

∑∞
n=0 ωn is given

by the finite sum
〈ϕ, ω〉 =

∑
n≥0

ϕn(ωn) . (127)

Definition 3.9 The periodic cyclic cohomology HP ∗(A) is the cohomology of
the Z2-graded complex ((Ω̂A)′, b+B) of finite cochains over A:

HP i(A) = Hi((Ω̂A)′) , i = 0, 1 . (128)

It is isomorphic to the inductive limit of the non-periodic cyclic cohomology
groups HC∗(A) under the periodicity operator S : HCn(A)→ HCn+2(A):

HP i(A) = lim
−→
k

HC2k+i(A) , i = 0, 1 . (129)

Hence a periodic cocycle ϕ is a finite sum annihilated by the total boundary
b+B,

bϕn +Bϕn+2 = 0 ∀n ≥ 0 . (130)

Since the complex of periodic cochains is dual to the complex of periodic chains,
the pairing 〈ϕ, ω〉 induces a bilinear product between periodic cyclic cohomology
and periodic cyclic homology, with values in C:

〈 , 〉 : HP i(A)×HPi(A)→ C , i = 0, 1 . (131)

Example 3.10 In the classical case of a smooth compact manifold M , one
can take the commutative algebra A = C∞(M). It is naturally endowed
with a locally convex topology coming from the family of seminorms pn(a) =
supM |∂na(x)| for any a ∈ A. A theorem of Connes [9] shows that the periodic
cyclic cohomology of A is isomorphic to the de Rham homology of M ,

HP i(A) ∼=
⊕
k≥0

H2k+i(M) , (132)

provided one takes the cohomology of continuous periodic cochains with respect
to the topology of A.
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4 Index Theorems

4.1 The Chern-Connes character

Chern character in K-theory

Cyclic homology was introduced as a noncommutative analogue of de Rham
theory. As in the classical (commutative) case, it is the natural receptacle for a
Chern character defined on K-theory. See [22] for further details.

Let A be an associative algebra over C. We have seen in section 3.2 that the
K-theory group K0(A) is the Grothendieck group associated to the semigroup of
isomorphism classes of idempotents in the matrix algebra M∞(A) = ∪kMk(A).
Recall that two such idempotents e ∈Mk(A) and f ∈Mn(A) are isomorphic if
and only if there exist rectangular matrices u and v of appropriate size over A,
such that e = uv and f = vu. Moreover, the sum of idempotents is given by

e⊕ f =
(
e 0
0 f

)
. (133)

The Grothendieck group is then the abelian group generated by isomorphism
classes of idempotents and constrained by the equivalence relation

[e] + [f ] ∼ [e⊕ f ] . (134)

Finally, recall that any element of K0(A) can be written as a difference of two
classes [e]−[f ]. We wish to construct a Chern character on K0(A) with values in
the periodic cyclic homology of even degree HP0(A). According to section 3.3,
a class in HP0(A) is represented by a sequence of noncommutative differential
forms of even degree

ω =
∞∑
n=0

ω2n , ω2n ∈ Ω2nA , (135)

subject to the closedness condition (b+B)ω = 0.

Proposition-Definition 4.1 Let e ∈M∞(A) be an idempotent. The following
differential form defines a periodic cycle of even degree over A:

ch(e) = tr(e) +
∞∑
n=0

(−)n
(2n)!
n!

tr((e− 1
2

)(dede)n) , (136)

where the map tr : Ω(M∞(A)) → ΩA is induced by the trace of matrices. The
periodic cyclic homology class of ch(e) in HP0(A) is the Chern character of the
idempotent e.

One can check [22] that this definition is compatible with the isomorphism
relation of idempotents and yields a Chern character at the level of K-theory
classes:

Proposition 4.2 The Chern character defines an additive map

ch : K0(A)→ HP0(A) . (137)
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Recall that there exists a bilinear pairing between periodic cyclic cohomology
and periodic cyclic homology, induced by the evaluation of a cycle ω =

∑∞
k=0 ω2k

on a cocycle ϕ =
∑n
k=0 ϕ2k:

〈ϕ, ω〉 =
n∑
k=0

ϕ2k(ω2k) . (138)

Therefore, the Chern character on K-theory allows one to define a bilinear
pairing between periodic cyclic cohomology and K-theory:

Corollary 4.3 Let ϕ be a periodic cocycle of even degree over A and e ∈
M∞(A) an idempotent. The finite sum

〈ϕ, e〉 = ϕ0tr(e) +
∑
n≥0

(−)n
(2n)!
n!

ϕ2ntr((e− 1
2

)(dede)n) (139)

induces a bilinear pairing

〈 , 〉 : HP 0(A)×K0(A)→ C . (140)

Chern character for spectral triples

We have seen in section 3.2 that spectral triples over a ∗-algebra A provide a
theory “dual” to K-theory in the sense that there are pairings

spectral triples×K∗(A)→ Z (141)

given by the index of abstract Dirac-type operators. When a spectral triple
satisfies suitable “finite-dimensionality” conditions (p-summability), there is an
associated periodic cyclic cocycle over A. This will be detailed in the construc-
tion below. One is left with the so-called Chern-Connes character [9]

ch :
p-summable

spectral triples → HP ∗(A) (142)

with values in the periodic cyclic cohomology of A. This Chern character is
“dual” to the Chern character on K-theory, because it is constructed so that
the following diagram

p-summable
spectral triples × K∗(A) Ind−−−−→ Zych

ych

y
HP ∗(A) ×HP∗(A)

〈 , 〉−−−−→ C

(143)

commutes. In particular, this means that the index of an abstract Dirac operator
D against a projector e, representing respectively a spectral triple and a K-
theory class, can be computed by means of the duality bracket between their
respective Chern characters:

〈[D], [e]〉 = 〈ch(D), ch(e)〉 . (144)
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Recall that a spectral triple (A,H, D) corresponds to the following data:
i) A is a (unital) ∗-algebra represented in the algebra L(H) of bounded linear
operators on a separable Hilbert space H.
ii) D is a densely defined unbounded self-adjoint operator on H with compact
resolvent. For any a ∈ A, the commutator [D, a] is densely defined and extends
to a bounded operator on H.
iii) If the spectral triple is of even parity, there is a self-adjoint involution
γ ∈ L(H), γ2 = 1, such that γD = −Dγ, γa = aγ ∀a ∈ A. That is, H
is a Z2-graded Hilbert space and D is an operator of odd degree.

The spectral triple (A,H, D) is called p-summable, for p ≥ 1 a real number, if
is it satisfies the following additional property [9]:
iv) (1 +D2)−1/2 ∈ `p(H),
where `p(H) is the Schatten p-class.

The Chern character of a p-summable spectral triple (A,H, D) in the peri-
odic cyclic cohomology of A is given by explicit formulas involving the operator
D and the Hilbert space representation of A. We will do this for spectral triples
of even parity. We can choose the following matrix representation of operators
acting on the Z2-graded space H = H+ ⊕H−:

a =
(
a+ 0
0 a−

)
, D =

(
0 D−
D+ 0

)
, γ =

(
1 0
0 −1

)
, (145)

for any a ∈ A. Hence a+ (resp. a−) denotes the representation of a on the
subspace H+ (resp. H−), D+ : H+ → H− is the chiral Dirac operator and
D− : H− → H+ is its adjoint. D may not be invertible, so we need to modify
slightly the spectral triple in order to deal with an invertible Dirac operator.
This is done as follows. Let m ∈ R be an arbitrary “mass”, and consider the
selfadjoint unbounded operator

Q = D + γm . (146)

Since γ anticommutes with D, the square Q2 = D2 + m2 is a strictly positive
selfadjoint operator when m 6= 0, hence is invertible. Replace (A,H, D) by the
new spectral triple of even degree (A,H′, D′), where the Hilbert space H′ and
the new Dirac and chirality operators D′ and γ′ read

H′ =
(
H
H

)
, D′ =

(
0 Q
Q 0

)
, γ′ =

(
1 0
0 −1

)
, (147)

hence the 2 × 2 matrix representation is replaced by 4 × 4 matrices, and the
representation of A into the algebra of bounded operators L(H′) is defined to
be

a =
(
a′+ 0
0 a′−

)
, with a′+ =

(
a+ 0
0 0

)
, a′− =

(
0 0
0 a−

)
. (148)

What we have done so far is just a dual analogue of stabilization by matrices in
K-theory, and the two spectral triples (A,H, D) and (A,H′, D′) are equivalent
in the sense of K-homology (the theory dual to K-theory, see [7]). Now for
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m 6= 0, the spectral triple (A,H′, D′) has an invertible Dirac operator D′. We
will construct periodic cyclic cocycles over A from the operator

F =
(

0 Q−1

Q 0

)
. (149)

One obviously has F 2 = 1. This property enables us to consider the graded
commutator by F

a 7→ [F, a] (150)

as a kind of noncommutative differential. More precisely, consider the unital
algebra Ω of operators on the Z2-graded Hilbert space H′ generated by the
elements a ∈ A (which are of even degree) and the commutators [F, a] of odd
degree. The graded commutator is a map of odd degree

[F, ] : Ω→ Ω , ω 7→ [F, ω] = Fω − (−)|ω|ωF , (151)

where |ω| denotes the degree of ω ∈ Ω. This is a graded derivation because
[F, ω1ω2] = [F, ω1]ω2 + (−)|ω1|ω1[F, ω2] for any ω1, ω2 ∈ Ω. Moreover, its square
vanishes by virtue of the graded Jacobi identity

[F, [F, ω]] = [F 2, ω] = [1, ω] = 0 . (152)

Hence Ω is a Z2-graded differential algebra. By the universal property of the
DG algebra of noncommutative differential forms ΩA (section 3.3), there is a
unique DG algebra homomorphism

ΩA → Ω , a0da1 . . . dan 7→ a0[F, a1] . . . [F, an] (153)

which transforms the universal differential d on ΩA into the differential [F, ] on
Ω. Let us calculate explicitly the commutator [F, a] in matricial form. One has

[F, a] =
(

0 Q−1

Q 0

)(
a′+ 0
0 a′−

)
−
(
a′+ 0
0 a′−

)(
0 Q−1

Q 0

)
=

(
0 Q−1a′− − a′+Q−1

Qa′+ − a′−Q 0

)
. (154)

The bottom left corner reads

Qa′+ − a′−Q =
(

m D−
D+ −m

)(
a+ 0
0 0

)
−
(

0 0
0 a−

)(
m D−
D+ −m

)
=

(
ma+ 0

D+a+ − a−D+ ma−

)
, (155)

whereas the top right corner may be rewritten as

Q−1a′− − a′+Q−1 = −Q−1(Qa′+ − a′−Q)Q−1 . (156)

Now by definition, the commutator [D, a] is bounded on H, which implies
D+a+ − a−D+ is bounded and also Qa′+ − a′−Q. Moreover, by p-summability
the operator Q−1 lies in the Schatten class `p(H) hence

Q−1a′− − a′+Q−1 ∈ `p/2(H) . (157)
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It follows that for any a ∈ A, the operator F [F, a] ∈ `p(H′), and more generally
for any even integer n ∈ 2N, the expression

F [F, a0][F, a1] . . . [F, an] (158)

lies in the Schatten class `
p

n+1 (H′), and is a trace-class operator when n+1 > p.
Let Trs : `1(H′)→ C be the supertrace of operators on H′, defined by

Trs(x) = Tr(γ′x) (159)

for any x ∈ `1(H′). By construction, Trs vanishes on graded commutators.

Proposition 4.4 ([9]) Let (A,H, D) be a p-summable spectral triple of even
degree, and Q = D+γm the massive amplification of D by a mass term m 6= 0.
Then for any even integer n > p− 1, the linear map chn(Q) : ΩnA → C defined
by

chn(Q)(a0da1 . . . dan) =
1
2

(n/2)!
n!

Trs(F [F, a0][F, a1] . . . [F, an]) (160)

is closed for the Hochschild operator b and Connes’ boundary B, hences defines
a cyclic cocycle of degree n over A.

One may also consider chn(Q) as a periodic cocycle over A:

bchn(Q) = 0 , Bchn(Q) = 0⇒ (b+B)chn(Q) = 0 . (161)

Remark that it depends a priori on the choice of the mass term m 6= 0. However,
the following proposition shows that the periodic cyclic cohomology class of
chn(Q) is independent of m, and even better, is independent of the choice of
degree n > p− 1.

Proposition 4.5 ([9]) Let (A,H, D) be a p-summable spectral triple of even
degree and Q = D + γm. The periodic cyclic cohomology class of chn(Q) is
independent of the choice of mass m and of the degree n > p − 1. Hence there
exists a unique periodic cyclic cohomology class of even degree

ch(D) ∈ HP0(A) (162)

called the Chern-Connes character of the spectral triple, represented by any of
the above cyclic cocycles.

Now given an even spectral triple (A,H, D) and a projector e ∈M∞(A) rep-
resenting a class in K0(A), their Chern characters lying respectively in HP 0(A)
and HP0(A) can be paired. It turns out that the result is an integer and coin-
cides with the index of the Dirac operator D against e. This is the content of
the following index theorem due to Connes [9].

Theorem 4.6 (Connes) Let (A,H, D) be a p-summable spectral triple of even
degree over A and [e] ∈ K0(A) be a K-theory class represented by the idempotent
e ∈ MN (A). Then the index of D against e is computed by the duality pairing
of their Chern characters in periodic cyclic (co)homology

〈[D], [e]〉 = 〈ch(D), ch(e)〉 . (163)
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4.2 Local formulas and residues

Although the n-dimensional Chern character of a p-summable spectral triple
(A,H, D) is given by an apparently simple formula

chn(Q)(a0da1 . . . dan) =
1
2

(n/2)!
n!

Trs(F [F, a0][F, a1] . . . [F, an]) , n > p− 1 ,

(164)
it is not always easily computable in concrete situations. Even in the classical
example, when A = C∞(M) is the algebra of smooth functions on a closed
riemannian spin manifold M , and D is the usual Dirac operator acting on a
dense subspace of the Hilbert space H = L2(S) of square-integrable sections of
the spinor bundle, the computation of the cocycle chn(Q) is tedious. The reason
is that the operator

F =
(

0 Q−1

Q 0

)
(165)

involves the inverse of the massive amplification Q = D + γm. Therefore Q−1

is a non-local operator, in the sense that its action on a smooth section ξ of the
spinor bundle is given in terms of its distributional kernel Q−1(x, y) which is
non-zero outside the diagonal x = y:

(Q−1ξ)(x) =
∫
M

dy Q−1(x, y)ξ(y) . (166)

We recognize here that Q−1(x, y) is the propagator of the fermionic spinor field
with mass m, see section 2.1. As a consequence of this non-locality, taking the
operator supertrace in the Chern character formula (164) yields a multi-integral
expression ∫

M

dy0

∫
M

dy1 . . .

∫
M

dyn k(y0, y1, . . . , yn) , (167)

with k some distributional kernel in the variables yi. This is in contrast with
the idea that Chern characters and consequently index formulas should be given
by local expressions, of the form ∫

M

dy k(y) (168)

with k(y) some polynomial involving curvatures of connections, like in the
Atiyah-Singer index theorem. This difficulty is solved by Connes and Moscovici
in a series of articles [14, 15] by constructing a periodic cocycle over A coho-
mologous to chn(Q), whose components are given by residues of zeta-functions
generalizing the Wodzicki residue [21]. When applied to the classical case of
manifolds, one automatically gets local expressions. In the noncommutative
case, where the usual notion of “points” disappears, these residues should be
taken as a definition of locality.

In order to write down this local representative of the Chern character, we
must introduce the notion of a regular spectral triple (A,H, D). The correct
notion of “dimension” for this space is not entirely given by p-summability,
which is a real number, but is rather encoded in a discrete subset of the complex
plane

Sd ⊂ C (169)
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called the dimension spectrum. Then (A,H, D) is regular if it fulfills the con-
ditions:

v) A and [D,A] belong to the domains of all powers of the derivation δ = [|D|, ];
vi) Let Ψ0(A) denote the algebra of operators generated by the derivatives δn(A)
and δn([D,A]). Then for any b ∈ Ψ0(A), the zeta-function

ζb(z) = Tr(b|D|−z) z ∈ C

extends to a meromorphic function with poles contained in the dimension spec-
trum Sd.

Under the regularity assumption, Connes and Moscovici give in [15] a rep-
resentative of the Chern character as a periocic cocycle over A, that is, a finite
collection of linear maps ϕn : ΩnA → C verifying the cocycle condition

bϕn +Bϕn+2 = 0 ∀n . (170)

We state the result only for a spectral triple of even degree.

Theorem 4.7 (Connes-Moscovici) Let (A,H, D) be a regular p-summable
spectral triple. Then its Chern character is represented by the following periodic
cocycle ϕ of even degree over A:

ϕ0(a) = Res
z=0

(Γ(z)Trs(a|D|−2z)) , (171)

and for any even integer n > 0,

ϕn(a0da1 . . . dan) =
∑

q≥0,ki≥0

cn,k,q× (172)

×Res
z=0

(zqTrs(a0[D, a1](k1) . . . [D, an](kn)|D|−(2z+n+2
P
ki))) ,

where [D, a](k) denotes the k-th iterated commutator [D2, ] on [D, a], and the
coefficients cn,k,q are given by

cn,k,q = (−)k1+...+kn
Γ(q)(k1 + . . .+ kn + n/2)

q!k1! . . . kn!
× (173)

×((k1 + 1)(k1 + k2 + 2) . . . (k1 + . . .+ kn + n))−1 .

Here Γ(q) denotes the qth derivative of the gamma-function. The finite summa-
bility of the spectral triple implies that only a finite number of components ϕn
are non-zero, and the presence of residues necessarily gives local expressions. In
the classical example A = C∞(M) and D = the Dirac operator on spinors, the
dimension spectrum consists only of simple poles and is contained in the set

Sd ⊂ {k ∈ Z |k ≤ dimM} . (174)

Hence we retain only the residues of the form (q = 0)

Res
z=0

Trs(a0[D, a1](k1) . . . [D, an](kn)|D|−(2z+n+2
P
ki)) (175)
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which vanish unless all the ki’s are zero, in which case

Res
z=0

Trs(a0[D, a1] . . . [D, an]|D|−(2z+n)) = λn

∫
M

Â(M)∧a0da1∧. . .∧dan (176)

for some coefficient λn. Here we recognize the Atiyah-Hirzebruch Â-genus of
the spin manifold M . By pairing the Chern character of the triple with an
idempotent e ∈ MN (A) representing a K-theory class of M , one thus recovers
the Atiyah-Singer index theorem for spin manifolds:

〈[D], [e]〉 =
∫
M

Â(M)ch(e) . (177)

In the general case the dimension spectrum may have poles of higher order
and the terms involving the derivatives of Γ (q 6= 0) in the coefficients cn,k,q
contribute to the Chern character. This happens for example in the case of
manifolds with singularities. Finally, let us remark that one should not be
worried by the appearance of transcendantal coefficients cn,k,q (involving the
derivatives of the gamma-function) because, as shown in [15], it is possible to
modify the cocycle ϕ by adding a coboundary such that the result contains only
rational coefficients.

4.3 Anomalies revisited

We see from the preceding discussion about the noncommutative index theorem
that the formalism used there is very close to the description of chiral anomalies
in quantum field theory. To make this link more precise, we will state here a
theorem relating the index of an abstract Dirac operator and a chiral anomaly,
in the most general framework of noncommutative geometry. Since anomalies
are always local (in a sense which will be explained later), we will find an alter-
native way of computing the index pairing through local formulas, in the spirit
of Connes and Moscovici.

So let us start with a spectral triple (A,H, D) over an associative ∗-algebra
A. We assume the triple has even parity and is p-summable for a given real
number p ≥ 1. Hence the Dirac operator is such that

(1 +D2)−1/2 ∈ `p(H) . (178)

There is an obvious way of considering a kind of noncommutative quantum field
theory associated to the spectral triple, by generalizing the fermionic action
encountered in section 2.1 in the case of closed manifolds. For any vector ψ ∈ H
belonging to the domain of D, and any dual vector ψ ∈ H∗ ∼= H, we introduce
the action

S(ψ,ψ) = 〈ψ,Qψ〉 , Q = D + γm (179)

where m ∈ R is a mass term. This action therefore describes the classical
dynamics of a free massive fermionic field ψ and its adjoint ψ on the noncom-
mutative “manifold” (A,H, D). Since a free theory is rather trivial, we would
like to improve it a little bit by coupling the fermions to a gauge potential A,
such that the total action is invariant under chiral gauge transformations, de-
scribed as follows. Let Ã be the unitalization of A (we add a unit to A even
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though A is already supposed to be unital) and let g ∈ Ã be a unitary element
of the form

g = 1 + u , u ∈ A , (180)

where 1 is the unit of Ã. The representation of g as a bounded operator on the
Z2-graded Hilbert space H = H+ ⊕H− reads, using 2× 2 matrices,

g = 1 +
(
u+ 0
0 u−

)
, (181)

with u± the action of u on the subspaces H±. Let us split g as the product
g+g− of partial transformations

g+ = 1 +
(
u+ 0
0 0

)
, g− = 1 +

(
0 0
0 u−

)
. (182)

Then the chiral transformation of parameter g is defined on the fields ψ ∈ H,
ψ ∈ H∗ as

ψ 7→ g−1
+ ψ , ψ 7→ ψg− , (183)

so that the free action transforms as

〈ψ,Qψ〉 7→ 〈ψ, g−Qg−1
+ ψ〉 . (184)

We shall absorb the lack of chiral invariance of the free action by introducing
a gauge potential A as a bounded operator on H. In practice, A will be an
element of the unital algebra of bounded operators generated by A, [D,A] and
the involution γ. Then we perturb the massive operator Q by adding

QA = Q+A . (185)

Note that the unbounded operator QA is not selfadjoint in general, but differs
from the selfadjoint Q only by a bounded operator. The chiral transformation
Ag of the potential is specified so that QA transforms adequately under the
action of g:

QA 7→ g−1
− QAg+ = QAg . (186)

One finds
Ag = g−1

− QAg+ −Q = (g−1
− Qg+ −Q) + g−1

− Ag+ , (187)

which is reminiscent of the chiral gauge transformations obtained in the case of
manifolds. Remark that Ag is bounded. Indeed, the first term of the right hand
side is

g−1
− Qg+ −Q = (g−1

− Dg+ −D) +m(g−1
− γg+ − γ) . (188)

The mass term is clearly bounded, whereas the term involving the Dirac operator
reads

g−1
− Dg+ −D = g−1

− (Dg+ − g−D)

= g−1
−

((
0 D−
D+ 0

)(
1 + u+ 0

0 1

)
−
(

1 0
0 1 + u−

)(
0 D−
D+ 0

))
= g−1

−

(
0 0

(D+u+ − u−D+) 0

)
. (189)
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By hypothesis on the spectral triple, the commutator [D,u] is bounded on H,
hence is also D+u+ − u−D+ on H+. It follows that the chiral transformation
maps A to another bounded operator Ag of the same kind. Now, we add an
interaction term to the free action, in order to get the full action

S(ψ,ψ,A) = 〈ψ, (Q+A)ψ〉 (190)

describing massive fermions ψ,ψ coupled to an external potential A. By con-
struction, this action is invariant under chiral transformations:

S(g−1
+ ψ,ψg−, A

g) = S(ψ,ψ,A) (191)

for any unitary element g = 1 + u ∈ Ã. We would like now to quantize the
fermionic fields, retaining A as a fixed (classical) external potential. This is
achieved by considering the partition function (we set ~ = 1)

Z(A) =
∫
DψDψ e−S(ψ,ψ,A) (192)

where DψDψ is the formal Berezin integration measure over the infinite dimen-
sional space of fermionic fields. In order to give a sense to the functional integral,
we just remark that the action is quadratic in ψ,ψ so that by a usual argument,
Z(A) is just defined to be a regularized determinant of the unbounded operator
QA:

Z(A) = ′′ det(Q−1QA)′′ , (193)

where the normalization condition Z(0) = 1 is taken into account. Following
the basic principles of quantum field theory, it is easier to deal with the free
energy

W (A) = lnZ(A) (194)

as a formal power series in A, with a finite number of terms to be renormalized.
Hence we are trying to define

W (A) = ln det(Q−1QA) = Tr ln(1 +Q−1A) . (195)

The trace stands for the ordinary operator trace on the Hilbert space H. De-
veloping the logarithm as a formal power series in A, we find

W (A) = Tr(Q−1A)− 1
2

Tr(Q−1AQ−1A)+. . .+
(−1)n+1

n
Tr (Q−1A)n+. . . (196)

Now the p-summability assumption Q−1 ∈ `p(H) tells us that the operator
(Q−1A)n is trace-class whenever n ≥ p, hence the corresponding term in the
series W (A) is well-defined. Therefore only the first p − 1 terms need to be
renormalized. This can be done, in a very general manner, as follows. Denote
by Ψ(A) the algebra of (possibly unbounded) operators generated by A, Q,
Q−1 and the chirality operator γ. This plays the role of an algebra of abstract
pseudodifferential operators. The trace Tr is well-defined on the subalgebra of
trace-class operators Ψ(A) ∩ `1(H). Choose an arbitrary linear extension

τ : Ψ(A)→ C (197)
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which coincides with Tr on trace-class operators. In general, it is impossible to
find an extension τ with the additional property of being a trace on the whole
algebra Ψ(A): rather τ is simply a linear map and one has

τ(T1T2) 6= τ(T2T1) (198)

for arbitrary elements T1, T2 ∈ Ψ(A). On the other hand, there are many
ways of constructing such a linear extension. For example, suppose as in the
preceding section that the spectral triple (A,H, D) is regular. Then for any
element T ∈ Ψ(A), the zeta-function

ζT (z) = Tr(T |D|−z) (199)

has a meromorphic extension to the complex plane. One could define τ(T ) as
the finite part of the Laurent expansion of ζT (z) around zero, or equivalently,
as the residue

τ(T ) = Res
z=0

1
z

Tr(T |Q|−z) . (200)

If T is trace-class, then ζT (z) has no pole at z = 0 and clearly τ(T ) reduces to
the trace Tr(T ). Hence τ is indeed a linear extension of Tr, but it is not a trace
on Ψ(A). Of course such an extension is not unique. One could as well define
another extension τ ′ with the help of the gamma-function

τ ′(T ) = Res
z=0

Γ(z)Tr(T |Q|−z) , (201)

which in fact coincides with the finite part of the trace regularised by the heat
kernel operator exp(−tQ2), t > 0:

τ ′(T ) = Pf
t→0

Tr(Te−tQ
2
) . (202)

It is important, however, to observe the following fact. In the vicinity of zero
the function Γ(z) is the sum of a holomorphic function h(z) and a simple pole
1/z, so that the difference of the two extensions τ ′ − τ

τ ′(T )− τ(T ) = Res
z=0

h(z)Tr(T |D|−z) (203)

only involves the poles of the zeta-function ζT (z). By the general principle
dictated by Connes and Moscovici, the poles are always “local” terms in the
sense of noncommutative geometry (here we must stress that this notion of
locality does not always coincide with the more orthodox principle of locality
in the quantum field theory sense; see [18, 29] for an example on the Moyal
plane). This is what we expect from renormalization theory: one is looking for
an extension of some divergent quantity, the result is defined only modulo local
(finite) counterterms. Turning back to the free energy W (A), its renormalized
form is obtained by replacing the ill-defined trace Tr by any choice of extension
τ :

Wτ (A) = τ(Q−1A)− 1
2
τ(Q−1AQ−1A) + . . .+

(−1)n+1

n
τ (Q−1A)n + . . . (204)

For n sufficiently large (n ≥ p, the summability degree of the spectral triple), τ
coincides with the operator trace, which shows that different renormalizations
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associated to different choices of extensions differ only by a finite number of
local counterterms

Wτ ′(A)−Wτ (A) =
m∑
n=1

(−1)n+1

n
(τ ′ − τ) (Q−1A)n , (205)

where m is the largest integer < p.

Once a renormalization Wτ (A) is chosen, we must keep in mind that the
formal power series (204) is still divergent for large values of the potential A,
since it is the expansion of a logarithm. Let us now examine how Wτ (A) be-
haves under chiral gauge transformations. Its non-invariance would imply a
chiral anomaly, in our noncommutative context. Since we are interested mainly
in infinitesimal chiral transformations, we formulate the situation as follows.
Consider a family of gauge transformations parametrized by the circle,

g : S1 → Gl1(Ã) , (206)

so that for any t ∈ S1, g(t) is a unitary element of the unitalization Ã of the
form 1 + u(t), u(t) ∈ A. Some “smoothness” conditions must be imposed on
the function g. Since the algebra A is not endowed with any topology, we will
say that the function g is smooth if it is an invertible element of the algebraic
tensor product C∞(S1)⊗ Ã. Hence g may be written as a finite sum

g =
∑
i

fi ⊗ ãi , fi ∈ C∞(S1) , ãi = 1 + ai , ai ∈ A . (207)

A very important example of such invertible functions is provided by idempotent
loops [7]. Let e = e2 = e∗ ∈ A be a projector, and β ∈ C∞(S1) be the Bott
generator of the circle:

β(t) = e2πit . (208)

The idempotent loop g associated to e is then given by

g = 1 + (β − 1)e ∈ C∞(S1)⊗ Ã , (209)

with inverse
g−1 = g∗ = 1 + (β−1 − 1)e . (210)

Actually, in our formulation of the index theorem from chiral anomalies, all the
interesting gauge transformations we will be concerned with arise from idempo-
tent loops (this is connected with Bott periodicity [7] for some Banach comple-
tion of the algebra A).
Now we fix such a unitary loop g ∈ C∞(S1)⊗ Ã. Denote by

s : C∞(S1)→ Ω1(S1) (211)

the de Rham differential mapping smooth functions to smooth one-forms over
the circle. It extends to a differential on the tensor product

s : C∞(S1)⊗ Ã → Ω1(S1)⊗ Ã . (212)

The Maurer-Cartan one-form ω ∈ Ω1(S1)⊗ Ã is defined as

ω = g−1sg . (213)
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We now use the representation of A in L(H) and consider g and ω as a function
(resp. one-form) over the circle, with values in the algebra of bounded operators
on H:

g = g+g− =
(

1 + u+ 0
0 1

)(
1 0
0 1 + u−

)
,

ω = g−1
+ sg+ + g−1

− sg− = ω+ + ω− (214)

ω+ =
(

(1 + u+)−1su+ 0
0 0

)
, ω− =

(
0 0
0 (1 + u−)−1su−

)
.

Take A0 = 0 as a fixed background potential. Its chiral gauge transform with
respect to the loop g

A = Ag0 = g−1
− Qg+ −Q ∈ C∞(S1)⊗ L(H) (215)

is an operator-valued function on the circle, whose differential is the operator-
valued one-form (observe the analogy with BRS transformations [16, 23])

sA = (Q+A)ω+ − ω−(Q+A) ∈ Ω1(S1)⊗ L(H) . (216)

Now, the free energy Wτ (A) is a formal series of smooth complex-valued func-
tions

(−1)n+1

n
τ (Q−1A)n ∈ C∞(S1) . (217)

Therefore, the differential of each term of the series may be computed from

s τ (Q−1A)n = τ(Q−1sA(Q−1A)n−1 +Q−1AQ−1sA(Q−1A)n−2 + . . .

. . .+ (Q−1A)n−1Q−1sA) . (218)

Suppose n is greater than the summabibity degree p of the spectral triple. Then
τ is simply the operator trace Tr and the cyclicity of the trace implies

s τ (Q−1A)n = nTr(Q−1sA(Q−1A)n−1) , n ≥ p . (219)

We know think in terms of formal power series in A. Replacing sA by its
expression (216), we separate a term of degree n−1 and another term of degree
n w.r.t. A:

s τ (Q−1A)n = nTr(Q−1(Qω+ − ω−Q+Aω+ − ω−A)(Q−1A)n−1) (220)
= nTr((ω+ −Q−1ω−Q)(Q−1A)n−1) + nTr((ω+ −Q−1ω−Q)(Q−1A)n) .

Consequently, we see that in the formal series

s
∑
n≥p

(−1)n+1

n
τ (Q−1A)n (221)

the terms of each degree in A cancel except for the first one, namely

(−1)mTr((ω+ −Q−1ω−Q)(Q−1A)m) , (222)

where m is the biggest integer < p. This cancellation does not work for the
terms of lower degree in A, because in general τ does not behave like a trace on
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the operator (Q−1A)n for n < p. It follows that, in the sense of formal power
series in A, the differential of Wτ (A) is given by the finite sum

sWτ (A) =
m∑
n=1

(−1)n+1

n
s τ (Q−1A)n (223)

+(−1)mTr((ω+ −Q−1ω−Q)(Q−1A)m) .

This is by definition the chiral anomaly ∆(ω,A) associated to the loop g. It is
always given by a local formula, e.g. a residue. Remark that if τ is really a trace
on the algebra Ψ(A) (this happens for example when H is finite-dimensional),
then the cancellation term by term holds down to the first term of the series,
and the anomaly reduces to the difference of representations of the Lie algebra
of chiral transformations:

∆(ω,A) = sWτ (A) = Tr(ω+ − ω−) . (224)

This is what we expect from a finite-dimensional theory. In contrast, when H
is infinite-dimensional the lack of tracial property for τ implies the existence of
additional counterterms, which, according to the discussion above, are neces-
sarily local.
Since the anomaly is a finite sum of one-forms, it can be integrated over the
circle to get a number

1
2πi

∮
∆(ω,A) ∈ C . (225)

Although ∆(ω,A) looks like a coboundary, one should not conclude that its
integral is zero. Indeed, the free energy Wτ (A) is not a convergent series in
general, but its differential is a well-defined one-form with non-vanishing inte-
gral. When g is an idempotent loop, the theorem below shows that this number
actually coincides with the index of a Dirac operator, hence is an integer. This
corresponds to the winding number of the determinant function det(Q−1QA)
over the circle, as we have already seen in the first chapter.

Theorem 4.8 Let (A,H, D) be a regular p-summable spectral triple of even de-
gree. Let Wτ be the free energy of the corresponding massive fermionic quantum
field theory, renormalized by means of any linear extension τ : Ψ(A)→ C of the
operator trace. Let e ∈ A be a projector representing an element [e] ∈ K0(A),
and g = 1 + (β − 1)e be the corresponding idempotent loop, with β the Bott
generator of the circle. Then
i) The integral of the anomaly ∆(ω,A) = sWτ (A) along the idempotent loop is
the index of the Dirac operator D against the K-theory class [e]:

〈[D], [e]〉 =
1

2πi

∮
∆(ω,A) ∈ Z

ii) The anomaly ∆(ω,A) is cohomologous, as a one-form, to the finite sum of
residues of zeta-functions

Res
z=0

1
z

Tr(γω|Q|−2z) +
∑

n≥1,k≥0

(−1)n+kc(k)×

×Res
z=0

(
Γ(z + n+ k)

zΓ(z)
Tr((qωA(k1)QA(k2) . . . QA(kn)|Q|−2(z+n+k))

)
,
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where k = (k1, . . . , kn) is a multi-index, qω = 1+γ
2 [ω,Q], A(ki) denotes the ki-th

power of the derivation [Q2, ] on A, and

c(k)−1 = (k1! . . . kn!)(k1 + 1)(k1 + k2 + 2) . . . (k1 + . . .+ kn + n) .

In particular all the coefficients involved are rational.

This result establishes the link between anomalies and noncommutative (local)
index theory, and provides an alternative to the Connes-Moscovici index for-
mula. It is worth mentioning that the integral of the anomaly is necessarily
independent of the choice of extension τ . Indeed, if τ ′ : Ψ(A)→ C is any other
extension, the difference of renormalized free energies Wτ ′(A) −Wτ (A) is a fi-
nite sum because both τ and τ ′ coincide with the operator trace in all the terms
of the series except in low degree. Hence the difference of the corresponding
anomalies

∆′(ω,A)−∆(ω,A) = s(Wτ ′(A)−Wτ (A)) = s(finite counterterms) (226)

is a de Rham coboundary in Ω1(S1). This shows the cohomology class of the
anomaly is independent of the given extension.
Part i) of Theorem 4.8 is proved purely algebrically and involves cyclic cohomol-
ogy. The idea is to relate the formal power series Wτ (A) to the Chern-Connes
character of section 4.1 through a system of descent equations [25]. As a remark-
able fact, this holds for any p-summable spectral triple without the regularity
assumption, only the existence of the linear extension τ is needed. Part ii)
follows from a direct computation, using a zeta-function regularization.
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