T.D. de Mathématiques nº 7 Statistique descriptive

I. Dans une population de souris, on note le nombre de souriceaux par portée. Pour 121 portées, on obtient la série statistique suivante où x_k représente le nombre de souriceaux par portée et n_k le nombre de portées avec x_k souriceaux.

x_k	1	2	3	4	5	6	7	8	9
n_k	7	11	16	17	26	31	11	1	1

- 1) Représenter graphiquement cette série statistique.
- 2) Etablir le tableau des effectifs cumulés croissants puis construire la représentation de la fonction de répartition.
- 3) Combien y-a-t-il de portées ayant au plus 3 petits?
- 4) Déterminer le mode et la médiane de cette série statistique. Calculer la moyenne et l'écart-type de cette série statistique.

II. On a relevé dans un magasin de jouets, le montant des achats effectués à la veille de Noël. Les résultats sont les suivantes :

x_k	[0, 50] [50, 150]		[150, 250[[250, 300[[300, 450[
n_k	100	140	80	50	30	

- 1) Représenter l'histogramme des effectifs de cette série statistique et le polygône des effectifs.
- 2) Tracer le polygône des fréquences cumulées croissantes puis décroissantes.
- 3) Calculer la moyenne et l'écart-type de cette série statistique.
- 4) Déterminer la classe modale, la médiane et l'écart interdécile.

III. Soit la série statistique double ci-dessous :

X	1	2	3	4	5	6	7	8	9	10
Y	3	2,5	4	3	5,5	5	4,5	6,5	6	7

- 1) Tracer le nuage de points représentant la série statistique.
- 2) Calculer: $\bar{x}, \bar{y}, v(X), v(Y), \sigma_{XY}$.
- 3) Déterminer les équations des droites de régression de Y en X et de X en Y.
- 4) Calculer le cœfficient de corrélation linéaire ρ .

IV. Une machine perce des trous d'un diamètre nominal 36mm, avec une tolérance +0,5mm, l'intervalle de tolérance est donc de [36,00;36,50].

En fait, le diamètre augmente avec le temps de fonctionnement, par suite d'usure de l'outil de coupe. Des mesures ont donné les résultats moyens suivants :

X heures	0	2	4	6	8	12	16	20	24
Y mm	36,00	36,05	36,06	36,13	36,14	36,19	36,20	36,21	36,26

- 1) Représenter le nuage de points de cette série statistique. (En abscisse 2cm pour 4heures et en ordonnée 2cm pour 0,1mm.)
- 2) Calculer : $\bar{x}, \bar{y}, \sigma_X, \sigma_Y$ et σ_{XY} puis en déduire le cœfficient de corrélation ρ .
- 3) On observera que bien que le cœfficient de corrélation soit excellent, la représentation graphique semble suggérer que le déréglage prend deux allures : jusque vers 6 heures de fonctionnement, un déréglage rapide qui se stabilise ensuite à une allure plus lente. On cherche à établir un ajustement linéaire à partir de 6 heures de fonctionnement, en vue de planifier les opérations de maintenance préventive.
 - a) Déterminer les droites de régression linéaire de Y en X puis de X en Y.
 - b) Calculer le cœfficient de corrélation linéaire sur l'intervalle [6; 24].
- 4) Déterminer le temps moyen auquel la production sortira de l'intervalle de tolérance afin de prévoir l'intervention de maintenance.