INFO 2

M. Pétréolle

06 Septembre 2015

M. Pétréolle INFO 2 06 Septembre 2015 1

Algorithmique

Langages

Programme

Définitions

• Informatique : science du traitement automatisé de l'information

3 / 41

M. Pétréolle INFO 2 06 Septembre 2015

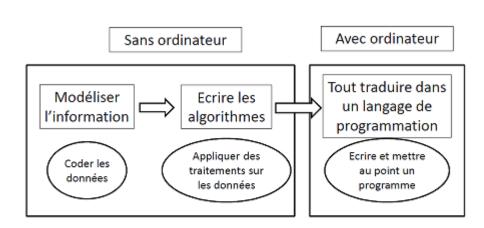
Définitions

- Informatique : science du traitement automatisé de l'information
- L'algorithmique : ensemble des règles et des techniques qui sont impliquées dans la définition et la conception d'algorithmes

M. Pétréolle INFO 2 06 Septembre 2015

Définitions |

- Informatique : science du traitement automatisé de l'information
- L'algorithmique : ensemble des règles et des techniques qui sont impliquées dans la définition et la conception d'algorithmes
- Algorithme : suite non-ambiguë d'instructions permettant de donner, à coup sur, et en nombre fini d'étapes, la réponse à un problème


Définitions

- Informatique : science du traitement automatisé de l'information
- L'algorithmique : ensemble des règles et des techniques qui sont impliquées dans la définition et la conception d'algorithmes
- Algorithme : suite non-ambiguë d'instructions permettant de donner, à coup sur, et en nombre fini d'étapes, la réponse à un problème
- Langage : notation conventionnelle formelle destinée à traduire des algorithmes en programmes (logiciels)

Définitions |

- Informatique : science du traitement automatisé de l'information
- L'algorithmique : ensemble des règles et des techniques qui sont impliquées dans la définition et la conception d'algorithmes
- Algorithme : suite non-ambiguë d'instructions permettant de donner, à coup sur, et en nombre fini d'étapes, la réponse à un problème
- Langage : notation conventionnelle formelle destinée à traduire des algorithmes en programmes (logiciels)
- Programme: représentation d'un algorithme dans un langage précis, en vue de l'utilisation sur une machine précise (Système d'exploitation précis)

Processus de création d'un programme informatique

Modéliser (Coder) l'information

 Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire

6 / 41

- Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire
- Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre ex : 0 ou 1

6 / 41

- Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire
- Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre ex : 0 ou 1
- Que faire avec un composant aussi élémentaire ?

- Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire
- Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre ex : 0 ou 1
- Que faire avec un composant aussi élémentaire ?
- Avec un seul, pas grand chose,

- Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire
- Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre ex : 0 ou 1
- Que faire avec un composant aussi élémentaire ?
- Avec un seul, pas grand chose,
- Avec plusieurs, beaucoup de choses . . . 8,16,32,64 bits

- Dans un ordinateur l'unité de base de la RAM est le bit, contraction de binary digit, qui signifie chiffre binaire
- Un bit, par définition, est un composant quelconque ne pouvant se trouver que dans deux états possibles, exclusifs l'un de l'autre ex : 0 ou 1
- Que faire avec un composant aussi élémentaire ?
- Avec un seul, pas grand chose,
- Avec plusieurs, beaucoup de choses . . . 8,16,32,64 bits
- Coder des données discrètes ou continues

M. Pétréolle INFO 2 06 Septembre 2015 6 / 41

Nombres entiers

• 2013 en base 10

M. Pétréolle INFO 2 06 Septembre 2015 7 / 41

Nombres entiers

• 2013 en base 10 4 digits décimaux suffisent $2013 = 2 \times 10^3 + 0 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$

M. Pétréolle INFO 2 06 Septembre 2015

Nombres entiers

- 2013 en base 10 4 digits décimaux suffisent $2013 = 2 \times 10^3 + 0 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$
- 2013 en base 2 ou binaire 11 digits binaires (bits) sont nécessaires 2013 = $1x2^{10} + 1x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$

M. Pétréolle INFO 2 06 Septembre 2015 7 /

Nombres entiers

- 2013 en base 10 4 digits décimaux suffisent $2013 = 2 \times 10^3 + 0 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$
- 2013 en base 2 ou binaire 11 digits binaires (bits) sont nécessaires $2013 = 1x2^{10} + 1x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$ Que faire avec le signe?

Nombres entiers

- 2013 en base 10 4 digits décimaux suffisent 2013 = $2 \times 10^3 + 0 \times 10^2 + 1 \times 10^1 + 3 \times 10^0$
- 2013 en base 2 ou binaire 11 digits binaires (bits) sont nécessaires $2013 = 1x2^{10} + 1x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 0x2^5 + 1x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0$ Que faire avec le signe? Pourquoi utiliser le binaire ?

M. Pétréolle INFO 2 06 Septembre 2015 7 / 41

Nombres Réels en virgule flottante

• $27 = 0.27 \times 10^2$, décaler de 2 digits sur la gauche, principe de la virgule flottante

8 / 41

Nombres Réels en virgule flottante

- $27 = 0.27 \times 10^2$, décaler de 2 digits sur la gauche, principe de la virgule flottante
- En binaire $27 = (11011)_2$

8 / 41

Nombres Réels en virgule flottante

- $27 = 0.27 \times 10^2$, décaler de 2 digits sur la gauche, principe de la virgule flottante
- En binaire $27 = (11011)_2$
- Autre écriture : $(0, 11011x2^{101})_2$, décaler de $5 = (101)_2$ digits sur la gauche :
- 0,11011 est la mantisse
- 101 est l'exposant

Nombres Réels en virgule flottante

- $27 = 0.27 \times 10^2$, décaler de 2 digits sur la gauche, principe de la virgule flottante
- En binaire $27 = (11011)_2$
- Autre écriture : $(0, 11011x2^{101})_2$, décaler de $5 = (101)_2$ digits sur la gauche :
- 0,11011 est la mantisse
- 101 est l'exposant
- Représentation d'un réel : Une partie de la mémoire est réservée pour coder la mantisse, et l'autre pour coder l'exposant

Caractères alphanumériques : Alphabets maj + min
 + Caractères nombres + Caractères spéciaux

9 / 41

- Caractères alphanumériques : Alphabets maj + min
 + Caractères nombres + Caractères spéciaux
- Code ASCII (American Standard for Communication and International Interchange) Sur 1 octet = 8 bits soit 28 = 256 positions dans la table

- Caractères alphanumériques : Alphabets maj + min
 + Caractères nombres + Caractères spéciaux
- Code ASCII (American Standard for Communication and International Interchange) Sur 1 octet = 8 bits soit 28 = 256 positions dans la table
- Unicode 250 000 caractères différents

M. Pétréolle INFO 2 06 Septembre 2015

- Caractères alphanumériques : Alphabets maj + min
 + Caractères nombres + Caractères spéciaux
- Code ASCII (American Standard for Communication and International Interchange) Sur 1 octet = 8 bits soit 28 = 256 positions dans la table
- Unicode 250 000 caractères différents
- En pratique : on utilise juste les caractères du clavier

Codage des sons

• Un son réel est une superposition de signaux

10 / 41

Codage des sons

- Un son réel est une superposition de signaux
- Le principe du codage MP3 est de ne coder que la partie du son que l'oreille humaine perçoit

Codage des sons

- Un son réel est une superposition de signaux
- Le principe du codage MP3 est de ne coder que la partie du son que l'oreille humaine perçoit
- On échantillonne le temps. La fréquence d'échantillonnage est le nombre de découpages par seconde.

10 / 41

Codage des sons

- Un son réel est une superposition de signaux
- Le principe du codage MP3 est de ne coder que la partie du son que l'oreille humaine perçoit
- On échantillonne le temps. La fréquence d'échantillonnage est le nombre de découpages par seconde. On discrétise l'amplitude : pour chaque intervalle de temps, on prend le nombre qui permet de «s'approcher le plus possible» de la courbe réelle

Codage des sons

- Un son réel est une superposition de signaux
- Le principe du codage MP3 est de ne coder que la partie du son que l'oreille humaine perçoit
- On échantillonne le temps. La fréquence d'échantillonnage est le nombre de découpages par seconde. On discrétise l'amplitude : pour chaque intervalle de temps, on prend le nombre qui permet de «s'approcher le plus possible» de la courbe réelle
- Pour coder cette courbe, il suffit maintenant de coder successivement les valeurs correspondant à chaque échantillon de temps

Codage des images

- BitMap
- JPEG
- GIF ...

Codage des images

- BitMap
- JPEG
- GIF ...

Codage vectoriel

- On code des primitives graphiques : ellipse , rectangle, lignes, sphères, cylindres, parallélépipèdes . . .
- Utilisé dans les logiciels de CAO, de réalité virtuelle, ou pour les effets spéciaux numériques

Algorithmique

L'origine du mot

- Il vient du nom du mathématicien perse du 9^e siècle Abu Abdullah Muhammad ibn Musa al-Khwarizmi
- Le mot algorisme se référait à l'origine uniquement aux règles d'arithmétique utilisant les chiffres indo-arabes
- Au 18ème siècle, la traduction du nom Al-Khwarizmi a donné algorithme
- L'utilisation du mot a évolué pour inclure toutes les procédures définies pour résoudre un problème ou accomplir une tâche

Résolution de problèmes complexes à l'aide d'algorithmes

 Principe de l'analyse structurée : Pour résoudre un problème complexe on le découpe en une série de problèmes plus simple

 \rightarrow Modularité

Résolution de problèmes complexes à l'aide d'algorithmes

 Principe de l'analyse structurée : Pour résoudre un problème complexe on le découpe en une série de problèmes plus simple

→ Modularité

 Chaque sous problème est exprimé sous forme d'un ensemble d'action appelé algorithme

M. Pétréolle INFO 2 06 Septembre 2015 14 / 4

Rechercher les données

15 / 41

M. Pétréolle INFO 2 06 Septembre 2015

- Rechercher les données
- Rechercher les méthodes de traitement à appliquer aux données pour obtenir les résultats

- Rechercher les données
- Rechercher les méthodes de traitement à appliquer aux données pour obtenir les résultats
- Écrire la suite non-ambiguë d'instructions permettant de donner, à coup sur, et en un nombre fini d'étapes, la réponse au problème

- Rechercher les données
- Rechercher les méthodes de traitement à appliquer aux données pour obtenir les résultats
- Écrire la suite non-ambiguë d'instructions permettant de donner, à coup sur, et en un nombre fini d'étapes, la réponse au problème
- Faire appel à la logique

• Existe t'il un unique langage algorithmique ?

16 / 41

M. Pétréolle INFO 2 06 Septembre 2015

- Existe t'il un unique langage algorithmique ?
- Non, il n'y a pas de norme

- Existe t'il un unique langage algorithmique ?
- Non, il n'y a pas de norme
- Mais il doit contenir une syntaxe compréhensible par celui qui devra le lire (l'exécuter)

- Existe t'il un unique langage algorithmique ?
- Non, il n'y a pas de norme
- Mais il doit contenir une syntaxe compréhensible par celui qui devra le lire (l'exécuter)
- La langue est donc un problème potentiel

Que doit contenir cette syntaxe?

M. Pétréolle INFO 2 06 Septembre 2015 17 / 41

Que doit contenir cette syntaxe?

Besoins	Réponses
Manipuler des données	Les variables et les constantes
Contrôler le déroulement	Les structures de contrôle
Entrer les données Sortir les résultats	Les flux E/S
Effectuer des calculs	Les opérateurs

Les outils de l'algorithmique

Chaque algorithme devra être

• Nommé : on lui donne un titre (entête)

Chaque algorithme devra être

- Nommé : on lui donne un titre (entête)
- Délimité dans l'espace (sur le papier) : ce qui impose des marques (balises) de début et de fin d'algorithme

Chaque algorithme devra être

- Nommé : on lui donne un titre (entête)
- Délimité dans l'espace (sur le papier) : ce qui impose des marques (balises) de début et de fin d'algorithme
- Bien structuré :

```
Titre de l'algorithme
Début
déclarations des variables
instructions ;
Fin
```

Les variables

 Transportent les informations pendant le déroulement de l'algorithme

20 / 41

M. Pétréolle INFO 2 06 Septembre 2015

Les variables

- Transportent les informations pendant le déroulement de l'algorithme
- Identifiées de manière unique et claire. On nomme ainsi chaque information : donnée, résultat intermédiaire, résultat final...

Les variables

- Transportent les informations pendant le déroulement de l'algorithme
- Identifiées de manière unique et claire. On nomme ainsi chaque information : donnée, résultat intermédiaire, résultat final...
- Typée : on précise quelle genre de donnée peut être stockée dans chaque variable avec un déclarateur de type

Les variables (2)

```
Calcul du périmètre d'un cercle
Début
Entier compteur ;
Réél diamètre ;
Tableau vitesse ;
...
```

Les variables (2)

```
Calcul du périmètre d'un cercle
     Début
          Entier compteur;
          Réél diamètre :
          Tableau vitesse:
           . . .
     Fin
```

Les opérateurs

• L'affectation : Opération qui consiste à écrire une information dans une variable

Les opérateurs

• L'affectation : Opération qui consiste à écrire une information dans une variable

diamètre \leftarrow 6.25;

 La comparaison logique : Opération qui consiste à comparer deux quantités

longueur = 2.5;

Ici le résultat est VRAI ou FAUX

Les opérateurs

• L'affectation : Opération qui consiste à écrire une information dans une variable

diamètre
$$\leftarrow$$
 6.25;

 La comparaison logique : Opération qui consiste à comparer deux quantités

$$longueur = 2.5;$$

Ici le résultat est VRAI ou FAUX

Ne pas confondre ces deux opérations

Les opérateurs (2)

 Les opérateurs arithmétiques : tout opérateur mathématique

Les opérateurs (2)

 Les opérateurs arithmétiques : tout opérateur mathématique

Les opérateurs logiques

$$>$$
, $<$, \leq , \geq , $=$, \neq , non, ou, et, ...

23 / 41

M. Pétréolle INFO 2 06 Septembre 2015

Les structures de contrôle

Elles contrôlent la manière dont les instructions s'enchainent :

Faire une action

M. Pétréolle INFO 2 06 Septembre 2015

Les structures de contrôle

Elles contrôlent la manière dont les instructions s'enchainent :

- Faire une action
- Faire un branchement conditionnel

M. Pétréolle INFO 2 06 Septembre 2015 24 /

Les structures de contrôle

Elles contrôlent la manière dont les instructions s'enchainent :

- Faire une action
- Faire un branchement conditionnel
- Faire une répétition

M. Pétréolle INFO 2 06 Septembre 2015 24

Les actions élémentaires

 Suite d'actions élémentaires en séquence : action1;
 action2; action3;
 action4;

Les actions élémentaires

```
    Suite d'actions élémentaires en séquence :
action1;
action2; action3;
    action4;
```

• Une action est délimitée par le « ; »

Les actions élémentaires

- Suite d'actions élémentaires en séquence : action1; action2; action3; action4;
- Une action est délimitée par le « ; »
- Par défaut les actions s'exécutent du haut en bas et de gauche à droite

Bloc d'actions en-capsulées

 Un bloc d'actions encapsulées est un ensemble d'actions délimités par les balises Début et Fin Début

```
action1;
action2; action3;
action4;
Fin
```

Bloc d'actions en-capsulées

 Un bloc d'actions encapsulées est un ensemble d'actions délimités par les balises Début et Fin Début

```
action1;
action2; action3;
action4;
```

 Tout le bloc est traité comme l'équivalent d'une seule et unique action (on ne « voit » pas les détails internes)

Structures conditionnelles: les TESTS

Sans alternative :

```
si (condition) action ;
```

Il n'y a donc pas de sinon, donc la main passe à l'instruction suivante (après le « ; »)

Structures conditionnelles : les TESTS

Sans alternative :

```
si (condition) action;
```

Il n'y a donc pas de sinon, donc la main passe à l'instruction suivante (après le « ; »)

Exemple : Si $(var \ge diametre)$ rayon $\leftarrow 2.5$;

Structures conditionnelles : les TESTS (2)

Avec une alternative :

```
si (condition) alors action 1;
sinon action 2;
```

Structures conditionnelles : les TESTS (2)

• Avec une alternative :

```
si (condition) alors action 1;
sinon action 2;
```

```
Exemple : Si (var \ge diametre) alors rayon \leftarrow 2.5; sinon rayon \leftarrow 42*var;
```

M. Pétréolle INFO 2 06 Septembre 2015 28 / 41

Structures conditionnelles: les TESTS (3)

```
Les tests en chaîne :
si (var = valeur 1) alors action1; action3; ...;
     sinon
         si (var = valeur 2) alors action2; ...;
     sinon
         si (var = valeur n) alors action n; ...;
     sinon
          action n+1:
```

Structure sélective

```
Remplace les tests multiples.
Exemple:
Suivant (choix)
     Début
           1 : diametre \leftarrow 2 * rayon;
          2: surface \leftarrow 3.14 * rayon * rayon;
          3: perimetre \leftarrow 2 * 3.14 * rayon;
           autre: afficher "choix inconnu!":
     Fin
```

La boucle POUR/FOR :

 Pour variablecompteur de valeurdébut à valeurfin par pas de valeurpas faire action;

La boucle POUR/FOR :

- Pour variablecompteur de valeurdébut à valeurfin par pas de valeurpas faire action;
- L'action est exécutée un nombre de fois CONNU avant de commencer la boucle. Le nombre de « tours » dépend des valeurs : valeurdebut, valeurfin et valeurpas

La boucle POUR/FOR :

- Pour variablecompteur de valeurdébut à valeurfin par pas de valeurpas faire action;
- L'action est exécutée un nombre de fois CONNU avant de commencer la boucle. Le nombre de « tours » dépend des valeurs : valeurdebut, valeurfin et valeurpas
- Cette forme est particulièrement adaptée au traitement des tableaux (nombre de lignes et de colonnes connues)

Exemple:

 $n \leftarrow 10$

Pour i de 1 à n par pas de 2

afficher i;

Les boucles événementielles :

 Dans certains cas on ne peut pas savoir quand la boucle va s'arrêter

33 / 41

M. Pétréolle INFO 2 06 Septembre 2015

Les boucles événementielles :

- Dans certains cas on ne peut pas savoir quand la boucle va s'arrêter
- L'arrêt dépend d'un événement non déterminé à l'avance dans le temps

Les boucles événementielles :

- Dans certains cas on ne peut pas savoir quand la boucle va s'arrêter
- L'arrêt dépend d'un événement non déterminé à l'avance dans le temps
- Exemple : remplir un verre.
 On doit laisser l'eau couler jusqu'à ce que le verre soit plein ou on doit laisser l'eau couler tant que le verre n'est pas plein

- 4 boucles événementielles existent :
 - répéter action jusqu'à condition

34 / 41

M. Pétréolle INFO 2 06 Septembre 2015

- 4 boucles événementielles existent :
 - répéter action jusqu'à condition
 - jusqu'à condition répéter action

M. Pétréolle INFO 2 06 Septembre 2015 34 / 41

- 4 boucles événementielles existent :
 - répéter action jusqu'à condition
 - jusqu'à condition répéter action
 - faire action tant que condition
 - tant que condition faire action

M. Pétréolle INFO 2 06 Septembre 2015 34 / 41

Les flux d'entrées et de sorties

obtenir longueur ;
 donner depuis le flux d'entrée de données une valeur
 à la variable de nom longueur

35 / 41

M. Pétréolle INFO 2 06 Septembre 2015

Les flux d'entrées et de sorties

- obtenir longueur ;
 donner depuis le flux d'entrée de données une valeur
 à la variable de nom longueur
- afficher longueur ;
 restituer dans le flux de sortie de données la valeur contenue dans variable de nom longueur

M. Pétréolle INFO 2 06 Septembre 2015

Langages de programmation

Définition

On appelle « langage informatique » un langage destiné à décrire l'ensemble des actions consécutives qu'un ordinateur doit exécuter

Définition

On appelle « langage informatique » un langage destiné à décrire l'ensemble des actions consécutives qu'un ordinateur doit exécuter

Exemples : C, C++, Python, Caml, Assembleur, Brainfuck

Langage informatique

• Les langages "machine": le programmeur écrit directement en binaires les instructions processeur. Avantage : au niveau du matériel, très rapide, compact. Inconvénient : connaissance du processeur nécessaire, pas du tout portable, très difficile à coder

Langage informatique

- Les langages "machine": le programmeur écrit directement en binaires les instructions processeur.
 Avantage: au niveau du matériel, très rapide, compact. Inconvénient: connaissance du processeur nécessaire, pas du tout portable, très difficile à coder
- Les langages "assembleur": le code est très proche du processeur mais est lisible, et compréhensible par un plus grand nombre d'initiés. Avantage: au niveau du matériel, très rapide, compact. Inconvénient: connaissance du processeur nécessaire, peu portable, assez difficile à coder

Langage informatique (2)

 Les langages de haut nivaux, ont ouvert la programmation au plus grand nombre en proposant une syntaxe proche de l'anglais Exemples : Fortran, Cobol, Lisp et Algol, Pascal, C, C++, Java, Perl, Python . . . Avantages : facilité de portage, fonctions élaborées

déjà disponibles Inconvénients : difficultés d'accès directs au

matériel, gourmand en ressources.

Langage informatique (3)

 Contrairement au pseudo-langage utilisé en algorithmique, un langage informatique est extrêmement rigoureux. L'oubli d'un ";" empêche souvent le programme de fonctionner.

Langage informatique (3)

- Contrairement au pseudo-langage utilisé en algorithmique, un langage informatique est extrêmement rigoureux. L'oubli d'un ";" empêche souvent le programme de fonctionner.
- Il impose une syntaxe stricte et normalisée mais qui répond aux mêmes besoins qu'en algorithmique.

M. Pétréolle INFO 2 06 Septembre 2015

Mettre en place un programme en langage C

 Édition, écriture des instructions dans des «fichiers source » : fichier de type texte ordinaire ayant l'extension « .C » ou « .CPP »

Mettre en place un programme en langage C

- Édition, écriture des instructions dans des «fichiers source » : fichier de type texte ordinaire ayant l'extension « .C » ou « .CPP »
- Compilation des fichiers Srcs : obtention des «fichiers objets » contenant la traduction en langage machine ayant l'extension « .OBJ »

Mettre en place un programme en langage C

- Édition, écriture des instructions dans des «fichiers source » : fichier de type texte ordinaire ayant l'extension « .C » ou « .CPP »
- Compilation des fichiers Srcs : obtention des «fichiers objets » contenant la traduction en langage machine ayant l'extension « .OBJ »
- Éditions de liens : les fichiers objets sont liés aux bibliothèques du langage pour constituer le « fichier exécutable » ayant l'extension « .EXE »

M. Pétréolle INFO 2 06 Septembre 2015 41 / 41