Dynamics of wave scintillation in random media

Guillaume Bal * Olivier Pinaud f

March 23, 2010

Abstract

This paper concerns the asymptotic structure of the scintillation function in the sim-
plified setting of wave propagation modeled by an [t6-Schrodinger equation. We show that
the size of the scintillation function crucially depends on the smoothness of the initial con-
ditions for the wave equation and on the size of the “array of detectors” where the wave
fields are measured. In many practical settings, we show that the estimates are optimal and
devise an equation for the appropriately rescaled scintillation function. The estimates are
based on a careful analysis of Wigner transforms and of linear kinetic equations involving
oscillatory integrals.

Keywords: Waves in random media, kinetic model, statistical stability, scintil-
lation function, It6 (Stratonovich) Schrédinger regime, Wigner transform

1 Introduction.

Wave propagation in heterogeneous media and over large distances compared to the wavelength
arise e.g. in geophysics with the propagation of seismic waves [25], telecommunications, un-
derwater acoustics, and propagation of light through turbulent atmosphere, see e.g. [26, 29].
Whereas the microscopic dynamics of the wave is fairly complex, macroscopic models may
sometimes be derived to simplify the description. These models depend on the relation be-
tween the correlation length of the random medium and the wavelength, and also on the
strength of the fluctuations. An important feature of many of these models is their statistical
stability, in the sense that they depend only on some general (macroscopic) characteristics
of the medium and not on its local fluctuations. This invocation of ergodicity is valid when
the strength of the fluctuations is weak, so that the localization phenomenon is avoided, see
[15, 26], for then wave may be trapped at some random location depending on the realization
of the random media and this will prevent any statistical stability. The so-called weak coupling
regime is the regime of interest in this paper.

When the wavelength and the correlation length are of same order and are small compared
to the typical distance of propagation, the macroscopic behavior of the wave can be described
by radiative transfer equations [11, 17]. The rigorous derivation of such a model from high-
frequency random wave equations is a challenging mathematical problem which has found
solutions only in some simplified settings. A formal derivation can be found for instance in
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[24] for acoustic, electromagnetic and elastic waves, while the kinetic limit for discrete wave
equations has been demonstrated in the recent paper [20]. In most cases, the rigorous analysis
is done within the parazial approximation, see e.g. [28, 10], which occurs when the wave has
a privileged direction of propagation and backscattering effects can be neglected.

Let us assume that the beam mainly propagates along the z € R axis. Then, starting from
the standard scalar wave equation for the pressure potential p(t, x, z), where ¢ is time, x € R?
(so that the overall spatial dimension is d + 1), and ¢(x, z) is the (random) sound speed,
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S (1%,2) = A(x,2) (Ax + A2 p(t.x, 2),
with appropriate initial conditions, we formally obtain [3, 2] for the amplitude ¢ (z, x, k) defined
by

1 A
p(t,X, Z) = 5 / em(z—cot)w(z’x, I{)Codli,
R
the following high-frequency random Schrodinger equation:

0y,
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augmented with an initial condition 1, (z = 0,x) = ¢9] (x). Above, ¢p is the background sound
speed assumed to be constant for simplicity, n < 1 is the rescaled transverse wavelength and
V' is the random potential related to the sound speed c. The variable s plays no role in the
analysis and will therefore be set to kK = 1. When the sound speed has faster fluctuations in
the z direction than in the transverse direction x, the potential V' can formally be replaced
by a white noise in z, giving rise - after the appropriate Stratonovich correction -, to the
1to-Schrodinger equation:

1
dipy(z,x) = 3 (inAx — R(0)) ¥y (2, x)dz + il/]n(Z,X)B(%, dz). (2)
Here, B(x,dz) is a standard (infinite dimensional) Wiener measure, whose statistics are de-
scribed by

E{B(x,2)B(y,?")} = R(x —y)z A 7, (3)

where [E is mathematical expectation with respect to the measure of an abstract probability
space (2, F,P) on which B(x,dz) is defined, z A 2/ = min(z,2’) and R is the correlation
function of the random medium. A rigorous passage from the wave equation to (2) can be
found in [1] when d = 2 and in stratified media. The radiative transfer equations are then
obtained from high-frequency asymptotics of (1) or (2) and the appropriate tool in the analysis
of such equations is the Wigner transform [30] of the wave function defined as

Whlnl(z,x,k) = Wy(2z,x,k) =

i Lo (o D) By, )

where 1/)_77 denotes complex conjugation of ;. The Wigner transform W, is real-valued and
Jpa Wy(t,x,k)dk = [t,(x,t)[* by inverse Fourier transform so that W, may be seen as a
phase space (microlocal) decomposition of the energy density, even though it is not always
positive. We refer the reader to [19, 16] for an extensive study of Wigner transforms with
applications to high-frequency limit of hyperbolic or Schrédinger equations. The rigorous
limit of the Schrodinger equation (1) to the radiative transfer equations has been investigated,
with various hypotheses on the random potential V' (e.g. Markovian with respect to time or



with finite-range time correlations), for instance in [3, 4, 13, 23, 27]. The main result is the
following: under appropriate conditions on the initial condition wg, the ensemble average of
the Wigner transform a,, := E{WW,} converges weakly in an adapted functional setting to the
solution a of the following radiative transfer equation (or linear Boltzmann equation):

<% +k-Vx+ Ry — Q)a(z,x, k)=0,  a(0,x,k) = ao(x k), (5)

where ag is the limit of the ensemble average of the Wigner transform of the initial condition
Y9, Ry = (2m)YR(0) and the scattering operator Q reads

(Qa)(z,x,k) = /R ) R(k — Ka(z,x,K')dK .

Here, R denotes the Fourier transform of R with the convention

R(k) = FR(k) = / e MTR(x)dx,
R
Since R(x) is a correlation function, R(k) is non-negative by Bochner’s theorem. The deriva-
tion of (5) from the It6-Schrodinger equation (2) is immediate since moments of the wavefunc-
tion satisfy closed-form equations. Starting from (2) and writing the stochastic equation for
the Wigner transform, a direct application of the It6 calculus yields that a,, solves (5) with an
initial condition ang := E{W,[¢0]}, see for instance [22]. It then suffices to pass to the limit
in the initial condition to obtain the convergence of a, to a.

Whereas the limit of E{W,} can be characterized in various settings, much less is known
about the limit of the whole process W,,. It is proved in [4], under additional hypotheses on
the Wigner transform (basically it is given by a mixed state so as to obtain L? estimates),
that W, [4y,], with ¢, the solution to (1), converges weakly and in probability to its average
E{W,[¢y]}, that is

P(\(Wn(z), ) — (ay(2), )| > 5) — 0, uniformly on compact intervals.

Above, ¢ is a test function in the Schwarz space S(R??) and (-,-) denotes the &’ — S duality
product, where S’ is the space of tempered distributions. The latter result means that the
Wigner transform is self-averaging. This is an important property for instance in the analysis
of the refocusing properties of time-reversed waves [4, 9, 21, 14| for which it is shown that
the quality of refocusing is independent of the local fluctuations of the random medium and
hence only depends on macroscopic characteristics. The statistical stability of waves is also a
fundamental requirement for applications to imaging or detection in complex media: a hetero-
geneous medium with unknown local variations is often modeled as a particular realization of
a random medium with given macroscopic quantities (which are known or to be estimated).
The inverse problem of the reconstruction of an inclusion embedded in the medium is then
done using a radiative transfer equation derived from ensemble averages of observables and
not from a single realization; see [5, 6, 8]. It is thus important that these observables do not
differ significantly for two different realizations of the random medium.

In the Ito-Schrodinger regime, the convergence of W, to its average can be made precise so
as to obtain information on the rate of convergence or on the size of the averaging domain that
is needed to obtain statistical stability (typically the size of the support of the test function
@), see e.g. [2, 7, 22]. This is rendered possible by the fact that the scintillation function J,
(or covariance function), defined as

JT?(Z’Xa kay,p) = E{Wn(Z,X, k)Wn(Zaya p)} - E{WU(Z’X’ k)}E{Wn(Zaya p)}a (6)



solves the closed-form equation
0
(5;+%+2R0—QQ—K0Jh:KWW®mW (7)

equipped with vanishing initial conditions J,(0,x,k,y,p) = 0 when the initial condition of
the Schrédinger equation is deterministic. Here, Rg := (27)?R(0) and we have defined

7-2 - k'vx+p'vy7

0t = [ (flk= K30~ p)+ Rlp— )3k ~ k) hx Koy p)adp, (g

. ;(x—y)u u u
Knh = Z €€ R(u)e' ™ h <x, k + €ig: Y, P + ej§> du.

Above, ¢ is the Dirac distribution. Equation (7) is obtained by computing the fourth moment
of the wave function, see [2]. The analysis of (7) and of the highly oscillating operator IC,
shows that J;, converges weakly to zero, which implies convergence of W, in probability thanks
to the Chebyshev inequality

with (¢ ® ¢)(x,k,y,p) = ¢(x, k)¢(y, p).

The objectives of the present paper are twofold: (i) refine and complement the convergence
estimates for J, obtained in [7]; and (ii) characterize the dynamics of the statistical instabili-
ties by computing the limit of the first-order corrector of J, for practically useful (pure state)
initial conditions. This requires us to define a functional setting adapted to Wigner transforms
and to a precise analysis of (7) and of the oscillating operator K,. The outcome is a complete
characterization of the propagation of the statistical instabilities. We show that their dynam-
ics are driven by a transport equation with a non-vanishing initial condition or source term
depending on the singularities of the initial condition of the Schrodinger equation.

Note that for the particular form of the initial conditions W,(z = 0,x,k) = d(x)f(k),
where f is a regular function, the limit in distribution of the random corrector in W, was
recently investigated in [18]. Such an initial condition can be seen as the analog of the special
case = 1 in our configuration; see e.g., equation (10) below.

The paper is structured as follows. In section 2, we present our assumptions and describe
the main results. Theorem 1 gives a convergence rate of the scintillation function, while
theorem 2 shows that the obtained rate is optimal for particular initial conditions and provides
us with an asymptotic model for the propagation of the statistical instabilities. In section 3,
we introduce the functional setting adapted to the problem and prove preliminary results on
the operator K, and on the well-posedness of both the 2-transport and 4-transport equations
(5) and (7), respectively. In section 4, we prove theorems 1 and 2.

2 Main results.

We present in this section the main results of the paper. We give existence and uniqueness
results for the It6-Schrodinger equation (2), present our main assumptions, and state our main
results in theorems 2.1 and 2.2.

To be consistent with the usual notation for the time-dependent Schrodinger equation,
we relabel the variable z as . We assume that the initial condition ¢2 is deterministic (i.e.,
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independent of the random medium) and uniformly bounded with respect to 7 in L?(R%).
We assume that our random medium has sufficiently short range correlations so that R e
LYR?) N L=(RY). In such a setting, it is proved in [12] that (2) admits a unique solution
Un(t,x,w) € C°(]0,00), L2(R%)), P a.e., such that, V¢t > 0,

”wn(t?')HLQ(Rd) < ”¢9]HL2(RJ) < C,

with probability one for some constant C' independent of . Moreover, 9, admits moments of
arbitrary order so that its Wigner transform and related scintillation function are well-defined.
Let ayo := E{W,[¢p]} = W,[0)], where W, is defined in (4).

Let Fayo be the Fourier transform of a,o and Fxano (resp. Fiano) be its partial Fourier
transform with respect to x (resp. k). Two important quantities are the L' norms of Fxano
and Fia,. Denoting by a < b the inequality a < Cb, where C' > 0 is some universal constant,
this leads us to make the following hypotheses on a,o:

Hypotheses H: FVka,o € L®(R??), F Vka,o € L' (R*?), F Viay € L1 (R*), for p=0
or 1 (with the convention that Via, = ano) with the following estimates, for (o, ) € R?
verifying 0 < a<land 0 <3< 1:

||fvxan0||Lw(R2d) sn Y
I1FVEanoll pireay S 0~ P and | FViagol| 1 raay S 1% P
For instance, when ¢2 € S(RY), it follows from

1 P u\——/p u
Fxap(u,p) = ndf¢n0<n+2>f7/)no<n 2>,

Faan(x,€) = o (x+2€) P (x— 2¢).

that FVka,o € L°(R??), FVikay € L (R??), and FyVia,o € L1(R??) for p = 0 or 1, though
the norms are not bounded uniformly in 7. The relevance of the above hypothesis is better
explained by looking at the following examples.

Typical initial conditions. Let us consider initial conditions v, (x, 0) oscillating at frequen-
cies of order n~!' and with a spatial support of size n* for 0 < a < 1. The parameter «
quantifies the macroscopic concentration of the initial condition. The simplest example is a
modulated plane wave of the form:

1 X — Xp i(x*xo)‘ko
U0 = —mx (S (9)
7’]2

where y € S(R?). The direction of propagation is given by kq. Note that the above sequence
of initial conditions is indeed uniformly bounded in L?(R?), and that the related Wigner
transform reads

X — X k — ko)

na ) ,,71704

1
ano(x, k) = —ag (
n 77d

(10)

where ag(x, k) is the Wigner transform of the rescaled initial condition ¢§1). Such an initial
condition then verifies hypotheses H with 5 = 1 — a. The parameter o measures the concen-
tration of the initial conditions in the spatial variables while § measures that in the momentum
variables. We restrict a and 3 to be less than one to ensure that ! is the highest frequency
in the problem. Allowing for higher frequencies while still considering a Wigner transform



at the frequency 1! will lead to vanishing limiting Wigner transforms and would be of little

interest for then energy is lost when passing to the limit, see e.g. [16, 19].
As another example of initial conditions, we consider

¢§VX)=;?7%57x<5§)h<ﬂﬁgib, (11)

where Jj is the zero-th order Bessel function of the first kind. Such an initial condition is

supported in the Fourier domain in the vicinity of wavenumbers k such that |k| = |ko| so that

1/)7(72) emits radiation isotropically at wavenumber |kg|; see [5, 6] for more details. We again
verify that the above sequence of initial conditions is indeed uniformly bounded in L?(R¢) and

satisfies H with o = 1 — 3. For this, we use that Jy(2) = 1/ 2 cos(z — T) + O(2~*/?) and the
fact that Vya,o is the Wigner transform of

W(VX)(£> Jo (M>,

U n
since Jo(|x|) = Jo(—|x]|) so that the gradients of Jo(|x|) and Jo(|x|) cancel in the computation.

Since the scintillation function J,, is itself oscillatory, the limit depends at which scale it is
measured. We thus define localized test functions of the form:

1 x k—-k
Pn,s1,50 (%, K) = M@(UTI’ e 1)7 (12)
where (s1,52) € R? and k; € R? and ¢ € S(R??). In this paper, we do not optimize the
convergence rates as a function of s; and sy so as to obtain statistical stability for averaging
domains as small as possible. We refer to [7] for such results, where it is shown for instance
that for initial conditions with large support, that is for & = 0, then we only need s; < 1 to
obtain statistical stability, which amounts to averaging the energy density over a domain of
typical size n'~°, with 6 > 0.
Our first main result is the following:

Theorem 2.1 Let d > 2 and assume that hypotheses H are satisfied. Then, the scintillation
function J,, verifies the following estimate, uniformly on compact intervals:

(Jn(2), Pn,s1,52 @ Pns1,80) S 9am),
gd(n) _ nd(lfa)72d(sl+52) [772(1701)751731\/32+(a76)\/0] Vi ,,7176+((a76)\/0)/\((d71)(17a76)+a)’ d >3,
92(,,7) _ 772(1—()4)—4(51—1—52) [772(1—04)—81—81V82+(a—6)\/0] vV [,'71—6 (,'704—6(1 + |10g na—ﬁ|)) A 1] )

Here, (-,-) denotes the S" — S duality product, a A b = min(a,b), a Vb = max(a,b) and
(P @) k,y,p) = ¢(x,k)e(y,p).

Theorem 2.1 is a refined version of the result of [7]. It is shown in theorem 2.2 below that
the rate of convergence of J, is optimal when the test function ¢ is smooth (s; = s3 = 0)
and for initial conditions of the form (9). Since the proof of theorem 2.1 does not depend on
the particular form of the initial conditions, we expect the rate to be optimal for any initial
conditions satisfying hypotheses H, although we do not have a complete proof for such a
statement.



Our second result on the convergence of scintillation requires that we first define:
(M% (t)ij = R(O)/ FOx,a0 @ Oy, ap(w,tw, —w, —tw) dw,
R4

(MoW)y = My=(ME0)y, 0<a<s

<a<t
ML)y = Awwf

N[

1
(t))ij dt, 5 <a<l.
The above matrices are well-defined and for 0 < o < 1, we have
(M)l < RO)|FOy, a0 o qroey (150, 0ll oy + |1 Ficd, ol 1 ey )

We also need to define

]i(ta X, ka Y, p) = 26(X - Y) (Ua(t?x’ k — k0)6(p - k) - O-Cl(t?xa pP— pO)é(k - k(])

~a(t.x. K = Ka)d(p — po) + 3(k ~ k0)3(p — o) |

oal(t,x, k)dk> ,
R4

where the cross section o, depends on the value of v and on the spatial dimension:

t
. B . 1
oo(t,x,p) = (2m)" k*(p) / dre”?R0U=T)| Fieag (x — xo — kot — (t — 7)5P; —p)[?,
0
oa(t,x, k) = d(x—x0—tko)o,(t, k), a >0,

~

(t,k) = RQ(k)/ | Fao(w,tw — 7k)|*dwdr,
0 Rd

o1
2

1
(O,k), 0<Oé<§,

0o
1
0a(0,k) = / U%(t, k)dt, B <a<l, d>3,
0

oa(t, k) = ok)=o0

1
2

, oo 1
0a(0,k) = RQ(k)/O /Rd | Fao(tk, w)|>dwdr, S<a<l d=2

Besides, g € C([0,T], L' (R? x RY)), 04(t, k) € L'(Ry x RY) for 0 < a < 1 and 0,(0,k) €
LY(RY) for 1 < a < 1. We need finally:

70ciyp) = (7 [ awhw)s(w - (k= p)Glw K - ko.p ~ o)

—|—ip.v./Rd dwﬁ(w)mG(w, k —ko,p — k0)> d(x —y)o(x —x0)

W W W W
G(W’k’ p) = |:‘7:xa0(_w?k + 5) - fxa(](_wak - 5)] |:fxa0(wap + 5) - fan(W,p — 5)] .

Jl1 0 is real-valued, and the principal value contribution vanishes when ag is even with respect
to the variable x.
Then we have the following result for the convergence of the scintillation:

Theorem 2.2 Assume the initial condition 1/)2 has the form (9). Then under the assumptions
and notations of theorem 2.1, we have, for 0 < a < 1,

Jn _ n(d+2)(17a)+(2a71)\/0 Jé + nd(lfa)Jra([nQaflfd(n)] A 1) Jo% + 7,
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where fg =1 when d > 3 and fo =1+ |logn® 3|, where ry 18 negligible compared to the first
two terms in the L°((0,T),S’(R*)) — % topology, and where we have defined

Jn:nng+rn when a = 0, and Jn:nJ1l+7’n when a = 1.

Here, JL € C%([0,T],Z") when o < 1 and J{ € C°([0,7T], Xs) and J2 € C°([0,T), X ) are
distributional solutions to the following 4-transport equations,

(% + T2+ 2Ry — Qz) Ji =5, Jo(t=0,-) = J3". (13)

The spaces Z' and Xo are defined in section 3. Fori = 1,2, we have S!, = 0 when o > % and

Jéjo =0 when o < %, and

Sfl:ji when 0<a<

«

4 . 1
and J0 = 41(0,-)  when 5 <a< 1.

DO | —

Theorem 2.2 indicates how the statistical instabilities propagate. Depending on the value
of a, either the first term or the second term dominates in the decomposition of J,. When
d > 3, the critical value of a is a* = %: when o < o*, then the term involving J2 is the leading
one, while the term involving J! dominates when o > o*; when o = a*, both terms are of the
same order. Both J! and J2 satisfy a 4-transport equation. Depending on whether a < % or
o> %, the instabilities are created either by a source term or by an initial condition.

J! is the most singular term as the corresponding data in the transport equation are
proportional to delta distributions both in space and momentum (when o < 1) whereas the
data corresponding to .J2 are more regular in the momentum variables. This should be related
to the fact that J! is linear with respect to the power spectrum R while J?2 is proportional to
R? so that J! corresponds to the simple scattering contribution to the scintillation while .J2
corresponds to the double scattering and is therefore more regular. Moreover, when o < o*, the
double scattering contribution gives the leading order, while it is given by the simple scattering
when o > a*. It can also be noticed that higher order scattering terms are negligible in the
limit. Let us now examine the different scenarios depending on the value of a.

Case 0 < a < % The initial condition a, is more singular in the momentum variables
than in the spatial variables, with comparable singularities when o = % The instabilities are
created by the ballistic part of the wave through the source term j2 supported at the spatial
points x =y = xg — tko with four configurations for the momentum k and p: (i) k = p, the
amplitude of k is given by o1 (0,k — ko) when a < % and by a%(t,p — po) when a = 1; (i)
k = kg, the amplitude of p is given by o 1 (0,p — po); (ili) p = po, the amplitude of k is given
by o1 (0,k — ko); (iv) k = p = kq. Instabilities are thus created along the wave propagation

in the direction of the initial condition kg but also in other directions.

Case % < a < 1. The initial condition a,o is more singular in the spatial variables than in
the momentum variables. This results in a stronger localization of the instabilities. They are
generated by an initial condition given by jl(0,-) when a > o* and j2(0,-) when o < o*.
When a < o*, instabilities are created at x = y = x¢ with the same momentum configuration
as the case 0 < a < % When o > o*, instabilities are still created at x = y = xg but with
momentum k = p = ky. Note that these instabilities are fairly singular since they are defined
in this case by gradients of delta distributions.

Case a = 1. This the most unstable case since instabilities are of order n. Since in this
configuration the initial condition a,g is regular with respect to k, instabilities are created at



X =y = xp in all directions, which can be seen from the expression of Jl1 ’0, which is more
regular in the momentum variables than Ja? for a < 1.

Case o = 0. This is the most stable case since instabilities are of order n¢. The initial
condition is regular with respect to the spatial variables so that the source term jg is also
regular. The situation is essentially the same as the case 0 < a < % The main difference
is that the instabilities are created not only at the ballistic position at time ¢ (that is at

x = xo — kt), but on a larger domain related to the spatial support of ag.

Finally, when d = 2, the situation is similar: only the values of a* and o, change. Both
theorems are proved in section 4. Section 3 concerns important preliminary results needed for
the proof.

3 Functional spaces and preliminary results.

In this section, we introduce several functional spaces for the analysis of the operator K,
and of the 2-transport and 4-transport equations. We give some important estimates for IC,
and present well-posedness results for the transport equations. The functional spaces are
constructed to fulfill several requirements: first, the operator norm of K, must be small with
respect to n < 1 in a space for which the 4-transport equation is stable, so that from a bound
on K, we can deduce a bound on the scintillation function J,; second, the spaces should be
large enough so that K, a, ® a, can be controlled by some norms of a,, well-adapted to Wigner
transforms. For the first requirement, a prototype space is X, introduced below, while for
the second, the Y), spaces are adapted. In particular, the Wigner transform of a n-uniformly
L?-bounded function is bounded in Y, independently of 7.

3.1 Functional spaces.

To analyze the 4-transport equation, we define X, (for 1 < p < o0), and Z the spaces of
tempered distributions A in S’(R*?) such that

I, = sw [ sup FhuEv.OPdu <o, 1<p<oo
v,CERd JRE gcRd
HhHXoo = sup |‘7:h(u’£’v’<)| < 00,

u,¢,v,£cRd
Iz = (2m)% / (W, €,v, )| Fh(u, €, v, ¢)ldedudvdC < oo,
]R4d
W EV,C) = (L4 €]+ (€]l + [uP)(L + || + [¢IIv] + [vI?).

Here |u] is the Euclidean norm of the vector u. We denote by Z’ the dual of Z. Above, we
identified the Fourier transform of the distribution h with the function Fh. For the analysis
of the 2-transport equation, we introduce spaces of tempered distributions defined by

WnlE = / aup | Fhiw,&)Pdu < co, 1< p< oo
D RdgeRd
HhHYoo = sup |‘7:h(ua£)| < 00,
u,£€R4
Ihly = sup / Fh(w,€)ldu < oo, [y = sup / Fh(u, €)]dé < oo.
geRr? JRY ueRd JRd



Note the inclusion Y7 C Y. Using the fact the Lebesgue LP spaces are Banach and that the
Fourier transform is an isomorphism from &’ to &', it can be easily seen that the above spaces
are Banach.

3.2 [Estimates for K,.

The latter spaces are well-adapted to the estimation of the scintillation operator K,. More
precisely, we have the following result:

Lemma 3.1 Assume that R € L'(RY) N L°(R%). Then for 1 < p < oo,

(1) K, is bounded in X, and )
IKollzex,) < 4RI L (way- (14)

(i1) Let p € Y,, v €Y. Then
1y @ vlix, < 4n||Rllpeomallely, Vi, (15)
(111) Let pn € Yoo, Vxpt € Yoo, v €Y, Vyv € Y. Then

Iy vlz < 2Rl L@ IVxplye Vyvlly + 1 Vxpllye vy
ey IVyvlly + llullye lvlly) - (16)

Proof. With obvious notation, we recast /; = . o eieij,j . Let h € X,,. Then we have

.7—"]Cf7j h = / eiW'(%€i5+%€iC)R(w).7:h (u - z,&V + za C) dw
Rd n n

so that using the Holder inequality with 1 = % + I% and 1 < p < oo,

Iy all, < swp [ sup
v,(ERT JRE geRd

/ ]}A%(W)}"h(u— E,E,v + E,C)\dw‘pdu,
R

P
<RI, o s R(w ‘}"h S eV (dd<R h[?
<| \ILl(Rd)VZi%dAdsgﬂg R (u &v+ C) wdu < || R[], ga 0I5,

The case p = co is addressed similarly. This proves (i). Let now h := p® v. Upon performing
the change of variables w — nw, we have

FKjpov = nd/ G IS Ripw) Fu @ v (u - w,€,v +w, () dw
R4

so that
iy . p
HIC?,]hHg(pgnd sup / sup / |IR(n(w —v))Fu@v(v+u—w,€w,C)|dw| du,
v,¢eR? JRY geRd
< N 1 s [ sup [ FuC - u - w P (w,€)liwau,
v,¢eRd JRE gerd JR4

<N R oy I, V115

which proves (ii). To prove (iii), we sum eiEijzj over ¢ and j and combine the exponentials to
find:

Py = =i [P €.0) (w-€) (w- ¢ Fu vl —w,&v + w.¢)dw

10



where
sin (%nw . E) sin (%nw ¢

(gnw-€) (3nw-¢)

We then decompose the product (w - €) (w - ¢) into fours terms:

1w, €,¢) = )me)-

(w—u)-E(w+v)-(—(w—u)-&v-(+u-E(w+v)-(—u-&v-(.

Using this and the fact that (FVyu)(u,€) = iu(Fu)(u,§), we also decompose FIpu @ v
accordingly into fours terms FKip ® v, j = 1,--- ,4 that read:

Fypov = —n*t? /Rd F1(w,€,¢) € (FVxpu @ Vyr (u—w,€,v+w,()) ¢ dw,
Fluey = —md“/Rd P, €,C) € FVa @ v (u—w,&,v +w,C) v+ Cdw,
Fuow = ™ [ w60 u € Fue Voo (a = w,&v +w.0) - Caw,
fle,u@y = 77d+2/Rdf”(w,&,C)u-{]—"u@V(u—w,g,v—kw,g)v-de.
The term FVxu®Vyv has to be understood as the matrix (F0,, FOy, V)ij=1,.d and FVxu®
v as the vector (FOy,p Fv)i=1... 4. We start to estimate the first term .7:IC71) 1 ®v. To simplify

the notation, we introduce the matrix-valued function A(u,&,v,¢) := [pa (W, &, () FVxp ®
Vyv(u—w,§,v+w,() dw. Let then ¢ be a test function in Z so that,

/R y Kinoveg dxdkdydp' = (2m)~4d

» FKy 1 ® v Fo, dudédvd¢

_ (27{_)74dnd+2

/RM dudv dg d¢ € A(u,€,v,¢) ¢ Fp(u,€,v,¢)|

< @) I 2 All oo raay /R _ [€lICIFe(u, &, v, Q)ldudgdvdl < 0™ || Al| o raay [ 0l] -
Since || f|| poo(mrsay < HE”LOO(Rd), following exactly the same lines as (ii), we find

1Al Lo sty < I1Rl| oo ey I Vyellye 1V ]ly-

Proceeding in the same way for IC%, 1 = 2, 3,4 and using the definition of the space Z to control
the different weights involving u, v, &, ¢, (16) then follows by duality. O

Remark 3.2 In items (ii) and (iii) of lemma 3.1, the roles of u and v are symmetrical so
that they can be interchanged in the above estimates. For instance, for p € Y and v € Y, we
have

1y @ vlix, < 4n®|RllLeemallvly, llully-

Item (ii) of lemma 3.1 states that when a, is regular enough, say a, € Y, NY with norms
not too singular in 7, then K,a, ® a, tends to zero in X, for instance. When the transport
equation (7) is well-posed in X, this implies that J, goes to zero as well and therefore we
obtain statistical stability. Item (iii) provides us with an optimal rate of convergence needed
to capture the behavior of the first-order corrector.
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3.3 Well-posedness of the 4-transport equation.

In this section, we show that the 4-transport equation

<%+7-2+2R0_Q2_,Cn>a:57 a(t:07'):a07 (17)

is well-posed in the X, spaces and prove related stability estimates. Here, Rq := (27)?R(0),
R e LY(R%) N L™ (R%), where R is the correlation function defined in (3), and 75, Q and K,
are defined in (8). We show that when the operator IC, vanishes, the equation is also stable
(in the sense that the homogeneity in 7 is the same as for the data) in Z’ while this is not the
case when /C,, is not zero. We first recast (17) as the integral equation

¢
a(t) = eszOtgfao + / eiQRO(tfs)gf,s[QQ + Kpla(s)ds + Si(t), (18)
0

where G? is the transport group defined as

gga(xapayaq) = G(X— tpapay - tq7 q)7 te Ra
and

t
Sl(t):/ e~ H=9)G2 5(s)ds.
0

The existence and uniqueness of solutions to (18) is a consequence of the following lemma:
Lemma 3.3 Fort e Ry, Qf and Qy are continuous in X, and 7! with
1621 2(x,) < 1, 1G22z < 41+ 1), 1Qallz(x,) < 2Ro, 1Q2llz(z1y < 2Ro.

Proof. We have by Fourier transform:

]—"thp = Fo(u,€&+tu,v,( +1tv),
FQap = (2m)"(R(&) + R(C)Fp(u,&,v,0),

so that the continuity of G? in X, follows by simple inspection. The same holds for Q> in X,
and Z’ since Ry = (27)¢R(0) = (27T)dHRHLoo(Rd), recalling that R is a correlation function.
Regarding the continuity in Z’ for GZ, we have for any ¢ € Z, t > 0,
IG2ellz = (2m)~" /W(l + [uf? + [ul[€] + €)1 + [v* + [vII<] + <))
Fo(u,€ — tu, v, ¢ — tv)|dedudvdc,
< A4d(1+t+<1+2t)!u\2+\uH&!+!é\)<1+t+<1+2t)!v\2+!vHCH\C!)
|Fo(u, &, v, ¢)|dedudvd (2m) ™4 < 41+ 1)@l 2,

which yields by duality that |GZ||zzy < 4(1+¢)%. O
We can now state the following corollary:

Corollary 3.4 Assume that ag € X, and Sy € C°([0,T],X,), for any T >0 and 1 < p < co.
Then, (18) admits a unique solution in C°([0,T], X,) such that:

6RoT ||S1

lallcogo.r1,x,) < llaollx, + e leoqo,11,x,.)- (19)

When K,y := 0, then (17) has a unique solution in C°([0,T],Z') such that

lalleo o7,y < 4(1+T)?[laoll 22 + e¥ D181 [leoo77,2)- (20)
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Proof. According to item (i) of lemma 3.1, I, is continuous in X, so that using lemma
3.3, the operator

¢
ar— / e*QRO(tfs)gf,s[QQ + Kyla(s)ds
0

is also continuous in C°([0, 77, X,). Existence and uniqueness then follow from standard fixed
point theorems while estimate (19) follows from the continuity of G2 when S; := 0. When
ap := 0, (19) is an application of the Gronwall lemma, using the fact that [|K;|z(x,) <

4| R)| 11 (rd) = 4R since R is a correlation function.
The well-posedness of the 4-transport equation in Z’' when K, := 0 and estimate (20) are
also easy applications of lemma 3.3, fixed point theorems and the Gronwall lemma. O

3.4 Well-posedness of the 2-transport equation.
That section deals with the classical kinetic equation:

0
8_? +p-Vxa+Rya = Qa+ S, a(0,x,p) = ap(x,p), (21)

(Qa)(t,x,p) = | R(p—palt,x,p')dp'.
R
We show that (21) is well-posed in the spaces Y}, and Y and that the non-ballistic part of the
solution is more regular than its ballistic counterpart. We obtain additional estimates that will
be used to prove that the scintillation is dominated by the ballistic component of the wave.
We have the following lemma:

Lemma 3.5 Let E =Y, or Y and assume that ag € E and S € L*((0,T), E) for any T > 0
and 1 < p < oo. Then (21) admits a unique solution in C°([0,T], E) such that

lallcoo,r1,2) < llaolle + 1SN L1 (0,7, B)- (22)
—Rot

Let S := 0 and let a°(t,x,p) := ag(x — tp,p)e be the ballistic part of a. Then, assuming
that Frag € L' (R?), ag € Y1 N Yao, we have the following estimates for all t > 0:

(@ — a®)(t, )|y < / sup [Fao(v, &)|dé < 14| Ficaol 11 oy, (23)
R4 vERA
1/d 1—-1/d
(@ —a®)(t, )y < (laolly!llaolly: ) A (¢ llaolly:)s (24)
(@ —a®)(t,)ls S llaollya. (25)

Proof. The proof is a direct application of the integral formulation of (21),

t
a(t) = e 'Grag + / e o=, O(a(s) + S(s))ds,
0

where G; is the free transport semigroup given by
Gia(x,p) := a(x — tp,p).
The operators Q and G; are both continuous in E. Indeed, for ¢ € E, we have:

FGip=Fp(u,§+tu) and  FQp = R(§)Fp(u,§),
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so that
1Geelle < llelle and 1Q¢lle < 1Rl Lo @ellelle-

Existence and uniqueness as well as (22) are deduced as in lemma 3.4 from standard fixed
point theorems and from separate applications of the maximum principle and the Gronwall
lemma.

For S = 0, we have the following Neumann series expansion in terms of multiple scattering;:

t
a"(t):/ e Rolt=3)G, . Qa"1(s)ds,
0

with the ballistic part a’(t,x,p) := e fotag(x — tp,p). By induction, we find the following
expression for the Fourier transform of a™:

Fette — e [ [ [ e e

R(& + (sp—1 — sn)u)Fap(u, & + tu)ds; - - - dsy, (26)

The change of variable & + tu — k yields

IN

—Rot
n € n
Il < ey [ s | Fao (v, )k
—Rot
e

= W”Ruzw(ﬂ{d)Hj:kGOHLI(Rw).

Summing over n > 1 gives (23). Regarding (24), we have from (26) and after the change of
variable t — 51 — s7:

e—Rot

(n—1)!
In order to control the Y norm, we first need to integrate with respect to u, either Fag or
R and to obtain a regularization effect, the natural choice is R. Therefore, for 0 < ty < sq,
for a tg € RT be set latter, we use R(£ + sju) after the change of variable s;u — u and can
thus control ag in the Y., norm for which we expect uniform bounds when ag is a Wigner
transform. When 0 < s < tp, we cannot use R since the time singularity is not integrable

and have to control ag in Y; norm instead which is more singular. Splitting the integral for
s1 € [0, o] and s; € [to,t] then leads to

t
Fa"(t,u,8)]| < BRI o | Fao(u, € + ) /0 (t—s)"™ 'R+ siw)dsi.  (27)

—Rot

€ —1n—1),1—d —d
"t < g IR (@ = 07 e = R e ol
4" 40| Bl| o ety a0y ) -
Setting tg = (||a0|| ||a0HY1/d) At and summing over n > 1 then gives

1/d 1-1/d 1/d 1-1/d
la(t, Yy < llaollyllaolly, ™ + (ol laolly, ) A (¢ llaollv ).
From (27), we also have |la(t,-)|ly < t]laolly, so that taking the best estimate between the

last two ones gives (24). (25) is obtained by directly integrating R(& + sju) w.r.t. & in (27).
d
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4 Proof of the theorems.

In this section, we prove theorems 1 and 2. The rather long proof is split into several parts;
we first the outline the main ideas of the proof.

4.1 Outline of the proof.

We start with the integral formulation of the 4-transport equation (7) in terms of the transport
semi-group (G2¢)(x,k,y,p) = p(x —tk,k,y — tq,q) and the scattering operator Qy. It reads

t t
30 = [ eI (ot k) Iy(s)ds+ [ I Ky, @ ()i (28)

Defining

t t
T9p(t) = /0 e =G Qup(s)ds ;T o(t) = /0 e 2Rolt=9g2 K, 0(s)ds,

t
T277 = TQ + Téc ; Jg(t) = / 672R0(t7$)g25273]€77a77 ® an(s)d‘s’
0

we recast (28) as
Jy = TonJy + J).

According to corollary 3.4, (28) admits a unique solution in X, for 1 < p < co. As a conse-
quence, the dynamics of J,, is basically driven by that of Jg . Depending on how singular the
initial condition a,yq is in the variable 7, the behavior of J, as n — 0 can be quite different. A
first distinction is whether S > 0 or 5 = 0. By analogy with (9), the first case corresponds to
initial conditions localized in the momentum variables while the second corresponds to smooth
initial conditions in the momentum variables, regardless of the regularity with respect to the
spatial variables. The second case is the easier to treat. The oscillatory term Téan is negligi-
ble compared to the other terms in this configuration due to regularization effects and so .J,
approximately solves
Ty~ T9J, + J).

Since the dominant part of the source term Jg converges in the X, norm and the above
equation is stable for the same norm, we can pass to the limit 7 — 0 in the above equation
after appropriately rescaling .J,,.

When the initial condition is singular in momentum however, i.e., when 3 > 0, then JS
does not converge in X, but rather in the smaller Fourier weighted space Z’. We cannot pass
to the limit directly in the equation since it is not stable in Z’, the highly oscillating operator
K, having a norm of order ! in £(Z’). The term T,’ZCJT7 is no longer negligible in some
configurations. We are thus lead to studying the convergence of J, by setting .J, = Jg + J%
with J% the solution to

Ty = Tondy + TonJy.

The convergence of Jg can be characterized in Z’ and is partly analyzed in section 4.2. The
salient feature of the derivation is that, in most configurations, Jg is dominated by its ballistic
part, denoted by Jgo, i.€.
0 ~ 700
Iy = Jy
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To analyze J%, we distinguish in the source term TQnJS the smooth part Qo from the
oscillating part K, by splitting J,% as J,% = J%’Q + J%”C with

Ty = Ty JyC+ T2, (29)
Tk = Ty M+ Tl (30)

The limit of J,% also depends on the singularities of the initial condition, which determine

whether J,% < or J,% K is the leading term. As long as the initial condition remains sufficiently
singular in the momentum variables compared to the spatial variables, which is mathematically
expressed by the relation 5 > 2a — 1 when d > 3 (so that a < o* = % when =1 — «), the

dominant term in .J, is given by J,% ’K, that is
Iy = J,%’K, when > 2o — 1,

the terms Jg and J,%’Q being negligible. This is due to the fact that the initial condition is
too singular in the momentum variables for a regularization effect of the singular source term
TfJ,(Z] of (30) to take place. This configuration gives rise to a limiting behavior dominated by
the double scattering contribution. The main ideas remain the same in dimension d = 2. In
the case 8 < 2« — 1, the dominant term is J,? + J%’Q, that is

Iy & Jg + J%’Q, when § < 2a — 1.

Here, the initial condition is sufficiently smooth in the momentum variables to render T,’ZCJS

negligible compared to Jg and J%’Q. Such a configuration gives rise to a limiting behavior
dominated by the single scattering contribution. When 3 = 2a — 1, both dynamics are of the
same order and coexist.

Knowing now which term between J,% K and Jg + J%’Q is dominant, it remains to analyze
their limit. A distinction is whether a@ > 3 or not, that is whether the initial condition is more
singular in the spatial variables than in the momentum variables. When a < 3, the source
of scintillation is given by a source term in the limiting equation for the rescaled .J,. When
«a > (3, it is given by an initial condition. All cases can be treated within similar frameworks.

Regarding the limit of J%”C, consider first the source term T,;CJ,? in equation (30): when
the initial condition is singular in the spatial variables, i.e. a > 0, we show that the dominant
term in TfJ,(Z] (which will be denoted by T,’ZCJSO) is induced by the ballistic part of a,, so that
TfJ,(Z] can be replaced by T,’ZCJ??0 for the X, strong topology in the equation (30) solved by

J,% K This requires the analysis of a double application of the operator ;. When the initial
condition is regular in the spatial variables, that is a = 0, the ballistic and scattered parts in
J,? are of the same order so the full T,’ZC JS has to be considered. The analysis of the term T,’ZC JS
is done in section 4.3. Regarding the operator term TQWJ%’K: = TQJ%”C + T,’,CJ%’IC in (30), we
show that T, ,’ZCJ%”C is higher order in X, so that the dominant term in J%”C basically solves a
4-transport equation with K, := 0 and a source term TfJ,?O (or T, 7’7CJ7(7) for the particular case
a = 0), that is
Tyl = T2 T g

It then suffices to compute the limit of the source term in X,, and pass to the limit in the
equation. This is partly done in section 4.4.

Regarding the limit of J,% ’Q, consider first the source term TQJS in (29): as Jg will be seen

to converge in Z’, TQJ,? converges in Z' and not in X,,. It is then not directly possible to
pass to the limit in (29) in Z’ due to the presence of the operator K, which is not bounded
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in £(Z'). Nevertheless, writing TQT]J%,Q = TQJ,%’Q + T,’fJ%’Q, we take advantage of the
regularizing properties of the G2Qy operator in the source term TQJ,(; to prove that J,% € has
enough regularity so that TTQCJ%’Q is found to be of higher order and can thus be neglected.
This step is not possible when considering the term Jg without the regularization of T< as
TQJS and then J% '€ would not be sufficiently regular. Hence, the operator T3, can be replaced
by T2 and J%’Q is a morally a solution to

J#Q ~ TQJ#Q + TQJ??’

which is stable in Z’ as proved in lemma 3.4 so that we can pass to the limit in the equation.
The term J,% € is studied in section 4.5.

In sections 4.6 and 4.7, we give the proofs of theorems 1 and 2. One of the main math-
ematical tools used in the analysis is the dispersive properties of the transport semi-group
Gio(x,p) := p(x —tp,p). For instance, consider an initial condition of the form (9), applying
G, and Fourier transforming it gives e~*(xoutko:(&+w) gy (noy =2 (£ 4 tu)). To control the
Y, or Y norms, the latter expression needs to be integrated in u. When ¢ = 0, this gives
a homogeneity of order n~*¢ without any possible refinement. When t > 0, that order is
optimal as long as @ < 3. When a > 1, the change of variable u = t~!(z — &) offers a control

a—1)d 200—1

proportional to t~%n( , which becomes optimal as soon as t > 7

First estimates for a,. We give here some preliminary estimates for the solution a,, of the
transport equation (5) with initial condition ay.

Lemma 4.1 Let a, be the solution to (5) with initial condition a. Assume hypotheses H
are satisfied and let

Fy(t) i= [ Viay () llva + 0P Viay (@) Iy + 0P| Viay ()]3
for p = 0,1, with the convention that Via := a. Then, for any T > 0,

sup F,(t) < F,(0) S 1. (31)
t€[0,T]

Proof. The case p = 0 is a consequence of the definition of the different spaces, the stability
of the transport equation proved in lemma 3.5 and of the fact that a,, is the Wigner transform

of a regular L%-bounded function 1. According to (22), we have, for E = Y, Y, Y:

i lan@®)lle < llay0)] 2,

)

so that it remains to control [|a,(0)||z. We have

1 k- n n
K)=E|—— [ kv _ U
ay(0,x, k) [(271)‘1 /Rd e Y, (0,x 2y,w)wn(0,x + 2y,w)dy} ,

with ”Ibn(O)”%%RdXQJXXP) =E |:/]Rd \wn(O,x,w)de} < O, with C bounded independently of
n. Applying Fubini, we find, for the Fourier transform of a,,

Fay(0,u,€) = e MR [/ Fipy(t,u = v7w)~7’—%(t7v,w)dv} :
R4
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so that the Fourier-Plancherel equality yields
llan(0)[lvee < H%(O)|’%2(Rdxﬂ,dxxp) <0,

which gives the bound in Y. For the other estimates in Y7 and 57, we have directly, according
to hypotheses H:

IN

llan (0)lly;
lan(O)lly < [[Fxanollprreay S 0~

[ Fxanoll 1 m2ay S n~°,
pd

Regarding the case p = 1, it suffices to notice that Vxa,, satisfies the same transport equation
as a, but with an initial condition Vxa,o, so that following the same lines as above yields the
result. O

4.2 The Jg term.

We recall that Jg and its ballistic part J7(7)0 read
t t
J,?(t) = /0 672R0(t78)g152,slc77a77 ® ap(s)ds, Jgo(t) = /0 672R0(t75)gf,sKna97 ® ag(s)ds,
where a%(t,x, k) = e ol (x — tk, k) is the ballistic part of a, and a,o the initial condition.
The main result of the section is the following:

Lemma 4.2 Assume hypotheses H are verified. Then, J,? and Jr?o satisfy the estimates, for
any T > 0:

d(lfa)JraJrﬁ(d(afB)fa)\/O when d > 3
sup [l70() = 1" Wlxe S 3 Mo ariar s — T (32)
t€[0,T] n (n |[logn|) A1 when d =2,
Sup. (77 Ol + 17D x) S p™mIHEmOVO, (33)
€10,
d(l-a)+2-at g7 (([da=p)=a)V0 4o 1 3
sup 20— IOz S 3 Ty ran mas 2% )
t€[0,T] n (n |logn|) A1 when d =2,
Sup Ty Ollz + 172D 21) S U=V, (35)
€10,

Here, a A b= min(a,b) and a V b = max(a,b).
Proof. We start with (32) and write
t
JY(t) — JPO(t) = /0 e 2=)G2 K, ((ay — al) ® ay(s) + a) @ (a, — a)) ds. (36)
We then apply item (ii) of lemma 3.1 with first pu = ag and v = a, — a%, and secondly with

v=ay,and u=a, — (z?] according to remark 3.2, to find, for any s < T,

Gy ((ay — ap) @ ay + ay @ (ay — ap)) (5)llxae S 1%l1(an — ap)(s)lly (lag(s)llvae + llapllvac) -

From lemma 4.1, we know that a,(s) is uniformly bounded in Y, with respect to 7 for all
s < T, and so does aj). This leaves us with the norm of a, — aj) in Y. According to (24) of
lemma 3.5, we have

1/d 1-1/d —d —ad —ad
@y = a)(@)lly S (ol llanolly; ) A (sllanolly) S n= % A (sn7%) S n=oU(n™ As),
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since [|ano |y, + 1%¢lanolly; is uniformly bounded according to estimate (31). Consequently,
for all t < T, owing the fact that the semi-group G? , is continuous in X, see lemma 3.3,

t
1I0(t) = T W) xe S 0 /0 e 20 (@ — a0) ()l (Ilan(s)llvoe + 1l llveo) ds,
g tnd(l—a)—i—a_i_nd(l—oz)—l—Zoz_ (37)

This proves (32) when d(a — ) —a < 0. The estimate is not optimal for the remaining cases.
Therefore, instead of using (24) and to take advantage of the fact that the scattered part
ap — ag is smoother than the ballistic part ag, we use (23) to estimate a, — a?z and split the
time integral in the definition of JJ(t) — Jp° into contributions in [0, o] and [to,¢]. For short
times, we proceed in the same manner as (37) and obtain the bound tq nd(1=@)+e 4 pdi—a)+2a

For times larger than ¢y, we apply (23) and finally obtain, for all ¢ < T and ¢ > ty,

t
50 = IOl S a0 b | Bl ey [ 5,
to
g nd(l—a)+2a+t0nd(1—a)+o¢+hd(t0)nd(1—ﬁ) +77d(1_ﬁ),

where hg(to) = t2% when d > 3 and hg(tg) = |logto| if d = 2. Recall that [ Franoll 1 m2ey S

n~B according to hypotheses H. Setting then t, = nﬁ(d(a_ﬁ)_a) when d > 3 and tg =
ne=B=|logn| when d = 2 gives (32) when ¢t > ty. When t < ty, we simply use (37). We
proceed analogously to estimate Jgo. We first have:

t
1) 1x., <0’ /O 20 0(6) [y [0 (5)] Iy s,

0

» is uniformly bounded in Y and Vs < T,

so that, since a

lan()lly < llag(s)lIva < 0™,

we find, for ¢t < T,
17,0 0 <t

The latter estimate is used for the case a < 3; when § < o we need to split the time integral
over s in [0, o] and [tg, t]. Using the fact that

ool < sup [ 1Fop(n g+ sl
S

IN

sd/ sup |Fano(z,u)|du < 57d||.7:kanoHL1(R2d) < g7dpPe,
R? zcRd

we have for all t < T,

[T ()| x0 S ton™ =) 4t~ 170 < plierta=s,

by setting to = n® 2. This gives (33) for the J,?O part. Regarding the Jr? part, we simply
remark that, for any a, 3 > 0, Jg — Jgo is of order higher or equal than Jgo. Thus (33) is
proved.

The proof of (34) goes along the same lines as above, so that we just underline the differ-
ences. We start from (36) and use the stability of G in Z’ proved in lemma 3.3. Moreover,
item (iii) of lemma (3.1) gives

d
Iy (ay = ap) @ agllzr < 0™ (IVx(ay = ap)lly [ Vxay e + [Vx(an = ap)llyllaglve

llay — aylly [ Vxayllyae + llay — apliyllagllv..) -
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The leading term in the latter expression is the first one since it involves two derivatives
Vx(ay — a%) and Vya, and is thus expected to be at least a factor n~“ greater than the other
terms (see lemma 4.1) which we subsequently neglect. We then proceed exactly as for (32) by
splitting the time integration for short and long times. The function Vya,, is solution to the
same transport equation as a, with the initial condition replaced by Vxa,o, and so we can use
(23) and (24) to find, for s > 0,

s U FiVano | preay S ' P,

1/d 1-1/d —do —«
(IVxanolly IV xanolly; /) A (5 1 Vxanollyy) S 0 %@ A [n7%s)),

IVx(an —ap)(s)lly <
IVx(ay —ap)(s)lly <

thanks to lemma 4.1 and hypotheses H. This finally yields, together with 7||Vxa,(t)|ly. <1
according to (31), for any ¢t < T,

t
9906 = TRz S g )i gl B3 [ g,
to

g Ud(l_a)+2+t0nd(1_a)+2_a—l—(hd(to)+1)77d(1_ﬁ)+2(1_a),

where hg is the same as before. Setting ¢ty = nﬁ(d(afﬁ)fa) when d > 3 and tg = 772(0‘*@*0‘] log |
when d = 2 gives (34). Regarding (35), using the estimates of lemma 4.1, we find

t
1@l < / 190%(5) 1y [ Va2(5) [y oods
< fon(@rD-a) +t(1]—dnd(lfﬁ)+2(lfa)’

and setting tg = 7P yields the estimate on Jgo in (35). Regarding Jg, it suffices to notice
that Jg = Jg — J,(Z]O + Jgo and that for any «, 8 > 0, Jg — J,?O is at best the same order as Jr?o.
This concludes the proof of the lemma. O

4.3 The terms T,;CJ,?.

We recall that TécJ,? reads
t
TES(1) = /0 e 2Rot=9g2 K, 70(s)ds,

t S
= /0 /0 e 2olt=mg2 K .G _K,a, ® a,(T)dsdr, (38)

and involves a double application of the operator K, that needs to be treated carefully in order
to find optimal estimates. The Fourier transform of TTQCJS is given by

(fTéCJg)(t, w &, v, ¢) =nt /t /S/ dsdrdwdw’ e~ R(w")R(nw) (39)
o Jo Jrad
xg(t,s,7,u,&,v, ¢, w,w')Fa, @ an(T, u—w—nw,
E+(t—Tu—n ' s—nW,v+w+n W, .+ E-T)vHn (s —T)W)
with
g(t, s, 7w, &, v, w,w') =16 sin(w' - (€ + (t — s)u)/2)sin(w’ - (¢ + (t — 5)v)/2)
xsin(nw - (€ + (t — 7)u — n_l(s —7)w')/2) x sin(nw - (¢ + (t —7)v + 77_1(8 —7)w')/2).
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The term Fa, ® a, (7’, u,§,v, ) stands for Fay,(r,u,§)Fay(r,v,¢). The Fourier transform is
obtained by using that

(FIC, h)(u,€&,v,¢) = —4?7d/ sin <¥> sin <77V‘; C> R(nw)Fh (u—w, & v +w,()dw
R4
(FGh)(u,&,v,¢) = Fh(u, € +tu,v,¢ +tv),

see the proof of lemma 3.1 for the first relation and that of lemma 3.3 for the second. Let us
consider functions of the form

t s
Gy(t) = / /0 e 2Rolt=mG2 K,G2 Kb, ® c,()dsdr,  t<T,

for two functions b, and ¢, with ¢, satisfying the estimate (31) of lemma 4.1. The following
result will be used several times in the forthcoming sections:

Lemma 4.3 Let b, and ¢, be two functions in C°([0,T],Y1 N Ya N Y) with ¢, satisfying (31)
forp=0. Then, for any 0 <t <n®,

3 -5 « -
1Gy(Dlxe S (nd“ sup |[|by(s)[l5; sup by (s)lly d) v (nQ P20 sup ||bn(Z)H17>,

s€[0,T] s€[0,T7] z€[0,7T

and for any n® <to <t <T, |G,(t)||x.c S A() AB(t,to) AC(t), where

- 3 -5 fe] -
At) = (tnd“ sup [|by(s)[l5z sup by (s)lly d) v (tn A=) sup an(Z)H;>,

s€[0,T] s€[0,T] 2€[0,T]
1

t
B(t.to) = Alto) + 1" [ [y (s(1 = ' *m))y sdsdr
to JO

+ 1 (ha(to) V ha(t)) sup ||y (2)|g

z€[0,T]
C(t) =t*n" sup [|by(2)[ly,
z€[0,T]

where for x > 0, hq(x) = =% when d > 3, hg(z) = |logz| when d = 2, a A b = min(a,b) and
a Vb= max(a,b).

Proof. For a given time to € [, t], we split the integral over [0, ] into the two parts [0, to]
and [tg,t] and denote by G1 and G2 the corresponding terms. When ¢ty = ¢, we only need to
treat Gl since G2 vanishes. ThlS Wlll give the A(t) part of the lemma. When ¢ # ¢, we need
to estlmate G2 as well and obtain the B(t to) part of the estimate. The C(t) part is direct
consequence of the continuity of GZ in X,

First part: G}?. Starting from (39), we make the change of variables w = u — wy — n~'w/
and 7 = s — 1n® to get:

to . A
(FG) & v,0) = ' / / /R dsdrdwidw’ e 2Fo(t=stn"7) (W R(n(u — w1) — w')

x g(t,s,5s —nr,w, &, v, ¢, u—wy —n~tw, w) Fby, ®cn(s—77 T, W1,

E+(t—s+n” ’7’1)11 N lrw’ v—|—u Wl,C+(t—S+77 v+ trw)

to  prt1 to
:/ / d8d71+/ / d8d71+/ / Ydsdry = I+ 11+1I1.
n t1
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for a constant 0 < t; < 1 to be fixed later. Since |g| < 16 uniformly in all variables, we find

~ to a1 A~

sup |I| < 16nd+°‘HRHLw(Rd)/ / Sup/ dsydrdwidw’ R(w')

[0,7] xR4d ne Jo  2<T JR24
/

"7:677 ® c’](z7wl7£ + (t — S+ no‘ﬁ)u _ nOé—lTw :

v+u—wi,(+ (t—s+n%m)v+ no‘_lﬁw’) ‘
< 16t0 ™ || Rl poe ey | Bll 2 zay sup [[by(2)ly sup fleg(2)llve S totin™ sup_|[lby(2)lly,
z€[0,T) z€[0,T) z€[0,T]
since ¢, is uniformly bounded in Y as it satisfies lemma 4.1. Concerning /1, we perform the
change of variable w' = f(w}) := '~ (~w| + €+ (t —s+n°m)u) and wi = v+ u—w
so that:

to s« o
II(t,u,&,v,C) = 77d+°‘+d(1_0‘) / / / dsdridwdw) e~ 2Ro(t=s+n Tl)Tl_d
R R na t1 R2d
XR(f(Wll))R(T](W — V- f(wll))g(ta 5,8 — naTla u,é,V, C7W -V - Wﬁlf(wi% f(wll))
XFby @ cy(s —n*m,v+u—w,wi,w,{+ &€+ (t—s+n%m)(v+u) —wh).

[e3

We then find, since sn~™® > 1 and t; < 1, f;fi tsln‘ deTlTl_d < t%_dto, so that,

. to psn”@
sup  |II] < 16nd+a+d(1a)HRH%w(Rd)/ / sup/ dsdr dwdw) Tl_d
[0,T]x R4d ne Jt 2<T Jr2d

‘]:bn®cn(z,v+u—w,w/1,w,c+£—|—(t—s+77a71)(v+u) —Wll)‘

Sttt dme)sup by (2)]l5 sup len(2)lly, S 1 Hon* 2T sup [|by(2)]l5,

~

z€[0,T] z€[0,T] z€[0,T]

since ||c,(2)|ly; S n%? for 2 < T by lemma 4.1. Setting

1 _1
tr= 0" sup [1by(2)ll5 ) ( sup llbg(2)llv) | AT,
{ (ze[O,T} ! Y) (ze[O,T} ! ) }
gives:
d+1—a % 1_%
sup (1] +[11)) 5 (ton™'=* sup [by(s)|L sup [by(s)]y *)
[0,T] xR s€[0,T] s€[0,T]
vt =) sup b,(2)l )- (40)
z€[0,7]

It remains to treat I11. After the change of variable s = n%s1, we find

t1 s1 1 t1 1 S1
n_aIII:/ / (-)d81d71+/ / (-)d81d71+/ / (-)d&’ldTl,I: 111 + 1115+ 11135,
0 0 t1 JO t1 Ji1
for the ¢, defined earlier. 11y and II1l5 are treated as I and 1113 as I1. This yields

sup |[IIL| S 9™ sup [by(2)lly,

[0,T] x R4d z€[0,T]

sup |[I| < tin™* sup [by(2)]y,
[0,T]xR4d z€[0,T

sup |TIT5| < 4790 sup b, (2) |5
[0,7] x R4d 2€[0,7)
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We then find the estimate:

1 11
sup (ITT) 5 (0™ sup [by(s)[Z sup [1by(s)]y 7 )
[0,T]xR4d s€[0,T7] s€[0,T]

V(P20 sup by (2)lly ). (41)
2€[0,T]

Therefore, 111 is either negligible compared to I + I] or is of the same order when o = 0. We
turn now to the second part.

Second part: G%. Starting from a similar expression as (39), we make the change of variable
7=5(1-n'""%7) and find

t na 1 -
(‘FGE])(t7 u, 57 \Z) C) - 77d+(1_a) / A /Rgd deTldeW/ e_QRO(t_S(l_nl T1))
to

XR(W/)R(UW)SQ(ta S, 8(1 - 77170{7—1)? u, Ea v, C’ w, W/) (42)
xFby @ cp(s(L=n'"m),u—w—n"'w, &+ (t—s(1—n'""m))u—n “sHw,
v+w+n W+ (E—s(1—n' %)V 4+ Ysnw).

We split the integral over 71 in [0,1] and [1,7%7!] and denote by I; and I the associated

terms. Regarding I;, we make the change of variable w = —w +u —n~'w’. We then control
¢y by its Yy norm, b, by its Y norm and integrate R with respect to w’. This yields the
following bound for I, with g uniformly bounded in all variables:

sup [N S ™R oo gy | Rl ey sup ey (2) [y
[0,T]xR4d z€[0,T]

t 1
x / / 1By(s(1 — 7))y sdsdn,
to JO

t 1
< n‘”“‘“)/ / [by(s(1 = 0" ~r0))ly sdsdr, (43)
to JO

since ¢, is uniformly bounded in Y. Regarding now I, we perform in (42) (with the second
time integral replaced by [1,7%71]) the change of variables w = w; — v — n~'w’ and w' =
n*(st) " H—w) + & + (t — s(1 — n'~%1y))u). Controlling ¢, by its ¥; norm and b, by its Y
norm we find the estimate

o —a) || B ! — % dn
sup |L] < pl0te+d )HR”%OO(Rd) SupT}ch(z)”yl sup an(z)Hf,/t st dds/1 —
) 0

[0,T]xR4d z€[0 z€[0,T) T1
< (halto) V ha(t)) nttd=) . 16(2) 15+ (44)
z€|0,

since sup.cpo.77 llen (2) vy S 7~ Above, hg(z) is the same as before.

Last part: the C' term. Starting from the definition of G, using the continuity of G2,
together with item (ii) of lemma 3.1, we obtain, uniformly in ¢:

Gy (O)llxe S 0T sup [[by(2)lly sup lley(2)llvae < 0 sup [|by(2)lly-
z€[0,T7] z€[0,7T) z€[0,T7]
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Conclusion. Setting first g =t > n® so that Gg] vanishes yields the A(t) and C(t) part of
the result thanks to (40), (41) and the estimate above. The second part when n® <ty <t <T
is obtained by gathering (40), (41), (43) and (44). When ¢t < n®, the estimate is obtained
along the same lines as for (41). This ends the proof. O

We now state the main result of this section, which provides us with an estimate, which will
be shown to be optimal for certain initial conditions, for T,;C J7(7)0 and shows that the non-ballistic
part is higher order.

Proposition 4.4 We have the following estimates:

sup I3 (0)] xS 70 ([P fam)] A1) v (@000t (as)

t€[0,T]
nd(lfa)JrlJr(afﬁﬁ)\/O when d > 4’
sup [T (J) — B°)O)llxe S 4 PO F 2 v (lognln®* ) A1, whend =3, (46)
te[0,7] n2(1*a)+1 (na(’ log 77‘ \V 7772[3)) A1, when d = 2,

Above, fq(n) =1 when d > 3 and fo(n) = 14+|logn®~“|, aAb = min(a,b) and aVb = max(a,b).
Proof. We first separate the ballistic part from the scattered part by writing
K 70 _ K 700 K 70 00
Ty Jy =Ty g + 1 () — ),

and estimate the ballistic part T,’ZCJSO.

The ballistic part. The expression of T’C Iy 00 is given by (38) with ay, replaced by a (t x,k) =
e_ROtano(x — tk, k), where a, is the inltlal Condltlon The ballistic part a77 tr1v1ally satisfies

estimate (31). In particular, we have

dy 0 dy 0
sup_(n°?)laly(t) v, +n* ()l S 1
te[0,7
We now apply lemma 4.3 to the case (z?] = b, = ¢,. Controlling the ¥ norm of (z?] by its Y3
norm, it comes from the first estimate of the lemma for ¢ < n®:
S[llp ”TICJOO( )HXoo g 77d(l—oz)—f—l—ﬁ—f—oz v/ n2a+2d(1—a)—d6. (47)
tel0

For longer times ¢ > n®, we use first the A(¢) part of the lemma. It comes, Vt € [n®,T]:
HTrl]CJr?O(t) ¥ < t(nd(l—a)-i-l—ﬁ) V (n2a+2d(1—a)—dﬁ)‘ (48)

| | [e') ~

That estimate is optimal 8 > «, that is when the initial condition is more singular in the
momentum variables than in the spatial variables. It is not optimal in the reverse setting when
«a > 3, for which we need to use the “B” term in lemma 4.3. For this, setting n® <ty <t
and assuming « > (3, we control the different terms in B according to 7 to obtain the leading
contribution. Since A(ty) has already been estimated before, the only remaining term is

// Ha (1 —=n"%))|ly sdsdm
to

= //e_Ros(l_"la”)sdsdTl sup/ |lano(u, & + s(1 — ' %7 )u)|du,
to JO R4

gcRd

t 1
< / sl_dds/ (1—771_0‘7'1)_dd7'1/ sup |Fayo(z,u)|du,
to 0 R? zcRd
< hd(to) V hd(t) /2d ]fkano(x, u)]dxdu < halto) V hd(t) Uﬁdﬁ,
R
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since || FxanollL1(reay S n~P% according to the hypotheses H. Above, for z > 0, hg(z) = 2>~¢

when d > 3 and ho(x) = |logz|. Let tog = n® . Then using (48) and the B part of lemma
4.3, we find

S[UPT} 1Ty 1 M xe S (tond(l_o‘)“_ﬁ) V (tyrPat2di-a)=d8y 4 p(0ypd(i=B)+1-a
te|to,

S (nd(l—a)-l-l—ﬁ-l-oc—ﬁfd(n)) Vi (n2a+2d(1—a)—dﬁ+a—ﬁ). (49)

Above, f4(n) =1 when d > 3 and fo(n) = 1+|logn®?|. Using (48), we finally verify that the
contribution of times n® <t <ty is included in the previous cases. Selecting the best estimate
between the latter, (47), (48) and (49) then ends the proof of estimate (45) for the ballistic
part.

The non-ballistic part. The proof follows along the same lines as that for the ballistic part
so that we simply underline the key differences in the analysis. We have, Vt € [0, 7T:

TR — J00) (¢ / / “ltng? K62,
0 0 0 —
an — ap) @ ay + a, @ (ay — an)) dsdr = Ty +Ts.

Since a, and ag have the same homogeneity in n in the various spaces needed to estimate T}

and Ty (i.e., Yo, Y and 57), the two terms 717 and 715 are treated in the same manner and

we consider only 77. We use lemma 4.3 with b, = a, — (z?]

in Y and Y. From estimate (25), we have for all ¢t < T,

and ¢, = a,. This requires us to

: 0
estimate Ay — Gy

I(ay = @)y < laollye S 1,

and moreover |[|(a, — a%)(t)Hy <I|(an — ag)(t)Hy1 < 72 according to (31). Assume first that
t > n®. Then, the A part of lemma 4.3 gives for such ¢’s:

1{}3 |T1(t)| 5 (nd(lfa)Jrlt) V; (tn2a+2d(17a)) _ nd(lfa)Jrlt. (50)

The above result is not optimal for all possible values of o and (. To refine it, we use the B
part of lemma 4.3. Assume first that d = 2 or d = 3. Then, for n* <ty < t, (23) gives

t 1
| e = s = oo mply sdsan

/ 2= d/ ) ddﬁ/ | Frano(x,u)|dxdu < lig(to) V iq(t)]n~ %,
to R2d
where for > 0, iy(z) = = and i3(z) = |logz|. When d = 2, we can use lemma 4.3 with

to = n®~28 together with (50). This yields, Vt € [n®, T],

Slﬂf‘Tl(t)! < ton® T 4 (g (to) V ia(6) P AT 4 Ry ()P
R

< Pt (728 4 log ™).

The latter result gives, together with (50), estimate (46) for times ¢ > n® when d = 2. When
d = 3, we choose ty = n® and obtain with the B part of lemma 4.3, together with (50):

sup |73 (1) 5 A= (™ 4 | log nln?*—30).
R
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Along with (50), this proves (46) when d = 3 and t > n®. Consider now the case d > 4. Still

using (23), we rather estimate a, —aj) in Y as, for 7% < to <t,

t 1
[ ey = aipista —p=mply sasr
to JO
t 1
s [ [a-nemylan, [ Aeplxowlaxdn S (¢ ) hato)n .
lo 0 R

so that lemma 4.3, yields with (50) and to = naidfdlﬁ

sup i (O] S ton ™+ halto) ™I e ha(to)tH e g A
This proves (46) when d > 4 and t > n®. It remains to treat the times t < n® and n® <t <t
for any dimension d > 2. In the latter case, we use (50) with ¢ < ¢y for the different values of
to defined earlier when d = 2,3 and d > 4. The obtained results are included in the previous
case tg < t. When t < 7%, we use lemma 4.3 and find a bound of order n¥1=®+1+e which is
higher order than the other terms. This concludes the proof. O

4.4 The term J;”C

We recall that J%”C = TgnJé”C + TZICJ,(]] , so that its homogeneity in 7 is basically given by that
of the source term TT;CJ,? .

The ballistic part gives the leading order. Using the results of the preceding section
on TécJ,?, we first show that the leading order in J%”C is given by that of TécJ,?O. Let J%’IC =

J,?’IC + Jg”’C, where J,?’IC and Jg’”c solve
Il =Ty 2N+ T I s IR =T, R+ T () — ).

In the sequel, A negligible compared to B in X means the norm of A in X verifies an estimate
with higher degree in 1 than does B. We say they are of the same order when the degree of
is the same for both estimates. We have the following proposition:

Proposition 4.5 J;?’IC s negligible compared to Jch in CY([0,T), Xoo) when B > 0. When
8=0, JT:;”’C is of the same order for any o € [0, 1].

Proof. When (8 > 0 and for any d > 2, the term J;? K negligible in X, compared to J,? K
since the corresponding source term in the integral equation is higher order. Indeed, on the

one hand the stability of the 4-transport equation in X, expressed through (19) and estimate
(46) yield

=) +1+e— g5 AVO, when d > 4,
sup 7R (0)lxe £ PTGV (Jlog gl ¥0) AL, whend =3, (51)
tel0.T] =t (n(|logn| v 2)) A1, when d = 2.

On the other hand, (45) gives

sup |25 (1)1 x.. S w0 ([92 7P fam)| A1) v (DO ) L (52)
t€[0,T]
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with fy(x) = 1 when d > 3 and fo(z) = 1+ |logz®~P|. It is enough to show that the order
of J;?’IC is higher than n(l—)+1=5 [nafﬁfd(n)] A 1. Assume therefore that the order of J,?’IC is
pd—e)+1-p [no‘_ﬁfd(n)] A 1. Under the hypotheses 0 < o <1 and 0 < 8 < 1, let us compare
the orders in 7 of Jg”c and J,‘?’K. Assume first that d > 4. When o < 3, the order of Jg”c is
d(l1 —a)+1— 3 and that of J,‘;”K is d(1 — ) + 1 so that the order of JS.,IC is always greater
since # > 0. When < a < d%‘llﬂ, the orders are d(1 — «) + 1+« — 23 and still d(1 — «a) + 1.
J;?’IC is thus negligible when o < 2 which is the case in this configuration since a < d;flﬁ,
with d > 4. When d%‘llﬂ < a, the orders are d(1 —a)+14+a—2F and d(1 —a) + 14+ a — d%‘llﬁ
so that the order of JS’K is always greater when (3 > 0 since d > 3. Assume now that d = 3.
The case o« < 3 is the same as for d = 4. Suppose that f < o < %B. The orders are
3(1—a)+1+a—208and still 3(1—a)+1. Since a < %B < 203, the ballistic part dominates. It
remains the case o > %6. As long as a < 20, we are in the same configuration as before, when
a > 28 > 0, the scattered part is of order 3=+ (> v (|logn|n?*—38))) which is greater
than n?(1—)+1+e=26 when o > 26 > 0. Assume now that d = 2. The case a < f is similar
to the treatment above. When § < a < 23, Jg’lc is of order 772(1*0‘”1*0‘*2‘3] logn| and J;?’IC of
order n?(0=®+1 Since n <« ntta=28|1og ), Jg”c dominates. When o > 203, the ballistic part
is of order n?(1—)+1+a=281 190 | > y2(1=)+1+a=25 which is the order the scattered part.

In all cases, the contribution of JT:;”’C is negligible as soon as 3 > 0. When § = 0, a simple
examination shows that J,‘;’ K and Jg”c have the same order for any d > 2 O

The TfICJ,? K term is higher order. We show now that the term T,’]CJg”C can be neglected
when computing the limit. We first decompose J,?’K into Jf;”c + J,?’K, where

Tk = Tk T, (53)
Ik = TRk L Tk (54)

We have the following proposition:

Proposition 4.6 When d > 3, JS’K is negligible in C°([0,T], Xoo) compared to J,;UC as soon
as a+ 3 > %, ora+f< Z:% with a <1 and f < 1. When a+ 3 < % and o = 1 or
6 =1, both terms are of the same order. When d = 2, Jg”c and J;;’”C are of the same order

when B =1 or when a =1 with B < 1. In all other cases, J,?’K can be neglected.

Proof. The core of the proof is estimating T,;CJg”C. To do so, we start by applying the
operator K, to the integral equation solved by Jg”c. This yields
2,6 _ 2,K K 700 _ Q 72,k K 72,K K 700
Ky = KyTon 3™ + KTy J," = KyT=J0™ + KLy Jo™ + KTy J,. (55)
First step: the term lCnTQJ,?’K. We will need the following lemma:
Lemma 4.7 Let h € C°([0,7T], Xs,). Then, we have the estimate:
sup [[K,Th(t)llxe S 0 sup [|h(s)l|xu-

~

te[0,T) s€[0,T]
Proof. We have:

t
K,T%h = / e 2Rot=9)KC, G2 Qoh(s)ds,
0

¢
fICnTQh = —477d/ / e~ 2Ro(t=5) gin <lnw . £> sin <lnw . C) }?(UW)
0 Rd 2 2

X[R(E+ (t—s)(u—w))+ R(C+ (t —5)(v+w))]
XxFh(s,u—w, €+ (t—s)(u—w),v+w,(+ (t —s)(v+w))dwds := I +I1I.
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The terms I and I are treated in the same way so we focus on I. We first split the integral in
son [0,t —to] and [t — to,t], where 0 < ¢ty < ¢, and denote the corresponding terms by I; and
I5. For I, we make the change of variable w = u + (t — s) (¢ — wy) and obtain, uniformly
for ¢t € [to, T,

sup |11 (t)]
RA4d

IN

. t—to
Rl sy sup (5) e / / Riwi)(t — 8)~Ldwrds,

N

'ty ¢ sup Hh(s)HXoo-
s€[0,T

To handle I, we cannot use the regularization of the operator G2 ,Qs and make the same
change of variable since the singularity in time is not integrable in the vicinity of t. Rather, we
make the change of variable w = = !wy and integrate R with respect to wy. Thus, V¢ € [to, T]:

sup [I(t)] < 4o |R]| oo (ray || Rl 1 ray sup [[A(s)]| xoe -
[R4d 5€[0,T]

To conclude the proof, we set tg = ¢t when t < 7 so that I; vanishes and only [I> remains.
When n < t, we set tyg = 7 so that I; and I, have the same order. O

We now apply the preceding lemma to h = Jg”c. We find, using estimate (45),

sup [, T2 (1) xS w02 (|2 fafm)] A1) v (400D ) o (56)
t€[0,T)

with fy(z) =1 when d > 3 and fo(x) = 1 + |log 22|

Second step: the term lCnT,;CJSO. We have the following lemma:

Lemma 4.8 IC,,T,’ZCJSO satisfies the estimate:

sup [[IC, T, T (1)l xS

pd(l—)+2(1-6) when d > 3,
tel0,T)

21=9) (205 1og n|) A 1, when d = 2.

Proof. We have, for any 0 < tg < t:

t t—to t
KT 70(t) = /O e 2U=)IC, G2 Ky 90 (s)ds = /O + /t =L
0

For times s less than ¢ — ¢, we are able to use dispersive properties of the operator GZ. This
cannot be done for times close to t because of a non-integrable singularity in time. To estimate
the long time contribution, we rather use the continuity of K, in X, and the estimate (45)
for T,’]CJSO. Regarding I, we have:

t—to s N N N
(FI)(t,u,&,v,¢) = 172d/0 /0 /de dsdrdwdw'dw" =07 R(pw" ) R(w') R(nw)

Xg(t’ S’ T’ u— w/l’ E? \4 + WI/’ C? W’ w/’ WI/)
><]:a97 ® ag(T, u-—w-—n'w-—w E+(t-—1)(u-w')—nts—-1)W,

v+ w+ n_lwl +w' CH+H{t-—T)(v+wW')+ 77_1(5 — T)W/),
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where

gt s, 7w, &, v, ¢w,w ,w') = 64sin(w - (€4 (t—s)u)/2)sin(w - (¢ + (t—5)v)/2)
xsin(nw - (§+ (t —T)u—n" 1(5 T)w')/2)
x sin(nw - (¢ + (t = 7)v +n" (s — )W) /2)

x sin(w” - £/2) sin(w” - {/2). (57)

The latter expression is obtained by applying the operator K, to (39) with a, replaced by a%.

Using the fact that (Faj)(r,u,§) = e BT (Fa,0)(u, € + Tu), we find

.7-"(19, ® GS(T, u-—w—nw —wi e+ (t-—1)(u-—w")—nls—1)W,
VAWt W W (= T)(v W) T (s = )W)

= e 2 Fa @ ap(u—w—ntw —w €+ tu—w')—nlsw — 1w,
v+wHntw +w v+ W)+ lsw + Tw).

“lw —w'and w' = (t — 7)Y W] - ¢ —tv -

n~(s—7)W —7u+7w1), we find since § is uniformly bounded in all variables that V¢ € [to, T],

After the change of variable w = u — w; — 7

R t—to s R
sup|I(t)] < n2dHRH%oo/0 /0 /de dsdrdwdw’dw} R(w')(t — )74

sup |Fano(wi,€)| sup [Fayo(v, wy)|.
¢eRd veRd

t*to S 2—d >
/ / (t — ) ddsdr < ty “, when d > 3,
0 0 |log t| + | log to|, when d = 2.

Since tg <t < T, the double integral above is controlled by a constant times 1 + |log to| when
d = 2. This finally yields, when d > 3, Vt € [to, T},

‘We have:

sup [I()] S 7P t2 I R| e oy | R 11 ey lao 4 / sup | Fago(v, w")|dw”,
R4d RdveRd

S nd(2fa7,8) t%_d,
since [pa SUpyera [Fayo (v, w”)|dw” < || Fanollpr g2y S 7~ and when d = 2,
sup |1()] < 7%~ |log to.
R4d

Concerning 11, we have

t
II(t) =K, e*2R0(t*s)QE,SICnJSO(s)ds,

t—to

so that the stability of K, in X gives,

sup |11(0)] < \
R4d

t
/tt e*QRO(t*S)Qf,SICnJSO(s)dS
—to

Koo

We now apply lemma 4.3 with b, = ¢, = a , (the first time integral [0,¢] needs to replaced by
[t — to,t] without any change in the analys1s) and find, using the “C” estimate:

swp [11()] < 0’ sup flaj(s)lly S tgn0.

~ ~

R4d s€[0,T]
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When 3 < 1, setting tg = n' % <« 1 when d > 3 gives the estimate of the lemma. When
d =2, we set tyg = n*~,/]logn|. When 3 = 1, we simply choose ¢ty = ¢ so that the term I
vanishes and the estimate stems from I7. When t < ¢y for the previously defined ty for d = 2
and d > 3, we proceed as for I1. This ends the proof of the lemma 0O

End of the proof of proposition (4.6). To estimate lCan’K, we go back to (55), use the fact
that the operators K, and G? are bounded in X, according to lemma 3.3 to write, Vt € [0, 77,

t
TR Ol = | [ 200,62 1, 725 )

t
S [ IR s, (59)
Xoo 0
so that, according to (55), Vt € [0, T:

t
Wy I3 )l xee S sup G TOTF(5) [ + sup (I, T 0 (5) | x +/ I " (5) 1 x. ds.
s€[0,T] s€[0,T] 0
From (56) and lemma 4.8, we compare ICnTQJ,?’IC and IC,,T,;CJSO and find that the leading order
is jg = 1= +2=B (=B) v (y@-D0-a=A)a) when d > 3 and jp = 720 (209 | log ) A 1

when d = 2, so that the Gronwall lemma finally yields

sup [y Jo (8) || xS da- (59)
te[0,7)

The latter results allow us to control T,;CJ,? K from the continuity of G? in X, since

t
1T T2 () | x e 5/0 1Ky 37 (5) ]| x o ds.

We know from (53) and lemma 3.4 that Jf;”c satisfies the same estimate as Jg”c. On the other
hand, we get from (54) and (59) that J;?’K satisfies the estimate

sup || Jp" (0| S da-
te[0,7

When d > 3, a direct inspection then shows that Ji;’ K negligible compared to J,;l K as soon
as a+ [ > g:;,ora+ﬂ<%witha<1andﬂ<l. Whena+ﬁ<%anda:10r
B =1, both terms are of the same order. When d = 2, Jg”c and JS’K are of the same order
when § =1 or when o = 1 with § < 1. In all other cases, JS’K can be neglected. This ends
the proof of the proposition. 0O

4.5 The J,%’Q term.
We recall that J,} € is solution to

Ty =Ty Iy e + T2 (60)
The T,;CJ,}’Q term is higher order. As for J,?’K, this fact is of crucial importance when

computing the limit of J%’Q since this implies that TZICJ%’Q can be neglected. Indeed, up to
some renormalization factors, the source term TQJS converges in the space Z’. This does not
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directly imply convergence of J,% < since the L(Z'") norm of I, is of order e~ and the equation
becomes unstable in Z’. We thus need to decompose first J,% < in J,? <y JS”Q, where

JEe = T2 4 79, (61)
Jpe = TR+ TS, (62)

The limit of Jg’g can then be computed since the operator K, is not involved in the equation.
It thus remains to show that Jg”g can be neglected in X.,. This is the object of the next
proposition:

Proposition 4.9 J,‘;”Q is negligible compared to Jg”c in C°([0,T], Xoo) when B> 0 and of the
same order when B =0 when d > 3 or when a« = =0 when d = 2.

Proof. We apply the operator IC,, to (60) to find:
Kndy© = KyTanJ @ + Ky T9T) = K, TS + J9) + Ky T JC. (63)

We treat the first term IC,ZTQ(J%’Q + Jg) by applying lemma 4.7 to h = J,}’Q + Jg and thus
need to estimate h in Xo. From lemma 4.2 and estimate (33), we know that:

sup [J0(t)||x,. S nmlmerreAvo,
t€[0,T]

Since G? and Qy are continuous in X, then so is the operator 72 and we have

sup [|TT0(1)]x0 S sup [|J5 ()] x, < pilmoHe=Avo,
te[0,T] te[0,7

In the same way, since the 4-transport is well-posed in X, (lemma 3.4), we have from (60),

sup |12 x. S sup [T2I)(0)||x. S nf - HEemOV0,
te[0,7) telo, T

Using the above estimates for J%’Q and Jg and lemma 4.7, we find

sup [[KC, T2y 2 + I (). < TV,
te[0,7

It remains to treat the second term of (63): ICanJ,}’Q. For this, we use the fact that the
operators K, and Q7 are bounded in X, and obtain, as in (58),

t
KT T2l 5 [ 1Ky T 20 et
Gathering the previous results and getting back to (63) gives, Vt € [0, 7],

t
1Ty S ) xS SEépT}H’CnTQ(J%’QJrJS)(S)wa+/0 11y T2 (5) | s,
se|0,

so that the Gronwall lemma yields
sup K,y (1) xS sup [K,T2(Ty 0 + I)(0)]x. S IOV,

te[0,T] te[0,T]
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We finally deduce from the continuity of G? in X, that, V¢ € [0,7],
t
ITEI 2Ol S [ 1T s

which implies the following estimate for J,‘;’ ’Q, together with the stability of (62) in X,

sup || 9 (t)||x, S n?TOFIHOTAV, (64)
t€[0,T]
We recall that J,;UC is of order pd(1—)+1-4 ([n*7P fa(m)] A1)V (pld=D0-a=f)+a) When d > 3,
this is lower order than JS’Q when # > 0 and of the same order when 8 = 0. When d = 2,
J,‘;”Q is of the same order when o = 3 = 0. This concludes the proof. O

The ballistic part gives the leading order. Since (61) does not involve the operator T,’7C ,
we can use the stability of that equation in Z’ to find the leading term in J,?’Q. Hence, we
decompose Jg’g as Jg’g = J,;l’Q + JS’Q, where

J;?,Q — TQJ;?,Q + TQJ207 (65)
5Q _ Q 75,Q Q70 00
J, = T=Jp~+T=(J, = Jy ), (66)
where JSO is the ballistic part of Jr(]) defined in section 4.2. We have the following proposition:

Proposition 4.10 When o > 0, J,?’Q can be neglected in C°([0,T],Z") compared to J,;l’Q;
when a = 0 both terms are of the same order.

Indeed, we know from lemma (3.4) that both equations on J;‘,"Q and J,? © are well-posed in 7/,
so that (34) and (35) imply the following estimates:

sup HJ;l,Q(t)HZ, < n(d+2)(1—a)+(a7ﬁ)\/0’ (67)
t€[0,T

sup |7 2(1)] 2+

nd(l—a)+2—a+ﬁ((d(a—ﬁ)—a)vo when d > 3,
tel0,T) ~

n2(1—a)+2—a(na—2ﬁ| logn|) A1 when d = 2.

We finally verify that as soon as 0 < «, J;;”Q is higher order than J;‘,"Q and can be neglected.
When a = 0, both terms are of the same order. In all cases, the leading order is thus given
by that of J;‘,"Q. This ends the analysis of J%’Q.

4.6 Proof of theorem 2.1.

The proof is now a simple application of the results of sections 4.2, 4.3, 4.4 and 4.5. We recall
that the total scintillation J;, is decomposed in

Ty = J0+ TPk 4 e

From section 4.2 and (34) (or by analogy with proposition 4.10), we obtain that when 0 < o <
1, Jr(]) is dominated by JSO and that Jr(]) — JSO can be neglected in Z’. When a = 0, both terms
are of the same order. Let ¢ € S(R*) be a test function and ¢, s, 5, be the related localized
version as in (12). We have the scaling properties:

1
[ Fens1,s0ll L1 meay = m”ﬁpﬂu(mw)’

1
Ienswsalls S el

32



where a V b = max(a, b). Hence, it stems from (35), uniformly for ¢ € [0, 7], denoting by (-, -)
the S'(R*) — S(R*?) duality product, that

(T (1), Pn,s0,50)] (TR (0), @nsrsa)| + 1Ty = TN (B, @msrsa),

U Oz + 1y = YOl 2) sy 5ol 2,
n(d+2)(17a)+(a7ﬁ)\/072(d(31 +52)+s1+s1Vs2) ] (68)

AN IN TN

Regarding J,%’K, it is decomposed following section 4.4 as J,?’K + J,‘;”K, where J,‘;”K is higher
order in C°([0, 7], Xoo) when 3 > 0 and same order when 3 = 0, according to proposition 4.5.
Then, Jg”c is split into Jg”c + J{;”’C, see (53) and (54). According to proposition 4.6, J,?’IC can
be neglected in C°([0,7], Xo) when o + 3 > %, or a+ 3 < % with @« < 1 and § < 1.
When o+ § < % and a = 1 or B = 1, both terms have the same order. When d = 2, they
are of the same order when 8 =1 or when a = 1 and 3 < 1. Otherwise J;;’”C can be neglected.
Therefore, the dominant order of J%”C is given by that of J,;l K and we find, according to (52)
and the scaling of the test function, uniformly for ¢ € [0, 7],

1 1
O] = ogaa IO Fenen ] < sz I Ol |7 sl
5 nd(l—a)+1—ﬁ—2d(sl+sz) ([na—ﬁfd(n)] A 1) vV (n(d—l)(l—a—ﬁ)—l—a) , (69)

with fy(z) = 1 when d > 3 and fo(x) = 1 + |log 22|

It remains to analyze the term J% '€ In the same way as for J% ”C, it is decomposed following
section 4.5 as Jg’g + Jf;’g + JS’Q. Proposition 4.9 states that Jg’g is negligible compared to
Jf]l’lc in C°([0,T), Xoo) when d > 3, and 3 > 0, and same order when 3 = 0. When d = 2, J;?’Q
is of the same order when a = = 0. Finally, proposition 4.10 states that when o > 0, J,L;)’Q
can be neglected in C°([0, 7], Z") compared to J,;l’Q and that, when a = 0, both terms are of

the same order. Therefore, the dominant order in J,% € is that of Jf;’g and we have, following
(67), Yt € [0,T7,

|<J$’Q(t)a80n,sl,32>| < n(d+2)(1—a)+(a—ﬁ)V0—2(d(51+52)+81+51\/52)‘ (70)

Gathering (68), (69) and (70), we conclude the proof of theorem 1.

4.7 Proof of theorem 2.2.

We assume here that the initial condition of the Schrodinger equation is a coherent state ¢,(71)
of the form (9). This translates into an initial condition for the Wigner transform reading

X — X k — ko
noz ) nl—oz )

1
ano(x, k) = Wao (

where ap(x,k) is the Wigner transform of the rescaled initial condition ¢,(71:)1 Its Fourier
transform reads ‘
Fayo(u,€) = e 008 Faq (nu, n'~¢). (71)

We thus have § =1 — « and theorem 2.1 gives, for s1 = so = 0,

(Tn(8)s @asrssn @ Pnsr,sn) S 07 [TV e (2071 p()) A 1]

The proof is split into two cases, 0 < a < 1 and a = 1.
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4.7.1 The case 0 < a < 1.

Following the proof of theorem 2.1, the leading terms in J, are Jgo, J,;UC and Jg’g (one needs

to add J;;”Q when a = 0 by proposition 4.10 since Jf;’g and J;;”Q are of the same order).
Computing the limit of J;, then boils down to computing that of the source terms Jgo and
TécJ,?o. We start with JSO.

First step: the term J,?O. We assume here that a # 0. When a = 0, JSO is of order n@t2
in C°([0,T), Z') while T,’ZCJ??0 is of order n? in C°([0, T], Xo) so that J3 is negligible compared
to T, ,’ZCJSO. We recall that

t
IOE /0 THIGE K al) @ al)(s)ds,

where a?z(s,x, k) = ¢ fos aoy(x — sk, k), so that its Fourier transform reads fa%(s,u,&) =

e Hos Faon(u, & + su). This gives the following expression for the Fourier transform of JSO,
together with (71):

t
FIE v ) =t [ [ dsdwe MO (e s v Cw)
0 JRd
x(w - (§+(t—s)u) (nw- (C+ (L —s)v))
X Fano ®an0(u—w £+tu—sw,v+w,c+tv—|—sw),
= / [ dsdw 0 1t s, v, ¢ )
R4
€+ (t—su) (nw-(C+(t—s)v))

Xe—z(xo (u—w)+ko-(€+tu— sw)) —i(x0-(v+w)+ko-(+tv+sw)) (72)
xag ® ag (1 (w = w),n' (€ + tu — sw), 1% (v + w), 7' " ({ + tv + sw)),
with

WEV Cw) — sin (3w (E—i—tu))sm(Qw (C+1tv)) - w
ftu,& v, ¢, w) (w exm) Ow - €+ o)) R(w).
As for item (iii) of lemma 3.1, we decompose (w - (£ + (t — s)u)) (w - (¢ + (¢t — s)v)) into fours
terms:

(W—u)- (§+E—s)u) (W+v)-((+{E—s)v) = (W-u)- (§+({—s)u)v-(C+ (t—s)Vv)
u-(E+(t=s)u) (WHv) - (C+(E—s)v) —u-(§+ (= s)u) v-(C+ (t = s)Vv).

This leads to four different terms in Jgo. The first one involves

(w—u)- (§+({t—s)u) (W+v) - ((+(—s)V)
Fao @ ap(n®(u—w),n'~*(€ +tu—sw),n*(v+w),n'~*({ + tv + sw)),
= 72+ (t—s)u)T [FVxao @ Vyao(n®(u—w),n'~*(& + tu — sw),
1 (v A+ w), 0 T (C AtV 4 sw)) | (C+ (E = s)v),

where FVxag® Vyag has to be understood as the matrix (Fd,,ag FOy;a0)ij=1,. 4. The other
three terms involve n~*FVyxag ® ag, n~“Fag ® Vyag and Fag ® ag, so that they are at least
a factor n® smaller as soon as a > 0. Following the same analysis below for the first and
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dominant term, it is easy to prove that these terms are negligible and do not affect the limit,
we thus only focus on the leading one in the sequel.

Performing the change of variable w = n~%w; in (72) leads to an integrand proportional
to

FVxap ® Vyao(n®u — wi, '€ 4 tu) — ' 2% wy, v + wi, ' (¢ +tv) + nl_Qaswl).
When 0 < a < %, that term converges, uniformly in all variables to
FVxap ® Vyag(—w1,0,wr,0),
and to
FVxap @ Vyag(—wWi, —sW1, Wi, SW1)
when s = % The case a > % needs more work since 721 — co. We set s = 7?*~ 15, so that

the leading term in F J7(7)0 -denoted by I,- obtained from (72) reads

1—2«a

tn
_ _ 2a—1
dsidwi e 2Ro(t=s17 )

Rd

xf(t—s1m** &, v, ¢n' T wy) x e
x (& + (t — sin”* )T FVxag ® Vyao (n®u — wi,n' (€ + tu) — sywy,
n°v 4+ wi,n' "+ tv) + s1wr) (¢ + (E— sip?* ).

i(x0-u+tko-(&+tu) e—i(xo -v+ko-(¢+tv))

We consider first the case a > % and pass to the limit in the latter term. To do so, let

¢ €C%([0,T],Z) be a test function and consider

2a—1 200—1—7

n T
+/ +/ =11 + Ir + I,
,,720471 ,,7204717'\/

where 0 < v < 2a— 1 and (-, -) denotes here the Z’ — Z duality product. For I1, we make the
change of variable t = n?*~!t; and w; = —wy + 7%u. Since f is uniformly bounded by R(w),
this yields

T n
n(d+2>(1a)2a+1/0 (Iy(t, ), o(t,))dt 22/0

. 1 t1
|| < 7’]2aIHRHLoo(Rd)HVy(I()HYOO/ sup |foa0(W2,z)|dW2/ / / dsidtidud€dvdC
R4 zcRd 0 0 R4d

(€] + (T + s1*™Ha) (I + (T + sin* VDI Fo (1, w,€,v, ),

S P FVxaoll pigeay lelleoorzy S 77

so that I; goes to zero. Regarding I, we make the change of variable t = n?*~1=7¢; and
w1 = —wg + n®u which gives

2a-1 - Lot
D] < 722 B e e | Dy / /0 dtyds,
77’7

X sup / | FVxao(wa,n' (& + 7?17 7tu) — nu + s1wa)|dws
(u,£)eR?d JRE

x /R dudgdvd( (€] + (T + s Hul) (I + (T + sim™ vl) [Fe(™ 7, 0,6, v, Ol

The integral over s; runs from 0 to ¢t17~7, and since 7 < t; < 1, it is controlled by the integral
over [0,777] and we thus need to integrate for large s; to obtain a bound independent of 7.
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This is done by splitting the integral in [0,1] and [1,777]. We denote by Il and Il the
corresponding terms. Controlling I is straightforward and done in the same manner as [5;

we obtain
IIQ S 77204—1—')/.

Concerning 115, we make the change of variable wo = s7 ! (w3 — ! ~*(€ + 7?2~ 1=7t;u) +1%u)
and find

1 tin~ Y
L 5 o' / / sy Ydsidty / sup |FVxao(z, ws)|dws
nr J1 R4 zcRd

x /RM dudgdvd¢ (|€] + (T + si?* Hu)) (1] + (T + s Y)|v])
X |f§0(7’]2a7177t15ua£avaC)|'

1 ptin™7
S 0P| FiVaoll g gy / / (Sfd +n? s T+ 77404_28%%) dsydt.
n J1

Since d > 2, the right hand side is an O(n?*~177) and consequently I converges as well to
zero. It remains to analyze I3 which reads

12«

T tn o
Iy = - / / / dtdsidwdudédvdC e 2" Foo(tu, €, v, €)
n2a717w 0 R5d
Xf(t - 8177204—1, u, E’ v, Ca nl_awl)e_i(xo.u+k0.(£+tu))e_i(XO'V"—kO'(C"’tV))

x(&+ (t — 517720‘*1)u)T [}'ano ® Vxao (nau — W, 771*0‘(5 + tu) — s1wy),
1oV +wi,n' (¢ tv) + s1wr) | (C+ (E— s1n**)v).

As I11,, we need to control the integral over s; for large s; since tn'=2* > =7 for t > n?*~177,

As a consequence, to apply the Lebesgue dominated convergence theorem to pass to the limit
in I3, we split the integral in s; into [0,1] and [1,#n'~2%]. We denote by II3 and III3 the
corresponding terms. Regarding I3, we make the change of variable w; = n“u — wy and
choose as majorizing function the function

( SU)P y [FVxao @ Vyao (w2, x,y,2)| (I€] + Tal)([¢] + Tv]) |Fe(t,u, &, v, )|
x,y,z)ER

Since

F(t— s~ w6 v, ¢ opu — ' Owa) — R(0), e in (0,T) x R,

we then obtain for the limit of I/3:

T
o / dtdudsdvdc e*?Rotefi(Xo-u+k0-(§+tu))e*i(XO-V+ko-(C+tv))
0
(& + tw)TM (¢ + tv) Foolt, u, €, v, C),

where the matrix M is defined by
1
My = R(O) / FVxag ® Vyao (W2, S1Wo, —Wao, —81W2) dws dsy.
0 R4
The latter matrix is well-defined since

(M) < R(0)]10x,a0]lv; 1y, a0l v-.. (73)
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and is real-valued since ag is real and
FOx, a0 ® Ox, a0 (W2, s1Wa, —Wa, —s1Wa) = 51(W2);(W2) ;| Fdy, ao(wa, s1wa) 2.

For the second part IT13, we make the change of variable wi = sy (—wsq + 7' ~%(€ + tu)) and
split the integrand into three terms: one proportional to (& +tu)? [FVyao® Vyao](¢+tv), the
second one proportional to 7’ 1s; ([ul FVxag® Vxao](¢ +tv)+ (€ +tu)T [FVxag® Vxao]v)
and the last one proportional to n**2s2u’ [FVxag ® Vyag]v. Proceeding as for I, the
last two terms vanish at the limit. To pass to the limit in the first one, we use the majorizing
function

! s [FVa0® Vyan (w2l (€] + T €]+ Tiv) (€%, )L
x,y,z)ER

and obtain the expression for the limit of I113:
T
. / dtdudsdvdc e—zROte—i(XO'u+k0'(§+tu))e—i(XO'V+kO'(C+tV))
0
(& +tu)"Ms(¢ + tv) Fo(t, 0, €, v, C),
where the matrix Ms is given by

o
M, = R(O)/ / sfd]:vxao®Vya0(5f1w2,W2,—SIIWQ,—WQ) dws dsq,
1 R

o
= R(O) / }'ano (029 Vy CL()(WQ, S1Wo, —Wag, —51W2) dW2 dSl.
1 JRre
The latter is real-valued and well-defined since
[(M2)i5] < R(0)[|FkOx, a0l 11 r2ayl| Oy, o]l v -
Gathering both parts of the integral, we finally conclude that, when % <a<l,

T T
—(d+2)(1—a)—2a+1 . . _ 00y . .
s + /O (Ut ), ot )l /O (FIO (), olt, ) dt

where

}*JOO (t, u, E, v, C) _ _6—2R0t6—i(x0-u+ko~(£+tu))e—i(xo~v+ko~(g+tv))(E + tu)TM(C + tV),

with
Computing the inverse Fourier transform of FJ% € C°([0, T], S’ (R*)) gives finally
Joo(ta X, ka Yy, p) = 672R0t6(x — X0 — kt) 5(y — X0 — pt)

(V&) (k — ko) M (V6)(p — ko),

where § is the Dirac distribution.
1

The cases 0 < o < % and o = 5 are simpler to treat and follow along the same lines as

above. This yields the limits for JSO:

t
FIVt06v,0) = — [ dse Mok €t ok €o10)
0
(&+ (t—s)u)"M*(s)(¢ + (t — 5)v),
. 1
M*(s) = R(0) FVxap @ Vyag(w,sw, —w, —sw) dw, when o = 2 (75)
R4
. 1
M*(s) = R(0) | FVxao® Vyap(w,0,—w,0)dw, when0<a < 3 (76)
R4
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which is equivalent in the physical space to

t
JOt,x,k,y,p) = / ds e 200=9)5(x — xo — ks — k(t — 5))
0

xd(y — x0 — kos — p(t — 5))(V8)" (k — ko) M (s) (Vo) (p — ko).

Moreover, M® satisfies as well (73) when 0 < o < % To summarize this section, we have

proved the:
Proposition 4.11 Let ¢ € C°([0,T],Z) and 0 < o < 1. Then, as n goes to zero,

T T
ni(d+2)(lia)7(2a71)vo /0 <J80(t7 ')7 Qp(t7 ')>Z’,Zdt - /0 <J00(t7 ')7 Qp(t7 ')>Z’,Zdt7

where JY € C°([0,T],2") and

t
IO %,k y,p) = / ds e M= (G2 T (s,))(t — 5,%,k,y,p) when 0 < a <
0

)

DN |

1
e OGN 0,))(tx Ky, p),  when 5 <a <1,
J' s, %k, y,p) = d(x—x0—kos)d(y — xo — kos)(V)T (k — ko) M(s) (V6)(p — ko).

The matriz M® is real-valued and given by (74) when 3 < a < 1 and by (75)-(76) when

O<a< % It is well-defined since
[(M)ij] < R(O)]19y, aollv. (19x,a0llys + | Ficdisoll 1 gy

Second step : the term T,;CJ,?O. From expression (39) and the fact that fa%(s,u,&) =
e Ros F, aon(u, & + su), we deduce that the Fourier transform of T,;CJSO reads, after the change

of variable w = —w +u — n~'w’:

t s
(fTT;CJT?O)(t7 u, 57 v, C) - nd / / / deTdWldW/ eiQRO(t*T) (77)
0 Jo JR2d

XR(WI)R(T](U' - Wl) - W/)g(ta s, 7,4, Ea v, C7 u—wp — 77_1W/a W,)
X Fano @ ano(wi,€+ (t — T)u— n s — )W + 7w,

viu-wi(+tv+n (s —7)W +T(u—wy)),

where g is defined in (40). Using the formula sin(a)sin(b) = 3(cos(a — b) — cos(a + b)), we
decompose ¢ in g1 + g2 accordingly with

gt s, 70, &, v, ¢, w,w') = —8sin(w - (€4 (t—s)u)/2)sin(w' - (¢ + (t —s)v)/2)
xcos[nw - (§+ ¢+ (t—7)(u+v))/2],

go(t, s, 7,0, &, v, ¢, w,w') = 8sin(w - (€+ (t—s)u)/2)sin(w - (¢ + (t —5)v)/2)
><COS[nw-(é—(—{—(t—T)(u—v)/Q—n_l(s—T)W')].

The ¢ term is smooth and admits a limit as 7 goes to zero, and the related part yields the
dominant term at the limit. The go term involves a highly oscillating function that renders
the term negligible after a integration by part and a careful analysis of the integrand. We first
separate T,’ZCJ??0 accordingly in G}7 + G% and compute the limit of Grlz'

The term G,17. We have the following proposition:
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Proposition 4.12 Let ¢ € C°([0,T],S(R*)), 0 < a < 1 and gq(n) = n~ 1 -0)=a=a=)V0 ;¢
d >3 and gy(n) = n 2D (2=1(1 4 [logn*=22|))"* V1. Then, asn goes to zero, denoting
by (-,-) the L>(R*) scalar product,

T T
ga(n) /0 (GL(t, ), ol ))dt — /0 (GA(t, ), p(t, ),
where G} € C°([0,T), Xoo) and

)

DO =

t
Gi(t,x.k,y,p) = / dse”20U=9(G2 K2T%(s,))(t — 5,%,k,y,p), when 0 <a <
0

= eGP0, ) (1 x Ky p) when p <a <1,
J2(87 X, k7 Yy, p) - gg [5(X - XO)(S(y - XO)(S(k - kO)(S(p - kO)]a

where K and K4 are operators defined in the Fourier space by the multipliers kS and kq, that
is, for a tempered distribution J, K&J = F~Y(kSFJ) and KgJ = F~ 1 (kgFJ). K& and K4 act
on the momentum variables k and p when o > 0 and on all variables when o =0, and

k2<aS%(V,C) = -8 /OOO /]Rd drdw' M*(w', 7, 5) cos (W) sin <w’2- 5) sin (W/ ' C),

2
kJ(u,€,v,¢) = —8/ / e 2R 6=7) grdw! MO (W' 7, u + V)
0 Jrd

X COS <%w' (E+C+(s—T7)(u+ v))) sin (W

M%(W/,T,S) = RQ(WI)/ | Fao(w, sw — 7w')|2dw,
Rd
MW 1,8) = M3(W,7,0), 0<a<%,
MOUW' T7,2) = RZ(W/)/ Faog ® ap(w, —7w',z — w,7w')dw,
Rd
© 1
kg(v,¢) = / k2 (v,¢)ds, when d > 3,
0
o0 1 W,‘ﬁ W/'C
_ / 2D / Sl . . .
ka(v,C) = 8/0 /Rddew./\/l (W,T)cos(2w (E—i—())sm( 5 )sm( 5 ),

M) = B [T [ P wPaw,
0 R

The operators K and KCq are well-defined from S' to S’ since k& belongs to L>=(R??) for
0<a<1,k? belongs to L°(R), ¥s € R and kg € L>=(R??).

Proof. Using (71) and (77), the Fourier transform of G}, reads, after the change of variable
wi =1n"%wg and 7 = s — n%r:

t sm—
('7:G717)(ta u, 5’ v, C) = nd(lia)Jra / / / deTldWQdW/ 672R0(t*(5*77a7'1))
0 JO R2d

XR(W/)R(T](U - niaWQ) - W/)gl (ta 5,8 — 77a717 u, 57 v, Ca u-— niaWQ - nilwc WI)
><e*ixo'(‘”v)e*iko'(£+tu+c+tv)]—"ao ® ag(wa, 21, (v + u) — wa,z2) (78)
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z1 = n'E+ (E—s+nom)u) — nw + 9! — 1) wa,
Zo = nl_a(c+tv+(s—na71) )+ 7w’ — - *(n~% — 1) Wa.

Assume first that 0 < o < L. Then, z; — —myw’ and zo — 7w’ when o < % and z; —

2
—7w' 4+ swy and zg — T W' — swo when a = % Proceeding as for the limit of JSO by splitting

the time integrals conveniently and applying the Lebesgue dominated convergence theorem,
we verify that, for any test function in C°([0, 7], S(R4?)),

o) / (GL(t, ), (t, ))dt — / (GY(t. ), (2, ),
0

Here, we have defined when 0 < o < %:

(FGY)(t,u,&,v,¢) = —8 e X0 (V) g—iko-(EHtutHtv)

/ / /Rddsdewe 2Ro(t=9) M (w', 7,8)cos (W (E+ ¢+ (t—s)(u+v))/2)
x sin(w' - (£ + (£ — s)u)/2) sin(w' - ({ + (t — 5)v)/2),

t
_ efixo-(quv)efiko-(£+tu+C+tv) / ds 672R0(tfs) k?(u,& + (t _ s)u,v, ¢+ (t _ S)V),
0

and, when o = 0:
(FG)(t,u,&,v,¢) = —8 e~ Xolutv)gmiko-(EtutcHtv)

/Ot /OS /Rd dewa/e*2R0(th)M0(Wl7 7,0+ V) cos (w/ . (E’ + C + (t — T)(u + v))/2)
x sin(w' - (& + (t — s)u)/2)sin(w' - ({ + (t — 5)v)/2),

t
_ efz'xo-(quv)efiko-(.ﬁthquCthv) / ds 672R0(tfs) kg(u,£ + (t _ s)u,v, ¢+ (t . S)V),
0

where M%, MY and k¢ are defined in the proposition. This proves the proposition by iden-
tification when 0 < a < % Regarding the fact that the multipliers are bounded, we split the
integral on 7 for 7 € [0,1] and 7 € [1,00). This yields
kS | oo moay < IRl ey 1R oo mey llaollyic laollvy + 12117 o0 (ray laollvi | Ficaol| 1 ey
k2] e aay < sl Bl ey |1 Bll oo mayllaollvic llaollys -
We treat now the case % < a < 1. For such values of «, z; and zs diverge when 1 — 0 so that
we need to perform in (78) the additional change of variable s = n?*~1s; and split F G,l7 as
12«

nt=e  psipeTl 1 1 1 s1n™ tn
L I A Y Y 0 S A S
0 0 771_04 0 nl—a 1

= L+ 1o+ I3+ 14
After the change of variable s; = 7'~ %s,, it is straightforward to see that I converges to zero
in L>°((0,T) x R*). Regarding I, using the majorizing function

R(WI) sup |.7:(l0 b2y aO(WQa X,y, Z)|’
(x,y,z)€R3?
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and the Lebesgue dominated convergence theorem, we verify that, in L>((0,T) x R*9):

Lt,u, &, v, () — —8 e X0 (uhv) gmiko:(§tuti+tv)

/ / / dsydrdw’ e 2Rt M3 2(w', 7, s1)cos (W (E+ ¢ +t(u+v))/2)
R4
x sin(w' - (& + tu)/2) sin(w’ - (¢ +tv)/2),
where M2 is defined in the theorem. Concerning I3, we have in the second time integral
sn®~1 > 1 since s > '~ so that we need a control for large 7. We thus perform the change
of variable w' = 77 H(w — 9! (¢ + tv + (517?71 — nm)u) + (51 — n' %71 )wa), and use the
majorizing function

% sup  |Fao ® ag(wa,x,y, w)|
(x,y)€R2d

to pass to the limit. We find, in L>=((0,T) x R*9):

I3(t,u, &, v, ) — —8 e~ X0 (whv) g—iko-(Etutcttv)

/01 /00 /Rd dsidrdw TﬁdedRotM%(T*lW,T, 51) oS (7'71“’ €+ +tu+t V))/Q)
xsin(r'w - (€ +tu)/2) sin(r 7 w - (¢ + tv)/2).

2a—1

Concerning I, we only consider times such that ¢t > n since the contribution for times less

than 7720‘*1 converges to zero in LOO((O7 T) x R*) —x. Setting 71 = s17, we split the integral on

T as fon% fo + fl -) and denote by 14 an 111, the corresponding terms. Assume
first that d Z 3. For 11y, performing the change of variable

wy = h(w) = (s1(1 =0 7)) T Hw — ' TN E+ (= si(** T —tm)u) +sirw], (79)
and using the majorizing function

SiidR(Wl) sup |.7:(l0 & ag (X, w,Yy, Z)|a
(x,y,z)ER34

we find in L%°((0,T) x R*) — «,

II4(t, 0, €, v, ¢) — —8 e o (utv) p=iko-(E+tutCtv)

/ / /d “Ads drdw'e O M(w', 7, 51) cos (W (E+C¢+t(u+v))/2)
Esm( "o (€ +tu)/2)sin(w - (¢ +tv)/2),
M(W', 7, 51) = R*(W') y Fag @ ap(sy'w + 7w/, w, —s7'w — 7w/, —w)dw.
Regarding the term I11,, we need to integrate for large 7 and large s;. Setting, in addition
o (79),
w' = h(wh) = (s17) 7wy — 0 TN+ tv s (T = T)u) +s1(1 - ') wa],  (80)

and using the majorizing function

sl sup | Fap ® ap(wa, x,y, W),

(x,y)eR?d
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this yields in L=((0,T) x R4d) — x:

IT14(t,u,&,v,¢) — —8 e Xo-utv)gmiko-(Etutcrtv)

~d_—d 2Rt s7) " lw. 75, 5) cos w-(+¢+t(utv))
/ / /Rd dsdrdwe 20t M2 2((s7)7? ) ( - >
< sin((7s)"w - (€ + tw)/2)sin((rs) " w - (C + 1v)/2).

To recover the expression of G(l) given in the proposition, it then suffices to add Is, Is and I,
and to notice that

—ékd(&() = / / /dewa'M%(w',T,s)F(O,w',u,v,&,C),
o Jo Jre

1,1
= / / / deTdW,M%(W/,T, s)F(0,w',u,v,&,¢)
0 0 JRd
1 00
—|—/ / / T_ddeTdWM%(T_1W,’T, $)F(0, 7 'w,u,v,&,¢)
0o J1 Jrd
oo rl —
—|—/ / / Sl_ddeTdW,M%(W,,T, s)F(0,w',u,v,&,¢)
R4
/ / / 7dd5d7'dw/\/l%((s7')flw, st,s)F(0, X,u,v,&, <),
Rd ST
F(t,w,u,v,£,{) = cos <2 €+ ¢+ t(u+t v)> sin (%w (&4 tu)> sin (%w ¢+ tv)) .

The fact that f; € L>(R??) stems from the latter decomposition.

The case d = 2 is more difficult since s~! is not integrable and computing the limit of the
term [ is more involved. We give here the main lines of the analysis and skip some details.
We have to compute the limit of terms of the form

1-2a

. tn .
IJ - / sl_lfrl](sl)dsla t Z 7/’20{717 ] - 1727
1

with either (¢,u,v,&, ¢ are fixed here), case 1 (term similar to 1714 when d > 3):

o — o 1 kY A
2 (s1) / / drdwdw), e~ 2Ro(t=s1(7** "1 =1 T))ﬁR(h(W,Q))R(W(u — 1 “wy) — h(ws))
R2d

X g1 (t, 81772a 1’ 81(7720[71 - naT)a u, 5’ v, Ca u-— U7QW2 - nilh(wé)? h(wé))eiiXO-(UJFV)

x ¢~ Ko (EHUHCHIY) 7 0 @) g (wo, ' T C + €+ E(v 4 1)) — Wh, % (V + 1) — Wa, Wh),

or, case 2 (term similar to I1y):

' 20—1_ (W
f$(81) :/ / drdwdw’' e 2Bot=si(n**~t—n27)) __ "N T )
0 R2d

2a—1 200—1 -1 —ixo-(utv)

1
xg1(t, 517 s (? 7 —n%7),w, €, v, ¢ u — 7 Ch(w) — 7w w)e
x e~ Ko EHUTCH) Zo0 @ ag(h(w), w, % (v + 1) — h(w),n'"*({ + € + t(v +u)) — w).

Above, h and h are defined in (79)-(80). Since the function f,% is uniformly bounded in all
variables, the integral Z' is expected to be of order logn'=2®. To see that, we integrate by
parts and obtain that

\/t77
1

1-2a 1-2a

57 fh(s)ds = log(on ) 73 2) — [ T g (f)(s)ds. (D)

42



Since in particular h(wh) — (s7)~'wh + 7 1wy, we first verify that f%(tnl_zo‘) — fi(t) in
L>((0,T) x R¥) — %, with

folz) = — 8 ¢~ X0 (utv) o —iko: (§+tut{+tv)

/1 /de 772 drdwodw) e 2Ro(t—2) 2 (77 wo)

XF(t — 2, T71W27 u,v, E? C)j:ao & GO(W27 _w/27 —W2, WI2)7

where F is defined as above. Therefore, the first term of r.h.s of (81) is of order log ! ~2®. It re-

mains the second term involving (f,)’. We claim it can be written as (f;))'(s) = n**~'2Rq f, (s)+

h,17(5) + ry(s), where h}7 has the same expression as f% except g1 is replaced by g; with

gl (ta 517720{71’ 51(7720[71 - 77a7), u, E’ v, Ca W, WI) =

77 (Dsg1) (8 i s (P = 7)€, v, ¢ w, W)
_|_(77204—1 - naT)(aTgl)(t? 81772a_1’ 51(77204—1 - 77a7), u, E’ v, Ca W, W/),

and some lengthy calculations show that

1
[rn(s)] S n*llogn| + 5 (1 + [uf + [v] +[€] + <. (82)

This requires in particular to regularize R since r, involves VR. This has no incidence on the

leading term since 7, is negligible and the limit does not depend on VR. We thus have:

1—2«a

in
/1 log s (f%)'(s)ds = 7720‘_12}20/1

1-2a 1—2a

tn tn
log s f%(s) + / log s h}](s)ds
1

1—2«a

tn
+/ log 57 (s)ds. (83)
1

Estimate (82) implies, for any o € C°([0, 7], S(R*?)),
1-2a

T ptn
(log nt—22)~1 / / log sy, @ dsdtdudvd€d{ — 0.
0 1

The term related to r, can thus be neglected. It remains the terms in the r.h.s of (83) for
which we perform the change of variable s — sn'~2®. This yields in L>°((0,7) x R) —

tn172a

t
(ogn' 2yt [ ogs pi(sds = (ogn'*) 7 [ towsn! ) fi(sn' s
="
t
- [ fies
0

Regarding the term involving h}], we verify that

(log 2y |
1

where h} has the same expression as fg except that F(t — z,) is replaced by —9,F(t — z,-).
Gathering the previous results, we thus find, for any ¢ € C°([0, T], S(R*)),

tnl—Qa

t
logsh%(s)ds — /hé(s)ds,
0

(logn'=2)~1 /0 ' /R ) Tt ¢ dtdudvded (84)
T t T
— / / [f(}(t)— / (2Ry f&(s)+hé(s))ds} @ dtdudvdéd¢ = / / fa(0)p dtdudvdgdc.
0 R4 0 0 Rd
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Regarding Z?2, we verify that f,%(tnl_m) — f2(t) in L>®((0,T) x R*) — %, with

1
) = —seotmeioericn) [1 ] driwdwe 00 )
0 R2d
Ft—z,w, u,v,& ) Fap @ ap(tw', w, —7w’, w).

In the same manner as 7', we write (fg)’(s) = 7720‘_12R0f$(5) + h%(s) +1y(s), where 7, yields
a negligible term. Following along the same lines, we find the same relation as (84) for 72,
with f& replaced by fg Summing fo1 and fg then gives in the end, since now Iy, I and I3 are
negligible compared to 14:

(logn' ) FGy(t,u,&,v,¢) = e 2ol emioutv)gmiko (EHUFCH ML, (¢ 4 fu, ¢ + tv).

The fact that ke € L>°(R??) follows from separate estimates of f} and f2. This ends the proof
of the proposition. O

The term G%. We have the following proposition:

Proposition 4.13 Let ¢ € C°([0,T], S(R*)), 0 < a < 1 and gq(n) = n~ 1 -0)=a=a=)V0 ;¢
d >3 and gz(n) = 20211 4 |logn'=2®|))"1 V1. Then, asn goes to zero, denoting
by (-,-) the L?(R*) scalar product,

T
ga(n) /0 (G2(t,). o(t, ))dt — 0.

Proof. We have:

92(t, S, 7,4, E’ v, Ca u—w— 77_1W/, W/)

= 8 sin(w’ - (& + (t — s)u)/2)sin(w’ - ({ + (t — 5)v)/2)
xcos [n(u—w) (€= ¢+ (t—T)(u—v))/2+n" (s —7)|w]*].

We decompose the cosine as

cos [n(u—w) - (E—C+({t—7)(u—=V))/2+n (s —7)|W[] =
cos [n(u—w) - (€~ ¢+ (t—7)(u—v))/2 = 7|w'|*] cos (7 s|w'|?)
—sin [n(u —w)-(E-C+({t—-7)(u—-V))/2— 77717_’“,/’2] sin (nfls\w'P) ,

and split g; accordingly so that G% = G%l + G%Q. Both terms are treated similarly, so that we
only focus on the first one. Introducing the notation

8 sin(w’ - (€ + (¢t — s)u)/2)sin(w’ - (¢ + (¢t — 5)v)/2) cos (n~Ls|w'|?)
cos [n(u—w) - (= ¢+ (t—7)(u—v))/2 —n~'7|w[]
= h(t,s,7,u,&,v,(, w,w)cos (nfls]w/P) ,

and integrating by parts the cosine, this yields from (77):

t s
Fetuev.e) = o [ [ [ Hesnugvcww)
0o Jo Jr2
x cos (n's|w'|?) dsdrdwdw' = I+ 1I+1II,
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s=t

S
1
I = pitt [/ / —=H(t,s,7,u,§,v,{,w,w’) sin (nfls\w'P) drdwdw’ ,
Rr2d [W|

s=0
t
1
II = —77d+1// —,2H(t,s,s,u,E,v,C,w,w')sin(nfls\wllz)dsdwdw/,
R2d [W'|
t s 1
111 = _nd+1/// —IQOSH(t,S,T,u,ﬁ,V,C,W,WI)Sin(77715|W/|2)deTdeWl,
0 Jo Jrea [W']
with

H(t’ s, 7,4, 5’ v, Ca w, W/) = e_QRO(t_T)R(w,)R(n(u - W n_lwl))
Xh(t’ s, 7,4, 5’ v, Ca w, WI)]:anO ® ano (Wa £ + (t - ’7')11 - 7771(5 - T)WI +TwW,
viu-w,(+tv+n (s —7)wW +7(u—w)).

Let us consider first the term [ that reads
t 1
I =npitt / / WH(t’t’T’ w, &, v, ¢, w,w)sin (n_1t|w'|2) drdwdw’,
R2d |W

and assume in the beginning that d > 3. For the case 0 < a < 35 , we perform the change of
variable w = n~%w; and using (71) we obtain, uniformly in ¢, u, v, &, ¢:

L 5 R(w")
1S 0 Rl ol v, [ T ()

When d > 3, the latter integral is finite (since R € L'(R%) N L®(R%)) so that I is controlled
by nét=)+l and consequently ga(m)I by n'~* which goes to zero since we are in the case
0<a< % When o > %, we proceed as usual by setting 7 = n?*~!r; and splitting the time
integral on 71 into short times [0, 1] and long times [1,tn'~2%]. We assume here that ¢ > n?*~1
since when t < n?*~! we already know from (85) that I is of order pid-e)+1+2a—1 g4 that
ga(n)I tends to zero. Following (85), the short times part [0, 1] is controlled by npd(1—e)+1+2a=1,
The long time contribution on [1,#n!~2%] is bounded by

t 1—2a A /
(1 )+1+(2a—1) HRHLOO(]Rd / / dw’ dTldWlW
].7-"(10 (wl, g+ (t—n2lr (s — o tr)w + 7'1W1) |.

The change of variable wi = 7, ' (wa — ! =%(& + (t — 2 Lr)u) +77%(s — n?*17)w’) allows
us to control the time integral and we obtain that the long time integral is bounded by
pd1=e)+1+Qa=1) = Therefore g4(n)I is of order n'~* and goes to zero. So far, we have thus
seen that for any 0 < o < 1 and d > 3, g4(n)I can be neglected. We turn now to the case
d = 2 which requires more work since the function |w’ \*2}?( ') is no longer integrable. We
are thus led to introducing a cut-off and perform the integration by part in G21 only on the
complementary of a ball B(r) C R? so that in addition to I + IT + ITI adds up a term of the
form

t s
1V = 772/ / / H(t,s,7,u,€&,v, ¢, w,w') cos (nfls\W'P) dsdrdwdw’,
o Jo JR2JB(r)
where the integration on w’ in I + IT + II1 is performed in R?\B(r). Proceeding with the
standard splitting of the time integral when considering the cases o < % and o > %, we verify

that IV can be uniformly controlled in all variables by n?(1=@)+@a=1V0y2  The term I is just
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treated as for the case d > 3, unless w’ is integrated on the complementary of B(r). We have,
for any 1 < p < oo,

N / 0o 1/p
/ B R(‘;V2) dw' < C </ /12 1‘d|W/|> <o) = o),
R2AB() W] ro WP

for any 0 < § < 1. This finally gives the following bound for I when d = 2:

|I| 5 772(17a)+1+(2a71)\/0,rf5‘

The bounds on I and IV are same order when r = 77?15 so that we find the estimate, uniformly
int,u,v,&¢:
’I’ + ‘IV‘ S n2(17a)+(a75)\/0+ﬁ26 )

Since a < 1, it is possible to find § such that % > «, which in turns imply go(n)(I + IV) is
of order 772%570‘ and therefore tends to zero in C°([0, 7], Xoo ).

The term I1 is treated exactly in the same manner as I and requires no additional work.
The term I11 is more involved. We first write 0, = dsH1 + 0sHo with

OsHi(t,s, 7,0, &, v,(,w,w') = e_QRO(t_T)}?(w’)]A%(n(u —w —n~tw'))
x4 [—(w' -u)cos(w' - (&£ + (t —s)u)/2)sin(w' - (¢ + (t — s)v)/2)
—(w' - v)sin(w - (§ + (t — s)u)/2) cos(w' - (¢ + (t — 5)v)/2)]
xcos [u—w)- (£ —C+ (t—7)(u—v))/2—n '7[w]
X Fano @ ano (W,E +(t—7)u— 77*1(3 — 7w + 71w
vVAu-—w (+tv+n (s — )W +T(u—w)),

OsHs(t, s, 7,0, &, v, ¢, w,w) = 672R°(t77)1:2(w/) ; n(u—w—n"1tw))
x sin(w' - (&€ + (t — s)u)/2) sin(w’ - (¢ + (t — 5)v)/2)
x sin(w' - (&€ + (t — s)u)/2) sin(w’ - (¢ + (t — 5)v)/2)

 cos [ —w) - (€ = C + (t — 7)(u— v))/2 — 5~ Lr|w'|’]
xn_lw' (=Va + V) Fano @ an (w, E+(t—T)u— 77_1(8 —7)W + 71w
VAu-w.+tv+n (s —1)wW +T(u—w)),

and set III := IIl + I1I5 accordingly. Above, we separated the derivatives of Fag, ® ano
from the rest, Vaoh(u,§,v,{) = Veh(u,§,v,¢) and Vih(u,§,v,¢) = Veh(u,§,v,¢). The
ITI; term is treated almost as I unless the singularity is now |w’|~! so that |w’| 'R(w’) is
integrable for any d > 2, and a change of topology is needed since the s derivative yields terms
proportional to w’ - u and w’ - v. We thus find, V(¢,u,v,&,¢) € [0,T] x R* :

R(w')

'

[111y| S ™ THCINO (] v )) | R oo e dw'.

Rd W

so that IT1; is of order nd(1=@)+1+2a=DV0 for any d > 2 in the C°(]0, T], Z’) norm to account
for the weight |u|+ |v|. The 1], term is the most technical to deal with and we consider only
the term involving V5 as the contribution V4 can be estimated analogously. We rewrite ds Ho
as

OsHy = n71Q(t, s, 7w, &, v, ¢, w, w ) R(w')w' - VaFan @ ano + term proportional to Vy,
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with obvious identification for Q with the property |Q| < ||R|| Loo(rd) uniformly in all variables.
Following the expression of 111, we are thus led to studying the integral

t s
1 -
vV = nd/ / / dsdrdwdw' — = R(w') sin (77718|WI|2) Q
0 Jo JRr2d (W'l
w' - VaoFan @ ano (W, E+(t—T)u— 77_1(5 —7)W + 71w,
viu-w,(+tv+n H(s— )W +1(u—w)). (86)
The approach is very close to that of the proof of lemma 4.3. The main difference lies in

the presence of the singular factor w’|w’|=2 which requires particular care. Using first the
expression of the Fourier transform of a, given in (71), we have

VoFan(u,§) = plm e iuxo+eko) (7, Fag) (n®u, ' E),
= —inlfae*i(u-onrﬁ'ko)(j:‘kao)(nau’nlfag).

And after the change of variable wi = n~%w, we find the straightforward estimate, uniformly
for (t,u,v,€,¢) € [0,T] x R*:

R(w")
/|

VIS 0 R kag g faolly, [ o 7
R

Above, kag is bounded in Y7 since
1
Ikaollv, < [|Fckao| 1 gaay < IF VstV 121 gy < C,

where 1/19) is the rescaled initial condition deduced from (9). Hence, when ¢t < n%, V is of
order n?1=@)+1+e g that Wy<paga(n)V — 0 in L=((0,T) x R*) when o < 1 for any d > 2.
From now on, assume therefore that ¢ > n“. In (86), we then separate times s < n® and times
n® < s <t and perform the change of variable 7 = s — n%7y in the part s > n“. Splitting the
integral over 71 in [0, 1] and [1, sn™%], we recast V as

4 n< s J t 1 J t s«
vV = n (1a)+1a/ / () +1 (1a)+1/ / () +n (1a)+1/ / ()’
o Jo ne Jo ne J1

= VW+Vi+ V.
Vo is estimated using (87) with ¢ = n®. Similarly, we find for V;:
R(w')

dw’.
W

V(t,u,v,€,¢) € [, T] x R, Vi| S n?™ =t [kao |y, [laol |y, /d
R

For the long times part V5, we make in addition the change of variable

/

w' =7 (Wi = Tty (s = ntm)u) + T (s — ) wa) = (wh)

and obtain the bound, V(¢,u,v,§,¢) € [n%, T] x R4

t smT D(—1 /
[Va| < nd(la)HHkaoHyl/ / / dsdﬁdw/lTll_dR(Tl—ffwl)) sup |Fao(z, w))|.
ne J1 R4 |f(W1)| zeRd

The function | f(w})|~! is integrable in the vicinity of the origin for any d > 2. So, splitting the
integral over w} for |f(w))| < 1 and |f(w})| > 1 finally gives, V(t,u,v,§,¢) € [n®, T] x R4

[Va| < pdd-o)tly for d > 3, Va| < n?0=% log )| t, for d = 2.
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This gives a first estimate for V suitable when a < % Indeed, in this case, we verify that

Lispega(n)V — 0 in L°((0,T) x R*). When o > %, we need a refined estimate. Hence, we
perform in addition the change of variable s = 7720‘_151 in V; and V5 and write

tnl—Qa Slna—l
V1+V2 — nd(l—a)+1+2a—1/ / ()’
n 0
" Lio . 1 1 1 slna—l tnl—Qa slna—l

S it O B O R B O Ry A RO
ni—a Jo pl—e J1 1 0

= Vs 4+ Vi+ Vs,

Vs = —i efi((quv)-x0+(§+tu+c+tv)-k0) nd(lfa)+1+2a71

1 1
1 .
X/nla/o dsldﬁdwldw'wfi(w')sin (n's|w'?) @

w - (Fkao)(wi,n' " (€ + (t — s1n**  + p%m)u— nw' + (s1 — ' m)w)
N+ v) —wi,n (v + (s =) u+ W — (51— 'Y wa),

with similar expressions for V; and V5. Estimating V3 is straightforward and we find, V(¢,u,v,&,¢) €
[, T] x R*,

R(w")
w|
Regarding Vj, we set w' = h(wh) = (1) Y(wh — 1= + tv + (s17**7 L — n%m)u) +
(s1 — n'7%m)wy). It comes, using the fact that |h(w})|~! is integrable around the origin,

V(t,u, v, €, ¢) € [n®, T] x R

> /
il 5 gt [ R gy g, wh aws
PRI/

dw’.

VAl S 2 g e |

></ sup |Fkap(w,x |dw/ / Tﬁddesl, < nd(1*0)+1+2071‘
R 11—«

d xcRd

It remains to analyze V5. We set 7 = s17 and write

tnl 2a tnl 2a
Vs = pi(-e)tit2a- (/ / / / ) - Vl4v2

In V', we perform the change of variable w = s1(1—n'=27) " (—wy +n!7({ +tv+s1(n?* 1 -
n*r)u) + s;7w’). This yields:

VLS e gl [ sup | Fao(x,w) v

Ry xeR4
t771 2c
></ / / T)_ddsldT,
R4 ’W‘
pdl—e)+i+2a—1 when d > 3,
~ pPl-a) 14201 o0 g when d = 2.
Regarding V2, we set w' = h(wh) := (s17)"1(wh — n'=*(¢ + tv + s1(n**™ ! — n%7)u) +

1

s1(—n'~7)wy). It comes, using the fact that |h (W’2)| is integrable around the origin,
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V(t,u,v,€,¢) € [n®, T] x R

V2 < nd(lfa)+1+2a71 R(h(w))) Fao(x, w))|dw)
5

e [h(w5)|

tn172a [e')
X / sup |Fkag(wi,x)|dw / Sl_dds/ -,
Rd xcRd 1 !
nd(lfa)+1+2a*1’ when d > 3,
~ p2-e)+1+2a=1| |50 | when d = 2.

Gathering the different estimates on I, II, I1I, IV and V then ends the proof of the propo-
sition. 0O

4.7.2 The case o = 1.

1

The Fourier transform of JJ° is given in (72). After the change of variable w = 5~ 'w; and

s = nsi, this yields:

tn_l ~
(ij(?o)(t; ua 5, V, C) = _4UA /Iéd dsldwl 6_2R0(t_n81)R(W1)

x ¢~ H(xo-utko (£+tw)) p—i(xo Viko-(CHEV)) gipy <1W1 €+ tu)) sin <lw1 (¢ + tv))
2 2
xFap ® ap(nu — wi, €+ tu — s;wi,nv + wi, { +tv + s1w1).

When ¢ < ), it is easy to see that 7~ <, FJ)° — 0in L>((0,T) xR4) —x. For times t > 7, we
split the integral over sy for s; € [0,1] and 51 € [1,¢n~!]. Passing to the limit in the first integral
is straightforward. For the second integral, the change of variable wy = sfl w allows to use the
Lebesgue dominated convergence theorem so as to obtain that n~!(F Jgo)(t, u, &, v,¢) — JO

in L>=((0,T) x R*) — , where
(FIO) (0,6, v,¢) = e 2Roteilsutko € tu) itos o) k(g 4 fu, ¢ + tv)
& A 1 1
k&, ¢) = —4/0 /]Rd dsydwq R(w1)sin <§w1 . E) sin <§w1 . C)
xFag ® ao( —wip, & —s1wi,wi, (¢ + 81W1).

We verify that k is indeed well-defined since

A 1 A 11— 1 1
Il e ey S NRI s g 1R e lao 5, lao .2,

and also that J% can be written as
JO = PGS = 6(-—x0)8(- — x0) K(8(- — ko)d(- — ko)), (88)

where K is the operator defined for a tempered distribution .J by KJ = F~1(kF.J).

4.7.3 Proof of theorem 2.2: conclusion.

We recall that J,, = JO + J3¢ + J3* and compute the limit of J° + JEC and JM* separately.
n n n n n n n
Consider first the term Jg + J%’Q and assume 0 < o < 1. We have already seen in the proof

of theorem 2.1 that the leading term in JS + J%’Q is *777 = JSO + J,;l’Q. According to (65), ‘777
solves the integral equation B N
Jy =TT, + J,
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and following (35)-(67), n_(d+2)(1_o‘)_(20‘_1)vojn is bounded in the Banach space C°([0, 77, Z').
We can thus extract a subsequence such that

nf(d+2)(17a)7(2a71)\/0:fn N Jolu in LOO((O’T)7Z/) %

Let ¢ € C°([0,7T], Z) and

T
727 00(0,7],2) — C°(0,7),2),  (T2%¢) (s) = / 2R 0,62 ot .

s

Then:

T T T
/ <Jna(P>Z’,Zdt:/ (Jn,TQ’*@Z/,ZdtJr/ (J3°, o) 21,7 dt.
0 0 0

(d+2)(1—c)—(2a—1)V

Rescaling the latter equation by 1~ 0 and passing to the limit, we find that

JL € L>((0,T),Z') satisfies

T T T
/ (Jé, cp>Z/72 dt = / (Jé,TQ,*<p>Z,7Z dt + / <J00’ <P>Z',Z dt,
0 0 0
where J% is defined in proposition 4.11. J! is thus solution to
Jo =T+ J%, (89)

which admits a unique solution in C°([0, T'], Z’) according to corollary 3.4 since J% € C°([0,T], Z').
This implies that the whole sequence n*(d“)(l*a)*@a*l)vojn converges to J!.

Consider now the term J%”C and assume 0 < o < 1. The leading term in J%”C is Jf]"lc,
solution to (53). J,;UC is of order pd1-e)ta (2 fa(n)] A1 in C°([0,T], Xoo), with fq(z) =1
when d > 3 and fo(z) = 1+ |logz?™2¥|. We can thus extract a subsequence such that
n*d(lfa)*a([nmflfd(n)]71 V1) fJ,A]"K — FJ% in L*((0,T) x R*) — x. Considering a test
function ¢ € C°([0,T], S(R*?)), denoting by (-,-) the L?(R*?) scalar product and verifying
that FT%*p € C°([0,T], L' (R*?)), we have

T T T
/0 (fJ,?”C,fso)dtZ/O (fJé"’C,fTQ’*sD)dH/O (FLy Ty, F) dt.

Recalling that TYIICJ,?O = G,l] +G%, rescaling the latter equation by 5~ #1—a)=a( [nQO‘_lfd(n)} LY
1) and passing to the limit using propositions 4.12 and 4.13, we find

T T T
/0 (FJ2 Fo)dt = /0 (FJ2, FT%*p) dt + /0 (FGY, Fo)dt,

where G(l) is defined in proposition 4.12. J2 is thus solution to
J2=T2J + G}, (90)

which admits unique solution in C°([0, T, X ) according to corollary 3.4 since G} € C°([0, T, Xoo)-
Hence the whole sequence converges.

It remains the limit of ‘777 when o = 1. Proceeding exactly as above, we find that the whole
sequence 77_1]:(777 converges in L>((0,T) x R*) — x to FJ] , where J} is the unique solution
to J§ =T2J} + J% and J% € C°(]0,T], X&) is now given by (88).

We have proved that, when 0 < o < 1,

J1(7] _ n(d+2)(17a)+(2a71)\/01]01[ + nd(lfa)+a([n2a71fd(n)] A 1)‘]024 + T,
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where 7, is negligible compared to the two first terms in the L>°((0,7), S'(R*)) — % topology.
To obtain the expressions of the theorem, it suffices to recast (89) and (90) as partial differential
equations and to rewrite (after lengthy calculations) the operators K¢ and Ky in terms of
the physical variables x, y, k and p. We verify as well that o,(t,k) € L'(R; x R%) for the
different values of o and that 04(0,k) € L'(R%). When o = 0, the leading term is proportional
to J§ so that Jg = ndJg + rp and the theorem follows by recasting K? and by noticing that
oo € CO([0,T), LY (R} x RY)). When o = 1, the leading term is proportional to J} so that
J,? = nJ& + 7. The fact that Jl1 0 is real stems from separating the G term of the theorem
into real and imaginary parts and by using that Fxao(—w, k) = Fxao(w,k). When ag is even,
Fxao(w, k) = Fxao(—w, k) and the integral in principal value sense vanishes. This concludes
the proof.
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