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Introduction

One of the fundamental aspects of the study of definable groups in a given structure, which is a
recurring topic in model theory, consists of deducing algebraic properties of definable groups in

terms of the geometric nature of the ambient theory. A remarkable example of this approach is the
Algebraicity Conjecture, which states that an uncountably categorical simple group must interpret
an algebraically closed field so that the group becomes an algebraic group over it. An uncountably
categorical simple group is a particular example of a group of finite Morley rank, that is, there
is a dimension function, called Morley rank RM, defined on the collection of definable sets of a
(sufficiently saturated) model M characterised by the following principle: If X ⊂ Mk is definable,
then RM(X) > n if and only if X contains an infinite family of pairwise disjoint non-empty definable
sets Yi with RM(Yi) ≥ n. Morley rank extends to types by taking the smallest Morley rank of the
formulae a type contains, and so it agrees with the Cantor-Bendixson rank on the space of types
over an ω-saturated model, equipped with the Stone topology. For an algebraically closed field with
no additional structure, definable sets are exactly the Zariski constructible ones, and Morley rank
coincides with the Zariski dimension. For a group of finite Morley rank, this notion of dimension is
well-behaved. For example, given a definable fibration S ⊂ X × Y → Y , the subset consisting of
y’s in Y such that the fibre over y has dimension k is definable for every k in N. If all fibres have
constant Morley rank k, then RM(X) = RM(Y ) + k. A bad group is a minimal counterexample to
the Algebraicity Conjecture, which still remains unsolved, and, in the author’s humble opinion, with
no definite answer in a foreseeable future. However, work on this area has become a solid discipline in
its own, which combines techniques from group theory, in particular, the classification of finite simple
simple groups, as well as ideas from algebraic groups and from model theory.

A different approach to the study of definable groups in model theory, already present in incidence
geometry, consists of constructing, with various methods, some of them ad hoc, algebraic structures,
such as groups or even fields, out of a pure abstract context, usually in terms of germs of quasi-
endogenies or generically given maps. An example of this method already appeared in Weil’s group
chunk theorem [102], where a birational group law which was only partially defined can be extended to
a full algebraic group. Weil’s theorem has been adapted to various settings, such as topological spaces
[92], and it is worth mentioning the generalisation given by Hrushovski with his group configuration
[39] (cf. Section 1.5). Out of a configuration of six points satisfying certain conditions of independence
and colinear algebraicity, a group is constructed in terms of germs of maps acting on a type. The
group configuration lies at many of the fundamental applications of model theory, such as Pillay’s
theorem on differential algebraic groups [69], and it has become a recurrent tool in the work here
presented.

In order to motivate the articles which constitute the present document, recall that Zilber identified
the underlying geometry of an ω-categorical strongly minimal theory as either trivial or affine or
projective over some finite field, in terms of quasi-translations. This led to the question whether
the geometry of a general strongly minimal theory could be associated to two archetypal examples,
either 1-based or field-like, in which case an infinite field had to be interpreted. In order to provide
a negative answer thereupon, Hrushovski developed a method [40, 41] to construct ω-stable theories,
and in particular new strongly minimal sets, with a prescribed geometry according to some dimension
function. Pillay [71] and later Evans [31] refined the previous question on the geometry of strongly
minimal sets, by introducing a whole hierarchy, called the ample hierarchy, on the complexity of
non-forking independence with respect to the operator algebraic closure. According to this hierarchy,

3



motivated by the incidence relation in euclidean space of the flags of affine subspaces of increasing
dimension, from one point to a hyperplane, Hrushovski’s ab initio construction is of low complexity,
whereas algebraically closed fields or the free non-abelian group [65, 88] lie at the very top. The first
two levels of this hierarchy are fairly well-understood: in the first level, definable ω-stable groups
are virtually abelian and, in the second level, they are virtually nilpotent if the Morley rank is finite
[44, 67].

Hrushovski’s construction has been adapted by several authors in order to unexpectedly answer
various questions on pure model theory. For example, related to Vaught’s conjecture and stable non
ω-categorical theories with only finitely many countable models, Herwig constructed [38] a stable
non superstable theory with few types and a unique 1-type of infinite (pre-)weight with respect to
itself. Baudisch’s group [5] has finite Morley rank, yet it interprets no infinite field, since it is not
2-ample. Poizat [80] (see also the work of Baldwin and Holland [1]) constructed and collapsed an ω-
stable field together with a distinguished predicate, obtaining thus an ω-stable field, which he called a
black field, whose Lascar rank was not monomial, answering thus a question by Berline and Lascar. He
constructed [81] furthermore two other ω-stable colored fields of infinite rank: the red field has positive
characteristic anc comes equipped with a proper definable non-algebraic infinite additive subgroup.
The green field has characteristic 0 and contains a proper divisible torsion-free multiplicative definable
subgroup.

Poizat’s colored fields were the starting point of a collaboration with Baudisch and Ziegler on
Hrushovski’s amalgams, producing, among others, a field of finite Morley rank in positive characteristic
whose underlying additive group is not minimal [9], in contrast to the characteristic 0 case. However,
an ω-stable differentially closed field in characteristic 0 with a definable non-differentially algebraic
additive subgroup has been constructed [81, 15]. At the beginning of the author’s stay at the Institut
Camille Jordan, a collapse of Poizat’s green field produced in [6] a bad field : an algebraically closed
field of finite Morley rank with a definable proper divisible multiplicative subgroup, whose existence
was long conjectured, though such an object should not exist in positive characteristic [99].

Poizat observed [80, Proposition 2.4] that no bad groups are intepretable in his black field, since
every simple interpretable group is definably isogenous to an algebraic group. Similarly, in his fusion
of two strongly minimal theories T1 and T2 into a new strongly minimal expansion T , Hrushovski [40,
pp. 130] states that “the geometry (of the fusion) can be seen as "relatively flat" over the geometries
of the given strongly minimal sets”. In particular, definable groups in T are isogenous to a product
of groups, each interpretable in one of the theories Ti’s. Poizat’s result and Hrushovski’s remark
were the starting point to undertake a complete description of definable groups in the collapsed green
field. Our first attempt combined the aforementioned approaches at the beginning of the introduction,
in which we isolated certain properties of all known Hrushovski’s amalgams in order to establish a
close relation, referred to as relative ampleness, between a theory T and a stable reduct T0 which
controls, to a certain extent, non-forking independence in T . A definable group G in T yields a
canonical group configuration in T0 and hence a group homomorphism from G to a T0-∗-interpretable
group H together with a definable isogeny G → H. As a by-product, we recover the already-known
results for algebraically closed fields with a generic automorphism [56] or for differentially closed fields
in characteristic 0 [69], though in the latter Pillay obtains an actual embedding instead of a mere
isogeny.

Theorem A. [BMW15] Let (Ti : i < n) be stable reducts with geometric elimination of imaginaries
of a given simple theory T which is equipped with a closure operator 〈.〉 satisfying the two following
technical conditions:

• If C is algebraically closed and a |̂
C
b in T , then 〈Cab〉 ⊂

⋂
i<n aclTi(〈Ca〉, 〈Cb〉).

• Given b in
⋃
i<n aclTi(A), then 〈aclT (b), A〉 ⊂

⋂
i<n aclTi(aclT (b), 〈A〉).

If T is relative 1-based over the reducts (Ti : i < n) with respect to 〈.〉, then every type-definable
group G is isogenous to a subgroup of a cartesian product of groups Hi, each Ti-type-interpretable.
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If T is relatively CM-trivial over (Ti : i < n) with respect to 〈.〉, then every type-definable group
G has a type-definable subgroup of bounded index which definably maps to a cartesian product of
Ti-type-interpretable groups, such that the kernel of the map is contained, up to finite index, in Z̃(G).

A simple group definable in a colored field of finite Morley rank is linear.

The above results could (and should) be improved. Indeed, they should be adapted to the case
where T only contains the universal part of some stable theories (Ti : i < n), that is, every model of
T embeds into a model of each Ti, which covers various theories of model-theoretic relevance, such as
separably closed fields or perfect PAC fields with bounded Galois group. More generally, if, instead
of a global homomorphism, we require a local one, the proof should adapt to some weakenings of
simplicity for the theory T , such as NTP2, mimicking the study of definable groups in local fields
[45, 46] such as the reals or the p-adics. However, the notion of generics for NTP2 theories still needs
some development.

Fields of finite Morley rank eliminate imaginaries [98], so the previous theorem conveys little infor-
mation if we consider abelian intepretable groups in a collapsed colored field, e.g., the multiplicative
group of the field modulo the divisible green multiplicative subgroup. Therefore, an intensive study (in
a span of several years with a certain emotional toll) on interpretable groups in the green field as well
as on subgroups of algebraic groups in colored fields was conducted. The major difference with respect
to Poizat’s black fields is the existence of non-trivial transformations on the set of colored points, so
that definable subgroups of algebraic groups decompose in a pure algebraic subgroup and non-trivial
colored quotient. Unrelated but as a by-product of this effort, we provide a proof of Hrushovski’s
remark on groups definable in the fusion of two strongly minimal theories over equality.

Theorem B. [BMW12a] Every interpretable group in a collapsed green field is isogenous to a quotient
of a definable subgroup of an algebraic group by a central subgroup, which is itself isogenous to a
cartesian power of the green predicate. In a (possibly uncollapsed) green field, every connected definable
subgroup G of an algebraic group has a normal algebraic subgroup N such that the quotient G/N is
definably isomorphic to a cartesian power of the green predicate.

In a (possibly uncollapsed) red field, every connected definable subgroup G of an algebraic group
has a normal algebraic subgroup N such that the quotient G/N is definably isogenous to the red points
of an additive algebraic subgroup.

Every simple definable group in a colored field is definably isomorphic to an algebraic group. No
bad groups are definable in a colored field.

Every definable group in the (possibly uncollapsed) fusion of two strongly minimal theories over
equality is isogenous to a product of groups, each one interpretable in the base theories.

It is unclear to us how to generalise the last point to describe definable groups in the fusion of two
strongly minimal theories over a common vector space over a finite field [7].

The previous work on colored fields, though intricate, did pay off. Indeed, using the techniques
developed there, we could easily study groups definable in belles paires of stable theories, introduced
by Poizat [78]. He isolated a strenthening of stability, the non finite cover property NFCP, developed
by Keisler [52] in order to produce saturated ultraproducts and strongly related to the existence of
a model companion TA for the theory Tσ = T ∪ {“σ is an automorphism”}. NFCP ensures that a
saturated model of the common theory TP of belles paires of a stable theory is again a belle paire. In
particular, algebraically closed fields have NFCP, and so do strongly minimal theories. However, the
theory TP need not eliminate imaginaries (modulo the imaginaries of T ). It is the case if and only if
no infinite group is interpretable in T [76]. Pillay introduced geometric sorts [72] to have geometric
elimination of imaginaries for the theory of proper extensions of algebraically closed fields. Using the
tools he thereupon developed, we could analyse interpretable groups in belles paires of algebraically
closed fields.

Theorem C. [BM14] Given a stable NFCP theory T = T eq, every group G type-definable in a belle
paire (M,E) of T is isogenous to a subgroup of a T -type-definable group. Furthermore, the group G is,
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up to isogeny, the extension of the E-points of a T -type-definable group over E by a T -type-definable
group.

0→ N → G→ H(E)→ 0

An interpretable group G in a pair (K,F ) of algebraically closed fields, with F ( K, is, up to
isogeny, the extension of the F -rational points of an algebraic group H over F by group N , which is
a quotient of an algebraic group V by a normal subgroup N ′(F ), consisting of the F -rational points of
an algebraic group over F .

0 // N(K) // G(K) // H(F ) // 0

with

0 // N ′(F ) // V (K) // N(K) // 0 ,

such that both H and N ′ are algebraic groups over F .

If G is interpretable over k 6⊂ F , then V and N are defined over kF .

Another application of the tools used in Theorem B is the description of bounded automorphisms
of various theories of fields with operators. Lascar [61] showed that the group of strong automorphisms
of a pure algebraically closed field in characteristic 0 is simple. The same holds for a differentially
closed field in characteristic 0 [32], for there are no non-trivial bounded automorphisms [55]. An
automorphism τ of a field is bounded if there is a finite set A such that, for every element b, the image
τ(b) belongs to clGen(A∪{b}), where clGen(D) denotes the collection of elements whose type over D is
coforeign to the generics of the field. If the field has monomial Lascar rank, then this closure consists
of the collection of non-generic elements. Lascar notes that Ziegler had obtained a simpler proof of
the triviality of bounded automorphisms for a pure algebraically closed field in characteristic 0, which
could be generalised to the positive characteristic case, in order to show that such an automorphism is
an integer power of Frobenius. Motivated by Lascar’s remark, we obtained a uniform characterisation,
probably not any different from Ziegler’s proof, of bounded automorphisms in various theories of fields
with operators, following the formalism introduced by Moosa and Scanlon [64]. A field with operators
over a base subfield F is a structure

(K, 0, 1,+,−, ·, {λ}λ∈F, F1, . . . , Fn),

such that the operators F1, . . . , Fn are F-linear satisfy

Fk(xy) =
∑

0≤i,j≤n

aki,jFi(x)Fj(y),

for some constants {aki,j}0≤i,j,k≤n in F. Consider the F-algebra D(F) = Fε0 ⊕ . . .⊕ Fεn such that

εi ? εj =
∑

0≤k≤n

aki,jεk.

It is isomorphic to a product of local F-algebras B0(F), . . . , Bt(F), whose residue fields are finite
algebraic extensions of F. If all these residue fields are F, tensoring each local algebra with K, if θi,
resp. ρi, denotes the projection of D(K) = D(F)⊗FK onto Bi(K), resp. the projection of Bi(K) onto
its residue K, we obtain the associated endomorphisms

σi = ρi ◦ θi ◦ ϕ

of K.

Theorem D. [BHM15] Consider a sufficiently saturated field with operators (K, 0, 1,+,−, ·, F1, . . . , Fn)
over a base subfield F such that all residue fields of the F-algebra D(F) are F, and the associated en-
domorphisms are surjective and include both Frobenius and its inverse in case the characteristic is
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positive. Suppose that the theory T of K is simple and relatively 1-based over the reduct to pure alge-
braically closed fields with respect to the closure operator acl, which coincides with the field algebraic
closure of the generated structure. If the family of words in F1, . . . , Fn, σ

−1
1 , . . . , σ−1

t does not satisfy,
modulo T , any non-trivial linear relation over acl(F), then every bounded automorphism of K is a
product of integer powers of the associated automorphisms (and Frobenius, in positive characteristic).

This applies in particular to the following theories of fields with operators :

• Algebraically closed fields (K, Id) in all characteristics with associated automorphism either iden-
tity or Frobenius in positive characteristic.

• Differentially closed fields with n commuting derivations (K, δ1, . . . , δn) in characteristic 0 with
associated automorphism the identity.

• Generic automorphisms (K,σ)in all characteristics with associated automorphism σ as well as
Frobenius, in positive characteristic.

• Generic automorphisms of a differentially closed field (K, δ, σ) in characteristic 0 with associated
automorphism σ, as considered by Bustamante-Medina [20].

• Fields with free operators (K,F1, . . . , Fn) in characteristic 0 with associated automorphisms
σ0, . . . , σt, as considered by Moosa and Scanlon [64].

The characterisation of minimal types and definable sets in some of the above theories of fields
with operators allowed Hrushovski to prove a functional version of Mordell-Lang in all characteristics
[42], since the theories involved in his proof have a particular behaviour on definable sets, akin to
the Zariski topology in classical algebraic geometry. Pillay and Ziegler [77] circumvented the use of
Zariski Geometries [48] in Hrushovski’s proof, by isolating a property, true in wider contexts, e.g.,
compact complex spaces [63], called the Canonical Base Property (CBP). In the case of a (saturated)
differentially closed field, the CBP states that, given a definable set X of bounded differential degree
and Morley degree 1, the field of definition of the constructible set determined by X is almost internal
to the constant field over a generic realisation of X. The CBP generalises 1-basedness (that is, non-
1-ampleness), since algebraic types are always almost internal to any invariant family Σ. Kowalski
and Pillay [57], motivated by certain definability results valid for one-based groups, showed that a
connected group definable in a stable theory with the CBP is central-by-(almost Σ-internal). Inspired
by their result, we introduced a hierarchy of notions, generalising the ample counterpart, called tight-
ness, of which 2-tight generalises CM-triviality (that is, non-2-ampleness), and proved the equivalent
results in this setting, replacing finite by almost Σ-internal.

Theorem E. [BMW12b] Let T be a stable 2-tight theory with respect to an invariant family Σ of types.
An interpretable field is Σ-internal. An interpretable group of finite Lascar rank is nilpotent-by-(almost
Σ-internal). In particular, an interpretable non-abelian simple group is Σ-internal.

Back to the ample hierarchy, it was not known whether there were stable structures which were
strictly n-ample, for n greater than 2. Generalising the construction of the free pseudospace by Baud-
isch and Pillay, for every natural number n we obtain (see also [89]) a free n-dimensional pseudospace
satisfying the following:

Theorem F. [BMZ14b] The free n-dimensional pseudospace is ω-stable of rank ωn+1 and n-ample
yet not n+ 1-ample.

As noticed by Tent, the above construction was bi-interpretable with the right-angled building
with infinite residues of Coxeter graph

[0, n]
0 1 2 n− 1 n
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Similar to the use of trees to analyse free groups, buildings were introduced by Tits [91] in order
to determine properties of semisimple algebraic groups. However, a building is a pure combinatorial
structure which need not arise from a group, e.g., the incidence geometry of projective planes. A
right-angled building of infinite residues with Coxeter group (W,Γ) is a set X equipped with a family
of equivalence relations (∼γ , γ ∈ Γ), satisfying that each ∼γ-class is infinite, and that, for every pair x
and y inX, there exists an element g inW such that there is a reduced path of type w from x to y if and
only if the word w represents g. The associated Coxeter graph has vertex set Γ, the set of generators
of W , where two vertices γ and δ are adjacent if they do not commute in W . There is a unique (up
to isomorphism) countable building B0(Γ) with infinite residues for each right-angled Coxeter group
[36]. In order to make use of elementary extensions, non-standard paths between elements need to be
considered, so we consider an expansion B0(Γ) of the natural language of buildings. Adapting some
of the techniques from the free pseudoespace, we obtained the following result.

Theorem G. [BMZ14a] The theory PS Γ of B0(Γ) is ω-stable and equational with trivial forking.
The model B0(Γ) is the prime model. If Γ has no edges, then PS Γ is 1-based. Otherwise, let r be the
minimum of the valencies of the non-isolated vertices of Γ, and n in N be maximal such that the graph
[0, n] embeds fully in the Coxeter graph Γ, that is, as a substructure in the language of graphs. Then
PS Γ is n-ample but not (|Γ| − r + 1)-ample.

Observe that these bounds are best possible, atttained for example by the graph [0, n] itself, whose
associated theory is n-ample but not (n+ 1)-ample. We have not attempted to consider more general,
not necessarily right-angled, buildings, since a crucial feature of right-angled buildings is that a word
is reduced if and only if no permutation has the form w1 · γ · γ · w2, for some generator γ.
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Introduction en français

En théorie des modèles, l’étude des groupes définissables dans une structure donnée est un sujet
récurrent, dont un aspect fondamental consiste à isoler quelques propriétés algébriques des groupes

définissables à partir de propriétés géométriques de la théorie ambiante. Un des exemples les plus
notables de cette approche est la Conjecture de l’Algebricité, qui affirme que tout groupe simple
2ℵ0 -catégorique doit interpréter un corps algébriquement clos sur lequel le groupe est un groupe
algébrique. Un groupe simple catégorique en puissance non-dénombrable est un groupe de rang
de Morley fini, c’est-à-dire, il est muni d’une fonction de dimension, dite rang de Morley, sur la
famille des ensembles définissables d’un modèle suffisamment saturé M , caractérisée par le principe
suivant : le rang RM(X) d’un ensemble définissable X ⊂ Mk est strictement plus grand que n si
et seulement si X contient une famille infinie de sous-ensembles définissables deux-à-deux disjoints,
chacun de rang de Morley au moins n. Le rang de Morley s’étend aux types en prenant le plus
petit rang des formules l’appartenant. Ce rang ainsi défini coïncide avec le rang de Cantor-Bendixon
sur l’espace des types au-dessus d’un modèle ω-saturé, muni de la topologie de Stone. Pour un pur
corps algébriquement clos, les ensembles définissables correspondent aux ensembles constructibles de
Zariski, et le rang de Morley coïncide avec la dimension de Zariski. Pour un groupe de rang de Morley
fini, cette notion de dimension a de nombreuses propriétés remarquables. Par exemple, étant donnée
une fibration définissable S ⊂ X × Y → Y , l’ensemble des éléments y dans Y tels que la fibre a
dimension k est définissable, pour chaque entier k. En outre, si toutes les fibres ont même rang k,
alors RM(X) = RM(Y ) + k. Un mauvais groupe est un contre-exemple minimal à la Conjecture de
l’Algebricité, qui reste encore ouverte et, de l’avis de l’auteur, sans réponse prévisible dans un futur
proche. En revanche, cette direction de recherche est devenue une discipline bien établie et solide,
qui combine des techniques de la théorie des groupes, et en particulier, de la classification de groupes
simples finis, avec des méthodes de la théorie des modèles et des groupes algébriques.

Une autre approche, présente en géométrie d’incidence, à l’étude de groupes définissables en théorie
des modèles, consiste à construire, par des différentes méthodes, parfois particulières au contexte, des
structures algébriques, groupes ou corps, à partir d’une situation purement abstraite, normalement
en termes de germes de quasi-endogénies ou des applications définies génériquement. Un exemple de
cette méthode apparaît déjà dans la configuration de groupe de Weil [102], qui étend à un groupe
algèbrique une loi birationnelle de groupe partielle. La méthode de Weil a éte adaptée à des situations
diverses, e.g., à des espaces topologiques [92]. Entre autres, le théorème de configuration de groupe
dû à Hrushovski [39] (cf. la partie 1.5) mérite d’être mentionné. À partir d’une configuration de six
points satisfaissant certaines conditions d’indépendance et d’algébricité colinéaire, il obtient un groupe
en terme de germes des fonctions agissant sur un type donné. La configuration de groupe est à la base
de nombreuses applications fondamentales de la théorie des modèles, comme par exemple le résultat
de Pillay sur les groupes algébro-différentiels [69], et elle est devenue une technique récurrente dans
les travaux présentés ici.

Afin de motiver les travaux consituant ce document, rappelons que Zilber identifie, à partir de
l’ensemble des quasi-translations, la géométrie sous-jacente d’une théorie fortement minimale ℵ0-
catégorique comme soit triviale soit affine ou projective sur un corps fini. La question se pose si
la géométrie d’une théorie fortement minimale quelconque peut être donc classifiée selon deux exem-
ples canoniques : soit monobasée soit corpique, où un corps infini pouvait être interprété. Hrushovski
donne une réponse négative en développant une technique d’amalgamation [40, 41] pour obtenir des
théories ω-stables, et plus précisement de nouveaux ensembles fortement minimaux, avec de géométries
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exotiques déterminées au préalable par des fonctions de dimension données. Pillay [71] et Evans [31] ré-
formulent cette classification sur la géométrie d’un ensemble fortement minimal, en introduisant toute
une hiérarchie, dite ample, pour décrire la complexité de la non-déviation par rapport à l’opérateur
de clôture algébrique. La hiérarchie ample s’inspire de la relation d’incidence dans l’espace euclidien
des drapeaux des variétés affines de dimension croisante, d’un point à un hyperplan. La construction
ab initio de Hrushovski est de basse complexité ample, tandis que les corps algébriquement clos ou
le groupe libre non-abélien [65, 88] se placent au sommet de la hiérachie ample. Les groupes défi-
nissables ω-stables dans les premiers deux niveaux sont bien caractérisés : ils sont abélien-par-finis
pour le premier niveau, et nilpotent-par-finis pour le deuxième niveau, lorsque le rang de Morley est
fini [44, 67].

La méthode d’amalgamation de Hrushovski a été adoptée par plusieurs auteurs pour répondre,
souvent de façon inattendue, à des questions diverses en théorie des modèles pure. En relation à la
conjecture de Vaught et aux théories stables non-ℵ0-catégoriques avec un nombre fini des modèles
dénombrables, Herwig construit [38] une théorie stable non-superstable avec peu de types telle que le
seule type unaire a (pré-)poids infini par rapport à lui-même. Le groupe de Baudisch [5] est de rang
de Morley fini mais n’interprète aucun corps infini, car il n’est pas 2-ample. Poizat [80] (voir aussi
le travail de Baldwin et Holland [1]) obtient un corps ω-stable coloré dont le rang de Lascar n’est
pas un monôme, ce qui répond à une question due à Berline et Lascar. Il construit ensuite [81] deux
autres corps colorés de rang infini. Le corps rouge de caractéristique positive est muni d’un sous-
groupe additif propre infini non-algébrique. Le corps vert de caractéristique 0 possède un sous-groupe
multiplicatif définissable propre divisible sans torsion.

Les corps colorés de Poizat [80, 81] marquent le début d’une collaboration personelle avec Baudisch
et Ziegler autour des amalgames de Hrushovski. On construit, entre autres, un corps de rang de
Morley fini et caractéristique positive dont le groupe additif sous-jacent n’est pas minimal, ce qui
n’est pas possible en caractéristique nulle. Or, en caractéristique nulle, on obtient [81, 15], au début
de l’installation de l’auteur à l’institut Camille Jordan, un corps ω-stable différentiellement clos muni
d’un sous-groupe additif non-algébro-différentiel. De même, un collapse du corps vert de Poizat [81]
produit un mauvais corps[6] : un corps algébriquement clos de rang de Morley fini avec un sous-groupe
multiplicatif divisible propre. Un tel objet, dont l’existence était conjecturée depuis longtemps, ne
devrait pas exister en caractéristique positive [99].

Poizat remarque [80, proposition 2.4] qu’aucun mauvais groupe n’est interprétable dans son corps
noir. En effet, tout groupe simple qui y est interprétable est définissablement isogène à un groupe
algébrique. En outre, dans la fusion fortement minimale T de deux théories fortement minimales
T1 et T2 au-dessus de l’égalité, Hrushovski écrit [40, pp. 130] que “la géométrie (de la fusion) est
"relativement plate" sur les géométries des théories de départ”. Ainsi, tout groupe définissable dans T
est isogène à un produit des groupes, chacun interprétable dans une des théories Ti. Cette remarque
et le résultat de Poizat se trouvent à la base de nos efforts pour décrire les groupes définissables dans
le corps vert collapsé. Notre premier essaie combine les deux dites approches à l’étude des groupes
définissables, en isolant certaines propriétés, valables dans tous les amalgames de Hrushovski connus,
pour établir une relation directe entre une théorie T et un réduit stable T0 qui contrôle l’indépendance
dans T ; ce que l’on appelle ampleur relative. À partir d’un groupe définissable G dans T , l’on obtient
canoniquement une configuration de groupe au sens T0 et donc un groupe T0-∗-interprétable groupe
H ainsi qu’un morphisme G → H. Ceci s’étend aux corps différentiellement clos et aux corps aux
différences génériques pour récupérer (partiellement) les résultats connus dans chacun de ces contextes.

Theorem A. [BMW15] Soit T une théorie simple avec des réduit stables (Ti : i < n), qui ont
élimination géométrique des imaginaires. Supposons que T est munie d’un opérateur clôture 〈.〉 qui
satisfait les deux conditions techniques suivantes :

• Si C est algébriquement clos et a |̂
C
b au sens de T , alors 〈Cab〉 ⊂

⋂
i<n aclTi(〈Ca〉, 〈Cb〉).

• Pour b dans
⋃
i<n aclTi(A), on a que 〈aclT (b), A〉 ⊂

⋂
i<n aclTi(aclT (b), 〈A〉).

Si la théorie T est relativement monobasée au-dessus des réduits (Ti : i < n) par rapport à
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l’opérateur clôture 〈.〉, alors tout groupe type-définissable G est isogène à un sous-groupe d’un pro-
duit cartesien de groupes Hi, chacun Ti-type-interprétable.

Si la théorie T est relativement CM-triviale au-dessus des réduits (Ti : i < n) par rapport à
l’opérateur clôture 〈.〉, alors tout groupe type-définissable G a un sous-groupe type-définissable d’indice
borné qui s’envoie définissablement en un produit cartesien des groupes, chacun Ti-type-interprétable.
De plus, le noyau de cette application est presque contenu dans le centre approximatif Z̃(G).

Tout groupe simple définissable dans un corps coloré de rang de Morley fini est linéaire.

Les résultats ci-dessus devraient pouvoir s’étendre lorsque T contient uniquement la partie uni-
verselle des théories stables (Ti : i < n), et donc chaque modèle de T se plonge dans des modèles de
chaque Ti. Ceci est le cas des corps séparablement clos ou des corps PAC parfaits avec groupe de
Galois borné. Plus généralement, si l’on s’intéresse à un homomorphisme local, au lieu de global, il
semble alors pertinent de considérer des généralisations de la simplicité, comme par exemple NTP2,
en imitant l’étude des groupes définissables dans des corps locaux [45, 46], comme les réels ou les
p-adiques. Cependant, la notion de géneriques dans les groupes NTP2 est encore en progrès.

Un corps de rang de Morley fini élimine les imaginaires [98]. Le théorème précédent apporte
donc peu d’information sur un groupe interprétable abélien dans un corps coloré collapsé, e.g., le
groupe multiplicatif du corps modulo le sous-groupe divisible multiplicatif vert. Une étude approfondie
(dans une période de plusieurs années, ayant un impact considérable sur le moral de l’impétrant) sur
les groupes interprétables dans le corps vert, ainsi que sur les sous-groupes des groupes algébriques
dans les corps colorés, s’avère donc nécessaire. La principale différence par rapport au corps noir
de Poizat est l’existence de transformations non-triviales sur l’ensemble des points colorés. Un sous-
groupe définissable d’un groupe algébrique se décompose alors en un pur sous-groupe algébrique et un
quotient coloré. Additionnellement, nous démontrons aussi la remarque de Hrushovski sur les groupes
définissables dans la fusion de deux théories fortement minimales sur l’égalité.

Theorem B. [BMW12a] Tout groupe interprétable dans un corps vert collapsé est isogène à un
quotient d’un sous-groupe définissable d’un groupe algébrique par un sous-groupe central, qui est lui
isogène à une puissance du groupe vert multiplicatif. Dans un corps vert (possiblement non-collapsé),
tout groupe définissable connexe G d’un groupe algébrique a un sous-groupe algébrique distingué N tel
que le quotient G/N est définissablement isomorphe à une puissance du groupe vert multiplicatif.

Dans un corps rouge (possiblement non-collapsé), tout groupe définissable connexe G d’un groupe
algébrique a un sous-groupe algébrique distingué N tel que le quotient G/N est définissablement isogène
aux points rouges d’un sous-groupe algébrique additif.

Tout groupe simple définissable dans un corps coloré (possiblement non-collapsé) est définissable-
ment isomorphe à un groupe algébrique. Aucun mauvais groupe n’est définissable dans un corps coloré.

Tout groupe définissable dans une fusion (possiblement non-collapsée) de deux théories fortement
minimales au-dessus de l’égalité est isogène à un produit des groupes, chacun interprétable dans les
théories de départ.

Nous ignorons comment généraliser ce dernier point aux groupes définissables dans une fusion de
deux théories fortement minimales au-dessus d’un espace vectoriel commun sur un corps fini [7].

Le travail précédent sur les corps colorés, quoique alambiqué et moralement fatigant, se révèle
payant pour l’auteur. En effet, grâce aux techniques développées précedemment, l’étude de groupes
définissables dans des belles paires des théories stables, introduites par Poizat [78], s’avère fort acces-
sible. Poizat isole une propriété qui entraîne la stabilité, la négation de la propriété de recouvrement
fini NFCP, introduite par Keisler [52] afin de produire des ultraproduits saturés. La NFCP est fort
liée à l’existence d’une modèle-compagne pour la théorie Tσ = T ∪ {“σ est un automorphisme”} et
garantit qu’un modèle saturé de la théorie TP commune à toute belle paire d’une théorie stable T
soit aussi une belle paire. Les corps algébriquement clos, ainsi que toute théorie fortement minimale,
ont la NFCP. Or, la théorie TP n’élimine pas forcement les imaginaires (modulo ceux de T ) dès qu’un
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groupe infini est interprétable dans la théorie T [76]. Pillay introduit des sortes géométriques pour
avoir élimination géométrique des imaginaries pour la théorie des belles paire de corps algébriquement
clos. À partir des outils qu’il y utilise, nous pouvons facilement analyser les groupes interprétables.

Theorem C. [BM14] Étant donnée une belle paire (M,E) d’une théorie stable T = T eq ayant la
NFCP, tout groupe TP -type-définissable G est isogène à un sous-groupe d’un groupe T -type-définissable.
En outre, le groupe G est, à isogénie près, l’extension des points E-rationnels d’un groupe T -type-
définissable sur E par un groupe T -type-définissable.

0→ N → G→ H(E)→ 0

Un groupe G interprétable dans une paire de corps algébriquement clos (K,F ), où F ( K, est, à
isogénie près, l’extension des points F -rationnels d’un groupe algébrique H défini sur F par un groupe
N , qui est lui un quotient d’un groupe algébrique V par un sous-groupe distingué N ′(F ), consistué des
points F -rationnels d’un groupe algébrique N ′, le tout défini sur F .

0 // N(K) // G(K) // H(F ) // 0

with

0 // N ′(F ) // V (K) // N(K) // 0 ,

Si G est interprétable sur k 6⊂ F , alors V et N sont définis sur kF .

Une autre application des techniques provenantes du Theorem B porte sur la déscription des
automorphismes bornés de nombreuses théories des corps munis d’opérateurs. Lascar [61] montre que
le groupe des automorphismes forts d’un corps algébriquement clos en caractéristique 0 est simple. Le
même résultat est valable pour un corps différentiellement clos en caractéristique 0 [32], car il n’a pas
d’automorphismes bornés non-triviaux [55]. Un automorphisme τ d’un corps est borné s’il existe un
ensemble fini A tel que l’image τ(b) de tout élément b appartient à clGen(A ∪ {b}), où clGen(D) est la
classe d’éléments dont les types sur D sont co-étrangers aux génériques du corps. Si le corps a pour
rang de Lascar un monôme, alors cette clôture correspond aux éléments non-génériques. Lascar note
que Ziegler avait obtenu une démonstration plus simple sur la trivialité des automorphismes bornés
d’un pur corps algébriquement clos en caractéristique 0, qui s’étend à toute caractéristique positive
pour montrer qu’un tel automorphisme doit être une puissance entière du Frobenius. Motivés par
cette remarque de Lascar, nous donnons une caractérisation unforme, qui probablement ne diffère pas
de la démonstration originale de Ziegler, des automorphismes bornés de certaines théories des corps
munis d’opérateurs, selon le formalisme de Moosa and Scanlon [64]. Un corps munis d’operateurs sur
un sous-corps de base F est une structure

(K, 0, 1,+,−, ·, {λ}λ∈F, F1, . . . , Fn),

telle que les opérateurs F1, . . . , Fn sont F-linéaires et satisfont

Fk(xy) =
∑

0≤i,j≤n

aki,jFi(x)Fj(y),

pour certaines constantes structurelles {aki,j}0≤i,j,k≤n dans F. La F-algèbre D(F) = Fε0 ⊕ . . . ⊕ Fεn,
avec

εi ? εj =
∑

0≤k≤n

aki,jεk,

est isomorphe à un produit de F-algèbres locales B0(F), . . . , Bt(F), dont les corps résiduels sont des
extensions finies algébriques de F. Si tous ces corps résiduels sont F, alors en tensorisant chaque
algèbre locale avec K, l’on obtient ainsi les automorphismes associés de K, en posant θi, resp. ρi, la
projection de D(K) = D(F)⊗FK sur Bi(K), resp. la projection de Bi(K) sur le corps résiduel K, et

σi = ρi ◦ θi ◦ ϕ

.
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Theorem D. [BHM15] Soit (K, 0, 1,+,−, ·, F1, . . . , Fn) un corps suffisament saturé algébriquement
clos muni d’opérateurs sur un sous-corps de base F tel que tous les corps résiduels de la F-algèbre
D(F) sont F, les automorphismes associés sont surjectifs. De plus, si la caractéristique est positive,
on inclut dans la collection des automorphismes associés le Frobenius et son inverse. Supposons que
la théorie T de K est simple et relativement mononbasée sur le réduit de pur corps algebriquement
clos par rapport à l’opérateur clôture algébrique acl, qui coïncide avec la clôture algébrique corpique de
la structure engendrée. Si la famille de mots en F1, . . . , Fn, σ

−1
1 , . . . , σ−1

t ne satisfait aucune relation
linéaire non-triviale sur acl(F), modulo T , alors tout automorphisme borné de K est un produit de
puissances entières des automorphismes associés (et Frobenius, en caractéristique positive).

Ceci s’applique aux théories suivantes de corps munis d’opérateurs :

• les corps algébriquement clos (K, Id) en toute caractéristique avec automorphisme associé soit
l’identité soit Frobenius en caractéristique positive.

• les corps différentiellement clos (K, δ1, . . . , δn) en caractéristique nulle avec n dérivations qui
commutent avec automorphisme associé l’identité ;

• les corps aux différences génériques (K,σ) en toute caractéristique avec automorphismes associés
σ et le Frobenius, si la caractéristique est positive ;

• les corps différentiels aux différences (K, δ, σ) en caractéristique nulle avec automorphisme as-
socié σ ;

• les corps (K,F1, . . . , Fn) munis d’opérateurs libres en caractéristique nulle, avec automorphismes
associés σ0, . . . , σt, introduits par Moosa et Scanlon [64].

La caractérisation des ensembles définissables et des types dans certaines des théories ci-dessus
des corps munis d’opérateurs permet à Hrushovski de démontrer une version fonctionelle de Mordell-
Lang en toute caractéristique [42], car le comportement des ensembles définissables dans ces théories
ressemble à la topologie de Zariski en géométrie algébrique. Pillay et Ziegler [77] contournent les
Géométries de Zariski [48] dans la démonstration de Hrushovski, en isolant une propriété, valable
dans plusieurs contextes, e.g., les espaces compacts complexes [63], dite propriété de la base canonique
CBP. Pour un corps différentiellement clos en caractéristique nulle (suffisament saturé), la CBP affirme
que, étant donné un ensemble définissable X de degré de transcendance differentiel borné et de degré
de Morley 1, alors son corps de définition est presqu’interne au corps de constantes au-dessus d’une
réalisation générique de X. Puisqu’un type algébrique est interne à toute famille invariante des
types, la CBP généralise la monobasitude. Kowalski et Pillay [57] s’appuient sur des résultats de
définissabilité des groupes monobasés pour montrer qu’un groupe connexe définissable dans une théorie
stable ayant la CBP est central-par-(presque-Σ-interne). Inspirés de leurs résultats, nous introduisons
une hiérarchie de notions, la hiérarchie serrée, généralisant la hiérarchie ample, selon laquelle 2-serré
coïncide avec CM-triviale (c’est-à-dire, non-2-ample). Nous montrons donc les résultats équivalents
dans ce contexte lorsque l’on réplace fini par presque-Σ-interne.

Theorem E. [BMW12b] Soit T une théorie stable 2-serrée par rapport à une famille invariante Σ
de types. Tout corps interprétable est Σ-interne. Tout groupe interprétable de rang de Lascar fini est
nilpotent-par-(presque-Σ-interne). En particulier, tout groupe simple non-abélien est Σ-interne.

Pour finir cette introduction, revenons à la hiérarchie ample. Quoique le pseudoplan libre est
un exemple naturel d’une théorie strictement 1-ample, l’existence des théories de degré d’ampleur
strictement n, pour n ≥ 2, restait ouverte. Nous avons repris la construction du pseudo-espace libre,
due à Baudisch et Pillay, pour obtenir (voir aussi [89]), pour chaque entier naturel n, un pseudo-espace
libre n-dimensionnel avec les propriétés suivantes :

Theorem F. [BMZ14b] Le pseudo-espace libre n-dimensionnel est ω-stable de rang ωn+1 et n-ample
mais non-n+ 1-ample.

13



Tent remarque que le pseudo-espace libre n-dimensionnel précedent est bi-intreprétable avec l’immeuble
à angles-droits et résidus infinis de graphe de Coxeter

[0, n]
0 1 2 n− 1 n

De façon analogue à l’utilisation d’arbres pour analyser les groupes libres, les immeubles furent
introduits par Tits [91] pour déterminer des propriétés de groupes algébriques semisimples. Or, un
immeuble est une structure de nature combinatoire qui ne doit pas forcement être liée à un groupe,
e.g., la géométrie d’incidence des plans projectifs. Un immeuble à angles droits et résidus infinis de
groupe de Coxeter (W,Γ) est la donnée d’un ensemble X muni d’une famille de relations d’équivalence
(∼γ , γ ∈ Γ), telle que chaque ∼γ-classe est infinie et que, pour x et y dans X, il existe un élément
g dans W réprésentant exactement tous les chemins réduits possibles entre x et y avec mot w. Le
graphe de Coxeter asssocié à l’immeuble X a pour ensemble de sommets Γ, la famille génératrice de
W , où γ et δ appartient à une arête s’ils ne commutent pas dans W . À isomorphisme près, il existe
un seul immeuble dénombrable à angles droits et résidus infinis B0(Γ) pour chaque groupe de Coxeter
(W,Γ) [36]. Nous nous intéressons à l’étude modèle-théorique de B0(Γ). Or, afin de pouvoir prendre
des extensions élémentaires, nous avons besoin de considérer des chermins non-standards, ce qui nous
oblige à introduire une expansion B0(Γ) du langage naturel des immeubles. Une adaptation directe
des techniques utilisées pour traiter le pseudoespace libre donne le résultat suivant.

Theorem G. [BMZ14a] La théorie PS Γ de B0(Γ) est ω-stable et équationnelle avec déviation triviale.
Le modèle B0(Γ) est le modèle premier. Si Γ n’a aucune arête, alors PS Γ est monobasée. Sinon, parmi
les points non-isolés de Γ, soient r la valence minimale et notons par n le plus grand entier tel que le
graphe [0, n] se plonge comme sous-structure (au sens des graphes) du graphe de Coxeter Γ. Alors, la
théorie PS Γ est n-ample mais non-(|Γ| − r + 1)-ample.

Ces bornes sont otpimales et atteintes par le graphe [0, n] même, dont la théorie est n-ample
mais non-(n + 1)-ample. Nous ignorons si nos méthodes peuvent s’appliquer dans un contexte plus
large, puisqu’une propriété fondamentale des immeubles à angles-droits est qu’un mot est réduit si et
seulement si aucune permutation ne peut s’écrire sous la forme w1 · γ · γ ·w2, pour un des générateurs
γ.

14



Groupes définissables dans des expansions de théories stables

“Begin at the beginning,” the King said, gravely, “and go on till you
come to an end; then stop.”

Lewis Carroll – Alice in Wonderland

I
Preliminaries

Groups are ubiquitous in mathematics, materialising even in abstract contexts. Zilber’s celebrated result
shows that an ω-categorical strongly minimal set whose geometry is non-trivial interprets an infinite

group, in terms of germs of quasi-translations. This allowed him to describe the associated geometry
of an ω-categorical strongly minimal set as either trivial, or affine or projective over some finite field.
Similarly, within an ambient stable theory, given a stationary type p internal to an invariant collection
of types Σ, the group of permutations of p induced by those permutations fixing all realisations of Σ
becomes type-definable, which has remarkable consequences in generalised differential Galois theory [70].

In this chapter, we will provide an overview of the techniques and notions required for later sections.
Most of the material originates from Casanovas [23] and Wagner [97] for the simple case, and Poizat [79],
Pillay [68] and Tent-Ziegler [90] for the stable case. However, the presentation here does not correspond
to the historical timeline in which the results were obtained. We will assume that the reader is familiar
with (the proof of) Morley’s theorem and the techniques used thereupon.

Notation

Given a complete first-order theory T with infinite models in some possibly uncountable language L,
we will work inside a sufficiently saturated model of T , referred to as the monster, so that all sets are seen
as small subsets of the monster model, where by small we means of size strictly less than the saturation
of the monster. Similarly, by a model of T we mean a small elementary substructure of the monster.

Greek letters κ, λ, etc. will denote infinite cardinals. Letters a, b, etc. will denote possibly infinite
subtuples of the monster, unless specified. Given two sets A and B, we will denote their union by AB,
and by P(A) the collection of all subsets of A.

The word type refers, unless specified, to a complete type consistent with T , that is, a type p over a
subset A is a consistent set of formulae over A and maximal such. We will often not specify the arity of
the type. The space of n-types over A, denoted by Sn(A), is a compact Hausdorff totally disconnected
0-dimensional space with the logic topology, where the basic clopen sets are of the form :

[ϕ] = {p ∈ Sn(A) |ϕ(x) ∈ p},
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for some formula ϕ over A. The notation a ≡A b means that the tuples a and b have the same type
over the set A, or equivalently, that there is some automorphism of the monster fixing A pointwise and
mapping a to b.

1.1 Forking and Imaginaries

The class of simple theories, as introduced by Shelah [86] and later considered by Kim and Pillay
[54], comprises the class of stable theories and allows an adaptation of many of the key tools from
geometric stability theory.

Recall that a formula ϕ(x, b) divides over A if there exist a natural number k and a sequence {bi}i<ω
such that bi ≡A b and the collection {ϕ(x, bi)}i<ω is k-inconsistent, that is, every subcollection of size k
is inconsistent. A Ramsey-style argument shows that ϕ(x, b) divides over A if and only if there is some
A-indiscernible sequence {bi}i<ω such that b0 = b and {ϕ(x, bi)}i<ω is inconsistent.

A formula ϕ(x, b) forks over A if it belongs to the ideal generated by those formulae, with parame-
ters in the monster, dividing over A, that is, the formula ϕ(x, b) forks over A if there are formulae
ψ1(x, c1), . . . , ψn(x, cn), each dividing over A, such that

ϕ(x, b) |=
n∨
i=1

ψi(x, ci).

A type p over B divides, resp. forks, over A if it contains a formula which does.

Notice that every dividing formula forks. The collection of types in S(B) which do not fork over A is a
closed subset, and thus a compact space with the subset topology.

Given a partial type π, a natural number k and a finite set of formulae ∆, we define the local rank
D(π,∆, k), by induction, as follows:

• D(π,∆, k) ≥ 0 whenever π is consistent.

• D(π,∆, k) ≥ α + 1 if there is some formula ϕ(x, y) in ∆ and a sequence {bi}i<ω such that the
collection {ϕ(x, bi)}i<ω is k-inconsistent and D(π ∪ {ϕ(x, bi)},∆, k) ≥ α for every i < ω.

• D(π,∆, k) ≥ α if D(π,∆, k) ≥ β for β < α, for a limit ordinal α.

Observe that D(π,∆, k) ≥ α+ 1 if and only if there is some formula ϕ(x, y) in ∆ and a tuple b such that
ϕ(x, b) k-divides over the parameters of π and D(π ∪ {ϕ(x, b)},∆, k) ≥ α.

The theory T is simple if and only if D(x = x, ϕ, k) < ω for every formula ϕ and every integer k.
This is equivalent to require that for every 1-type p over some subset B, there exists some subset B0 of
size at most |T | such that p does not divide, or equivalently it does not fork, over some subset B0 of B
of size at most |T |.

Given a type p in S(A) in a simple theory, it does not fork over B ⊂ A if and only if

D(p, ϕ, k) = D(p�B,ϕ, k)

for every formula ϕ and every integer k.

Given subsets A, B and C, we say that A is independent of B over C if, for every finite tuple a in A,
the type tp(a/BC) does not fork over C.

Theorem 1.1. In a simple theory T , the above independence relation between triples of sets satisfies the
following conditions :
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Invariance If ABC ≡ A′B′C ′, then A |̂
C
B if and only if A′ |̂

C′
B′.

Symmetry A |̂
C
B if and only if B |̂

C
A.

Monotonicity and Transitivity A |̂
D
BC if and only if A |̂

D
C and A |̂

CD
B.

Extension For all a, B and C, there exists some a′ ≡C a with a′ |̂
C
B.

Finite Character A |̂
C
B if and only if a |̂

C
b for every finite tuples a in A and b in B.

Local Character For every finite tuple a and every set B, there exists some subset B0 of size at most
|T | such that a |̂

B0
B.

Independence Theorem over Models Given tuples a and b, sets A and B and a model M such that :

• a ≡M b,

• A |̂
M
B,

• a |̂
M
A,

• b |̂
M
B,

then there is some c |̂
M
BC such that c ≡AM a and c ≡MB b.

Furthermore, if the theory T is equipped with some independence relation between triples of sets satisfying
the above conditions, then T is simple and the independence relation agrees with non-forking (cf. [54,
Theorem 4.2]).

In a simple theory, every type is an extension base (cf. [29, Definition 2.7]): for every tuple a and every
set B, we have that a |̂

B
B. In particular, every type admits a global non-forking extension to the

monster model. However, there can be many different such extensions. A type p is stationary if it only
admits a unique non-forking extension to every superset. Notice that in a simple theory, non-algebraic
types have Morley sequences of arbitrary length.

A simple theory T is stable if types over models M are stationary, that is, each type over a model M
admits a unique non-forking extension to every superset of parameters. Equivalently, if |S(A)| ≤ λ for
any cardinal λ with λ|T | = λ and any set A of size at most λ. Among stable theories, a distinguished
subclass consists of ω-stable theories, those theories for which |S(A)| ≤ ω for any countable set A. If the
language L is countable, a theory is ω-stable if and only if the Morley rank RM(x = x) is some ordinal.
Recall that the Morley rank of a formula ϕ(x, a) is defined by transfinite induction as follows: we say that
RM(ϕ(x, a)) > α if there is an infinite family {ψn(x)}n∈N of disjoint consistent formulae, possibly with
additional parameters from the monster model (or equivalently from some ω-saturated model containing
a), such that each ψn ` ϕ(x, a) and RM(ψn(x)) ≥ α, for each n in N. If RM(ϕ(x, a)) 6> α for some ordinal
α, then set RM(ϕ(x, a)) to be the least ordinal β such that RM(ϕ(x, a)) 6> β but RM(ϕ(x, a)) ≥ β.

Two definable sets of Morley rank α are α-equivalent if their symmetric difference has rank strictly less
than α. A formula of Morley rank α has Morley degree 1 if it does not contain two pairwise inconsistent
formulae of rank α. Each formula ϕ of rank α can be written as a finite union of formulae of Morley rank
α and Morley degree 1, in a unique way, up to permutation (and α-equivalence). The number of formulae
appearing in the union is the Morley degre dM(ϕ) of the formula ϕ. We define RM(b/A) = RM(tp(b/A))
as the minimum of the Morley rank of the formulae it contains.

A particular example of which are strongly minimal theories, that is, those of Morley rank and degree
1, or equivalently, those theories for which every definable set in one variable, with parameters in the
monster, is either finite or cofinite. For strongly minimal, Morley rank is additive :

RM(a, b/A) = RM(a/A) + RM(b/Aa),
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and it corresponds to the dimension function of the pregeometry associated to the closure operator acl,
which satisfies the exchange principle (cf. [62, Proposition 1.2] and [2, Lemma 2]). In strongly minimal
theories, Morley rank is definable: for any formula ϕ(x1, . . . , xn, y), the collection

{b | RM(ϕ(x1, . . . , xn, b)) = k}

is definable for every integer k ≤ n.

A theory is stable if and only if no formula ϕ(x, y) has the order property : there are infinite sequences
{ai, bj}i,j∈N of tuples such that

ϕ(ai, bj) if and only if i < j.

In order to check the stability of T , it suffices to show that no formula ϕ(x, y), where x is a single variable,
has the order property.

One of the many remarkable features of stability is the definability of types. A type p in S(A) is definable
over B ⊂ A if, for any L-formula ϕ(x, y), there is some formula dpϕ(y) over B such that, given a in A,

ϕ(x, a) ∈ p⇔ a |= dpϕ(y).

The type p is definable if it is definable over A. Stability is equivalent to types over models being definable.
If T is stable, given a type p over a model, there is, for every A ⊃ M , one and only one extension q in
S(A) of p satisfying any (all) of the following conditions:

• q does not fork over M .

• q is definable over M .

• q is an heir over M , that is, for every L-formula ϕ(x, y), if ϕ(x, a) belongs q for some a, then
ϕ(x,m) belongs to p for some m in M .

• q is a coheir over M , that is, every formula in q has a realisation in M .

The foundation rank associated to the forking relation on types in a simple theory is called the Lascar
rank SU, defined by transfinite induction as follows:

• SU(p) ≥ 0,

• SU(p) ≥ α+ 1 if and only if p has some extension q over B ⊃ A with SU(q) ≥ α such that q forks
over A,

• SU(p) ≥ α if SU(p) ≥ β for β < α, for a limit ordinal α .

Observe that, if α < SU(p) < ∞, then there is some extension q of p with SU(q) = α. However, Lascar
rank need not be continuous. If the theory T is simple and SU(p) is defined, then an extension q ⊃ p is
non-forking if and only if SU(q) = SU(p).

Recall the Lascar inequalities for a simple theory T . Given a set A and two finite tuples a and b such
that SU(ab/A) <∞, then

SU(a/Ab) + SU(b/A) ≤ SU(a, b/A) ≤ SU(a/Ab)⊕ SU(b/A),

where α⊕ β =
∑0
n ω

γi · (mi + ki) is the direct sum of

α = ωγn ·mn + · · ·+ ωγ0 ·m0
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and
β = ωγn · kn + · · ·+ ωγ0 · k0,

with mi, ki integers numbers and ordinals γn ≥ . . . ≥ γ0 ≥ 0. In particular, if both SU(a/A) and SU(b/A)
are finite, then SU(a, b/A) = SU(a/Ab) + SU(b/A).

The simple theory T is supersimple if the Lascar rank of every n-type is an ordinal, or equivalently, if
every type p does not fork over some finite subset of the parameter set. A stable supersimple theory
is called superstable. In this case, the above rank agrees with Lascar’s original definition of the unique
connected rank [58], so we will denote it by U(p) instead.

Morley rank bounds from above the Lascar rank : SU(p) ≤ RM(p), so ω-stable theories are superstable.

Though types in a stable theory are definable, there need not be a smallest subset of the monster over
which they are definable. Likewise, definable sets need not have canonical sets of definition. For that
reason, we need to consider the expansion T eq of T by adding imaginaries. In the case of simple theories,
imaginaries alone are not sufficient in order to obtain canonical bases for types, even over models, so that
type-definable equivalence relations and hyperimaginaries need to be considered, despite that negation
in the expansion T heq is no longer first-order.

A tuple d is a canonical parameter for the definable setX if, given any automorphism f of the monster,
f(X) = X setwise if and only if f fixes pointwise the tuple d.

An easy compactness argument shows that, if d is a canonical parameter for the definable set X, then X
is definable by a formula with parameters in d. Furthermore, the tuple d is unique, up to interdefinability,
so we will denote it by d = pXq.

The theory T eliminates imaginaires if each class a/E of every 0-definable equivalence relation E has
a canonical parameter. Equivalently, if every definable set has a canonical parameter.

Lemma 1.2. If T has elimination of imaginaries, given a global definable type p, it is then invariant
over some set B: that is, given any automorphism σ of the monster, the type σ(p) equals p if and only if
σ fixes pointwise B.

If such a set B exists, then it is unique, up to interdefinability, so we will denote it by Cb(p), the canonical
base of p. In particular, the type p does not fork over Cb(p).

As long as the language L contains at least two constants, the theory T has elimination of imaginaries
if and only if every 0-definable equivalence relation E fibers through a 0-definable function f : that is,
two elements lie in the same class modulo E if and only if their images under f coincide. Thus, in
order to obtain elimination of imaginaires, we will consider a multi-sorted expansion of T , denoted by
T eq, in a language Leq with sorts {SEi}i∈I , where {Ei}i∈I is an enumeration, up to T -equivalence, of
all possible 0-definable equivalence relations. The sort S= is the original universe and will be called the
real sort, whereas elements from the other sorts are called imaginaries. We expand any L-structure A by
interpreting SEi on A as Anii /Ei, equipped with the natural projections πi : Ani → Anii /Ei.

In order to stress out that a set is Leq-definable, we will say it is interpretable. The theory T eq is then
axiomatised by adding to T the following axioms schemes:

∀y ∃x with πi(x) = y if y lies in Si,

and
∀x∀y (xEy ⇔ πi(x) = πi(y)) .

Every Leq-formula can be retranslated into an L-formula, so there are no new 0-definable relations on
the real sort on T eq. Hence, the theory T eq has itself elimination of imaginaries, and is is simple, resp.
stable, if and only if T is. Furthermore, the theory T has elimination of imaginaries if and only if every
imaginary element is interdefinable with a real tuple.
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Notation. We denote by dcleq and acleq the definable and algebraic closures in the expansion T eq.

The theory T has weak elimination of imaginaries if every imaginary α is definable over some real
tuple a, which is itself algebraic over α.

The theory T has elimination of imaginaries if and only if it has weak elimination of imaginaries and
eliminates those imaginaries which encode finite sets. A result of Lascar and Pillay shows that a strongly
minimal theory T with infinite acl(∅) has weak elimination of imaginaries.

The theory T has geometric elimination of imaginaries if every imaginary is interalgebraic with some
real tuple a.

For a stable theory T , types over algebraically closed sets in T eq are stationary, so we can refer to their
canonical bases as the canonical bases of the global non-forking extension each of the types determine. A
stationary type p over A does not fork over B ⊂ A if and only if Cb(p) lies in acleq(B). Recall that two
tuples have the same type over acleq(B) if and only if they have the same strong type over B. The strong
type stp(a/B) is the collection of all elements which lie in the same class as a modulo all B-definable
equivalence relations with only finitely many classes. In particular, two elements with the same strong
type over B have the same type over B. Strong types in a stable theory are hence stationary, so we will
often write Cb(a/A) to denote Cb(stp(a/A)).

Observe that, by compactness, a definable equivalence relation with a bounded number of classes has
only finitely many classes. If the simple theory T is unstable, we need to additionally consider, possible
not definable, equivalence relations with boundedly many classes. In general, since a small intersection
of bounded equivalence relations is again bounded, there is a smallest A-invariant bounded equivalence
relation, each of whose classes is called a Lascar strong type over A. Two tuples have the same Lascar
strong type over A if and only if they lie in the transitive closure of the relation of having the same type
over some model containing A. Simple theories are G-compact [59, 53], that is, equality of Lascar strong
types is type-definable and coincides with the smallest bounded equivalence relation type-definable over
A, for two tuples a and b in a simple theory T have the same Lascar strong type over A if there is some
c such that both a, c and b, c start A-indiscernible sequences over A.

Type-definable equivalence relations allow us to describe canonical bases for simple theories. A hyperimag-
inary aE is the equivalence class of a (possibly infinite) tuple a modulo some type-definable equivalence
relation E. Clearly, every imaginary is a hyperimaginary. Given a collection A of hyperimaginaries, its
bounded closure bdd(A) is the collection of all hyperimaginaries α having a bounded orbit under all
automorphisms of the monster fixing A pointwise. The collection bdd(A) may be a proper class. Observe
that, if A consists exclusively of imaginaries and α is some imaginary lying in bdd(A), then α lies in
acleq(A).

Notation. We denote by dclheq and aclheq the hyperimaginary definable and algebraic closures, that is,
the collection of hyperimaginaries whose orbit under the automorphisms fixing the base set is a singleton,
resp. finite.

Given hyperimaginaries aE and bF and an L-formulae ϕ, set

Φϕ(x, y) = ∃x′∃y′ (E(x, x′) ∧ F (y, y′) ∧ ϕ(x, y)) .

We define the type tp(aE/bF ) as the union, over all L-formulae ϕ, of all partial types Φϕ(x, b) such that
|= ϕ(a′, b′) for some a′ |= E(x, a) and b′ |= F (y, b). If we let b vary among its F -class, such a union gives
an equivalent partial type. Notice that, though tp(aE/bF ) is a partial type, any two realisations can be
mapped one to another by an automorphism fixing bF .

This allows us to define hyperimaginary dividing and forking, which inherit most of the properties of
forking for real tuples, replacing acl by bdd, when T is simple. In particular, two tuples have the same
Lascar strong type over a hyperimaginary e if and only if they have the same type over bdd(e). Over
a model M , Lascar strong types and ordinary types coincide. Lascar strong types in a simple theory

20 CHAPTER I. PRELIMINARIES



Groupes définissables dans des expansions de théories stables

are amalgamation bases, for which the independence theorem holds: any two non-forking extensions of a
common Lascar strong type over independent sets of parameters can be glued into a common non-forking
extension. Hence, we define the canonical base of Cb(a/A) of a Lascar strong type p = tp(a/bdd(A))
to be the smallest hyperimaginary α in bdd(A) such that p does not fork over α and p�α remains
an amalgamation base. In the stable case, this definition agrees with the previous one, since type-
definable equivalence relations are intersections of definable ones, so hyperimaginaries are interdefinable
with infinite sequences of imaginary elements.

Canonical bases allow us then to prove the following fact, which will be used repeatedly.

Fact 1.3. In a simple theory, given subsets A, B, C and D with bdd(A) ∩ bdd(B) = bdd(C) and
D |̂

C
AB, then

bdd(DA) ∩ bdd(DB) = bdd(DC).

Proposition 1.4. Let p be a Lascar strong type in a simple theory. Its canonical base Cb(p) is definable
(as a hyperimaginary) over any Morley sequence {ai}i<ω of p. If the theory is supersimple and p is of
real sort, then Cb(p) is definable over some initial segment {ai}i≤n.

In supersimple theories, hyperimaginaries need not be considered.

Theorem 1.5 (Buechler, Pillay, Wagner [19]). In a supersimple theory, every hyperimaginary is inter-
definable with a (possibly infinite) sequence of imaginary elements.

1.2 NFCP and Equationality

This section presents two strengthenings of stability, which will play a decisive role in Chapters IV
and VI. In order to produce saturated ultraproducts, Keisler [52] introduced the finite cover property,
which somewhat unexpectedly relates to various constructions in geometric model theory.

Definition 1.6. A theory T does not have the finite cover property (or T has NFCP) if for every formula
ϕ(x, y), there is a natural number n such that for any sequence {ai}i∈N where {ϕ(x, ai)}i∈N is inconsistent,
then there is a subset J ⊂ N of size n such that {ϕ(x, ai)}i∈J is inconsistent.

In order to show that T has NFCP, it suffices to consider formulae ϕ(x, y), where x is a single variable.
NFCP theories are stable [87, Theorem 4.2]. A stable theory T has NFCP if and only if whenever
E(x, y, z) defines a family of equivalence relations, parametrised by z, then there is a uniform bound on
the size of those classes which are finite [87, Theorem 4.4].

Given a complete theory T , expand its language by adding a new symbol σ. A generic automorphism
(M,σ) is an existentially closed model of the incomplete theory

Tσ = T ∪ {“σ is an automorphism.”}

If the class of existentially closed models of Tσ is elementary, we denote it by TA. If T is stable and
TA exists, then T has NFCP. For a stable theory, the existence of TA is equivalent to NFCP and a
certain technical condition [73, Theorem 1.1], which holds for strongly minimal theories with the definable
multiplicity property (DMP): given a formula ϕ(x, b) of rank k and degree m, there is a formula θ in tp(b)
such that, whenever b′ |= θ, then so does ϕ(x, b′) have rank k and degree m. In particular, the theory
ACFA of existentially closed difference fields exists [27]. It is supersimple of Lascar rank ω.

Another remarkable expansion of the theory of algebraically closed fields is the theory of an algebraically
closed field equipped with a definable algebraically closed proper subfield. This theory, already considered
by Keisler [51] after work of Robinson, is complete once the characteristic is fixed. It is a particular
example of the theory of belle paires [78] of models of a stable theory. Assume that T is stable with
elimination of quantifiers and imaginaries, to ease the presentation. A pair of models E � M of T is a
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belle paire if E is |T |+-saturated and M realises every type over A∪E, whenever A ⊂M has cardinality
strictly less than |T |+. Any two belle paires are elementarily equivalent, so we denote by TP their common
theory in the language LP = L ∪ {P}. However, a |T |+-saturated model of TP need not be itself a belle
paire. Poizat showed that it is the case if and only if T has NFCP. If so, the theory TP has NFCP as
well, so it is, in particular, stable.

Assume now that T has NFCP, and work inside a sufficiently saturated model (M,E) of TP . The index
P will refer to TP . Thus, by aclP (A) we denote the real elements algebraic over A in the theory TP and
|P^ denotes non-forking independence in TP . A subset A of M is P -independent if

A |̂
EA

E,

where EA = E∩A = P (A). Two P -independent substructures having the same quantifier-free type in TP
are elementarily equivalent. Since every subset of E is P -independent, there is in particular no additional
structure on E induced by TP .

The following properties follow from [11, Remark 7.2 and Proposition 7.3]

Fact 1.7. Let A and B be subsets of M .

• The algebraic closure aclP (A) is P -independent.

• If A is P -independent, then A |P^EA
E. In this case, we have that aclP (A) = acl(A) and EaclP (A) =

acl(EA) = aclP (EA).

• If A and B are P -algebraically closed, then

A |P^
A∩B

B if and only if


A |̂
A∩B,E

B

and

EA |̂
EA∩B

EB

Another strengthening of stability which resonates with NFCP is equationality [75]. A parameter-free
formula ϕ(x, y), where the tuple x has length n, is an n-equation if the family of finite intersections of
instances ϕ(x, a) has the descending chain condition (DCC). A complete theory T is n-equational if every
definable set in n variables is a Boolean combination of instances of n-equations. A theory is equational
if it is n-equational for every n in N.

Typical examples of equational theories are the theory of an equivalence relation with infinite many
infinite classes, completions of the theory of R-modules or algebraically closed fields. If ϕ(x, y) is an
equation, then so is ϕ−1(y, x) = ϕ(x, y). Finite conjunctions and disjunctions of equations are again
equations.

Similar to stability, equationality is preserved under naming parameters and bi-interpretability [49].
However, it is unknown whether equationality follows from 1-equationality, which itself implies stability
for formulae ϕ(x, y), where x is a single variable, and thus stability [75]. Otherwise, since the order
property is preserved by Boolean combinations, suppose that there is a formula ϕ(x, y), where x is a
single variable x, with the order property, witnessed by sequences {ai, bj}i,j∈N such that

|= ϕ(ai, bj) if and only if j < i.

The sequence of finite intersections ϕ(x, b1) ) ϕ(x, b1) ∩ ϕ(x, b2) ) . . . is strictly decreasing, so ϕ is not
a 1-equation.

Besides an unpublished construction of Hrushovski, the only known natural example of a stable non-
equational theory so far is the free non-abelian group [84, 85]. However, proving that a particular stable
theory is equational is far from obvious, in general.
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Remark 1.8. If T is equational, given a type p over a model M , its definition scheme is particularly
easy to obtain: Since dp(¬ϕ) = ¬dpϕ, we may assume that ϕ(x, y) is an equation. The intersection

⋂
ϕ(x,m)∈p

ϕ(x,m)

is a formula ξ(x) over M contained in p. Set hence

dpϕ(y) = ∀x (ξ(x)⇒ ϕ(x, y)) .

Instances of equations have a fundamental property: they are Srour-closed. A definable set X is
Srour-closed if the family of finite intersections of conjugates of X by automorphisms of the monster
has the DCC. We have an equivalence between these two notions: Srour-closed definable sets are exactly
those, which are instances of equations.

Recall that a set X is closed in the indiscernible topology, introduced by Junker and Lascar [50], or
indiscernible-closed if, whenever {ai}i∈N is an indiscernible sequence such that ai lies in X for i > 0, then
so does a0.

The indiscernible topology refines the Srour topology, though they agree on definable sets [50, Theorem
3.16]. Indeed, if ϕ(x, b) is not Srour-closed, compactness and a Ramsey-style argument imply that there
is a sequence of pairs {ai, bi}i∈Z such that {ai}i∈Z is indiscernible and all b′is realise tp(b) such that

|= ϕ(ai, bj) if and only if i < j.

Equipped with the inverse order, the sequence {ai}i≤0 is indiscernible, but witnesses that ϕ(x, b0) is not
indiscernible-closed. Hence neither is ϕ(x, b). Suppose now that the sequence {ai}i∈N witnesses that the
definable set Xb = ϕ(x, b) is not indiscernible-closed. For every i > 0, there is an automorphism σi which
sends the sequence {aj}j∈N to {ai+j}j∈N. In particular, for every i > 0, we have that

ai ∈
⋂
j<i

Xσj(b) \Xσi(b).

We obtain hence a decreasing chain

Xb ) Xb ∩Xσ1(b) ) Xb ∩Xσ1(b) ∩Xσ2(b) ) . . . ,

so Xb is not Srour-closed.

1.3 Generics, Stabilisers and Isogenies

For this section, assume that the complete theory T is simple. Recall that a type-definable group G
is a type-definable set with a group law given by a (relatively) definable binary operation ·, as well as an
identity element. We denote by SG the closed subspace of types extending the partial type “ x ∈ G ”.

An element g in G is (left) generic over A if, whenever

h |̂
A

g,

then
h · g |̂ A, h .

A type is generic if its realisations are. One can smilarly introduce right generic elements and types,
though these notions agree with the previous ones. Genericity is preserved under non-forking extension
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and restriction, as well as by taking inverses. Furthermore, if g is generic over A and h is an element of
G which is algebraic over A, then h · g is again generic over A. The product of two generic independent
elements is generic and independent of each factor.

In order to show the existence of generic types over any given subset of parameters, we modify the
local ranks to witness dividing in terms of the group action. Given an integer k and formula ϕ, the
stratified (ϕ, k)-rank D∗(π, ϕ, k) of a partial type π is characterised by the following principle:

• D∗(π, ϕ, k) ≥ n+ 1 if and only if there are elements {gi}i∈N in G and parameters {ai}i∈N such that
the family {ϕ(gi · x, ai)}i∈N is k-inconsistent and D∗(π ∪ {ϕ(gi · x, ai)}, ϕ, k) ≥ n for every i in N.

Observe that the stratified (ϕ, k)-rank of any G-conjugate of π equals the stratified (ϕ, k)-rank of π and
is bounded from above by the corresponding local rank of π. Every partial type in SG(A) admits a
completion of the same stratified rank. The sequence of stratified local ranks witnesses forking for types
in SG. An element is generic over A if and only if the values of all its stratified local ranks are maximal
among types in SG(A). Thus, generic types over any set of parameters exist and they correspond to
f-generic types, that is, those types whose global non-forking extensions p satisfy that no translate

g · p = {ϕ(x) | p |= ϕ(g · x)}

forks over A (or over ∅).

The existence of generic types implies in particular that every element of G can be written as the product
of two, not necessarily independent, generic elements.

A relatively definable subset X of G is (left) generic if there is a finite set G0 of G such that G =
G0 ·X =

⋃
g∈G0

g ·X.

We can define similarly the notions of right or bilateral generic definable subsets. If T is stable, then
either a relatively definable subset is generic or its complement is, so generic types are exactly those
containing only generic formulae. Thus, in the ω-stable case, a type is generic if and only if its Morley
rank is maximal possible in SG, since Morley rank is preserved by definable bijections, and hence by
translations. The same holds for supersimple theories : a type is generic if its Lascar rank is maximal
possible in SG. Lascar inequalities imply the following :

SU(H) + SU(G/H) ≤ SU(G) ≤ SU(H)⊕+ SU(G/H).

For an ω-stable group, whenever K � H are definable subgroups, either

RM(K) < RM(H),

or the index [H : K] is finite and
dM(K) · [H : K] = dM(H).

In particular, since type-definable subgroups in stable theories are the intersection of definable groups,
they become hence the intersection of finitely many in the ω-stable case, and thus definable. If the
theory T is simple, type-definable subgroups need to be hence considered: given a set A, the connected
component G0

A of G over A equals the intersection of all type-definable subgroups of G over A of bounded
index. The group G is connected over A if and only if G = G0

A. It is (absolutely) connected if G = G0
A

for any set of parameters A.

Note that G0
A E G and is again type-definable over A of bounded index. In the stable case, the Baldwin-

Saxl chain condition [3] yields that the connected component does not depend on the set of parameters
and is type-definable over the same set of parameters as G. The Baldwin-Saxl chain condition implies
furthermore that, given a possibly non-definable subgroup H of a stable group G, the generics of its
definable hull [94] in G, which is the intersection of all definable groups in G containing G, are exactly
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the types in SG which are generic for H, that is, those types which contains only formulae which are
generic for H: finitely many translates cover H.

For stable groups, there is a close relation between generic types and G0. Each coset of G0 contains
a unique generic type, hence there is a correspondance between the G/G0 and the collection of generic
types, on which G acts by translation. A generic type in G0

bdd(A) is called principal generic. If T is
simple, the connected component may have several generic types, though a partial result was already
observed in [74, Proposition 2.2] :

Proposition 1.9. Given three generic Lascar strong types p, q and r over A in G0
bdd(A), there are

realisations g |= p and h |= q such that g · h |= r and g, h and g · h are pairwise A-independent.

A Lascar strong type p over A in SG determines a particular subgroup of G0
bdd(A), its stabiliser.

Given a set of parameters A, the (left) stabiliser of an element g in G over A is the subgroup Stab(g/A),
type-definable over bdd(A), generated by

St(g/A) = {h ∈ G : ∃x |= Lstp(g/A) (hx |= Lstp(g/A) ∧ x |̂
A

h )}.

The independence theorem implies that Stab(g/A) = St(g/A) · St(g/A). All generics of Stab(g/A) are
contained in St(g/A). Equality Stab(g/A) = G0

bdd(A) holds if and only if g is generic over A. If g |̂
A
B,

then Stab(g/B) ≤ Stab(g/A) has bounded index.

If G is stable and R is either Morley rank, Lascar rank or the local ranks, then given a strong type
p = stp(g/A) over A = acleq(A), we have that

R(Stab(p)) ≤ R(p).

If equality above holds, e.g., if the coset Stab(p) ·g is definable over A, then the stabiliser of p is connected
and p is the generic type of the coset Stab(p) · g.

Ziegler [104, Theorem 1] noticed a sort of of converse to Proposition 1.9, which can be easily generalised
to non-abelian groups type-definable in a simple theory [BMW12a, lemme 1.2]. Recall that two groups
H and K are commensurable if H ∩K has bounded index in both H and K.

Lemma 1.10. Given a type-definable group H over A = bdd(A) in a simple theory, and two elements
h and h′ such that h, h′ and h · h′ are pairwise independent over A, then Stab(hh′/A) = Stab(h/A) is
connected over A and commensurable with some conjugate of Stab(h′/A), which is connected over A as
well. Furthermore, the element h is generic in the coset Stab(h/A) · h, which is definable over bdd(A).
Likewise for h and h · h′.

Ziegler’s lemma has played a fundamental role in several of the results which are presented here, specially
in the analysis of groups interpretable in Poizat’s green fields [BMW12a] and groups definable in belles
paires [BM14], as well as to generalise Lascar’s description of bounded automorphisms of algebraically
closed fields to various theories of fields equipped with operators [BHM15]. Furthermore, Göral [34]
adapted some of the results in [BM14] in order to describe definable and interpretable groups in the
structure C equipped with a predicate for the multiplicate group of roots of unity, which has the Mann
property.

Given two type-definable groups G and H, a definable isogeny between G and H is a type-definable
subgroup S ≤ G×H such that :

• the projection GS on G, resp. HS on H, is a subgroup of finite index, and

• both the kernel ker(S) = {g ∈ G : (g, 1) ∈ S} and the cokernel coker(S) = {h ∈ H : (1, h) ∈ S} are
bounded.
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Such an isogeny induces a group isomorphism between GS/ ker(S) and NH(coker(S))/coker(S). Thus,
the isogeny relation is an equivalence relation. Every type-definable group is isogenous to its connected
component. Therefore, an isogeny between G and H induces an isogeny between their connected com-
ponents, and vice versa.

Combined, Lemma 1.10 and [BMW12a, Lemma 1.5] provide a useful criteria to construct isogenies
between two given groups in a simple theory (cf. [BM14, lemme 2.4]):

Lemma 1.11. Suppose G1 and G2 are two type-definable (or even type-interpretable) groups in a simple
theory. Given a boundedly closed set of parameters C, and elements a1 and b1 of G1, and a2 and b2, of
G2 such that:

1. the elements a1 and a2) are pairwise interbounded over C. Likewise for b1 and b2, and for a1 · b1
and a2 · b2,

2. the elements a1, b1 and a1 · b1 are pairwise independent over C.

Then, the element a1, resp. a2, is generic in a unique, up to commensurability, translate of a type-definable
subgroup H1 of G1, resp. H2 de G2, where everything is definable over C. The stabiliser Stab(a1, a2/C)
induces a definable isogeny between H1 and H2.

In case we only have that a2 is bounded over C, a1, the element b2 is bounded over C, b1, and a2 · b2 is
bounded over C, a1 · b1 in condition (1), then there is a type-definable projection from H1 to a quotient of
H2 by a bounded subgroup, relatively definable over C.

1.4 Internality, Analysability and P -closure

All throughout this section, suppose T is simple and let Σ be an invariant family of types. We do not
require that the size of Σ is bounded.

Given a partial type π over A, we say that π is Σ-finitely generated if there is some B ⊃ A such that
for every realisation a of π, there is a tuple of realisations c of types in Σ over B and a is definable over
Bc.

The type π is Σ-internal, resp. almost Σ-internal, if for every realisation a of π, there are B |̂
A
a and a

tuple of realisations c of types in Σ over B such that a is definable, resp. bounded, over Bc.

We say that π is Σ-analysable if every realisation a of π is interbounded over A with a sequence {ai}i<α
such that each type p(ai/A{aj}j<i) is almost Σ-internal.

A complete type p over A is foreign to Σ if, whenever a realises a non-forking extension of p over B ⊃ A
and c is any tuple of realisations of types of Σ over B, then a |̂

B
c.

An extension of an internal, resp. almost internal, type remains so. A non-forking restriction of
an internal, resp. almost internal, type is again internal, resp. almost internal. (Almost) Internality is
transitive: Given an ∅-invariant family Σ′ of types, if every type in Σ is (almost) Σ′-internal, then every
partial (almost) Σ-internal type is (almost) Σ′-internal. In particular, if a is bounded over Ab and tp(b/A)
is almost Σ-internal, then so is tp(a/A).

As observed by Hrushovski, some of the above notions are related. For a stable theory, the notion of
Σ-internality agrees with being Σ-finitely generated. In the simple case, we have the following result.

Lemma 1.12. If tp(a/A) is not foreign to Σ, then there is some hyperimaginary a0 in dclheq(Aa)\bdd(A)
such that tp(a0/A) is Σ-internal.

Two types p and q are orthogonal if any two realisations of their corresponding non-forking extensions
to the same base set are independent.
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A non-bounded type p is regular if it is foreign to the collection of all its forking extensions.

Since regular types are particular examples of types of weight 1, it is easy to see that non-orthogonality
is an equivalence relation among regular types. Lascar inequalities yield that a type of monomial Lascar
rank ωα is always regular. If SU(p) = β + ωαn for some integer n > 0, then p is non-orthogonal to
some (possibly hyperimaginary) type of Lascar rank ωα. If T is supersimple, every non-bounded type is
non-orthogonal to a regular type of a real element, though no estimate on the rank of the latter can be
given in general.

The above notions have interesting consequences in the presence of a definable group structure. Las-
car’s analysis [60] uses strongly Zilber’s indecomposables in order to show that a group of finite Morley
rank admits a normal series such that each quotient is almost strongly minimal. In particular, a group of
finite Morley rank is finite-dimensional and Lascar rank agrees with Morley rank. However, Hrushovski’s
analysis [39] provides a finer decomposition of a group in terms of its generic types, even in the mere
simple case. Nevertheless, for the purpose of this work, we will present this analysis only for stable groups
(cf. [96, Theorem 3.1.1 and Corollary 3.1.2]):

Lemma 1.13. If the generic type of a stable type-definable group G is not foreign to an ∅-invariant family
Σ, then there is a relatively definable normal subgroup N of infinite index such that G/N is Σ-internal.

In particular, if the generic type of a definably simple stable group is not foreign to Σ, then the group
must be Σ-internal. Thus, if its generic type is almost Σ-internal then G is Σ-internal. Likewise for stable
division rings.

Hrushovski’s analysis of a superstable group G of finite rank goes as follows: take a type of rank 1 which
is not orthogonal to a principal generic. Taking the family of its conjugates, there is a normal subgroup
of infinite index G1 such that the quotient G/G1 is internal to types of rank 1. Since SU(G1) < SU(G),
this process must stop and we obtain a finite analysis for G, in terms of types of rank 1.

Let us now conclude by introducing a certain closure operator which will play a fundamental role in
Chapter V.

Definition 1.14. Fix some principal generic type p of G over ∅. Given a set of parameters D, we define
its p-closure clp(D) as the collection of elements g in G co-foreign over D to p, that is, such that, whenever
D1 ⊃ D and h |= p is independent from D1 over D, then g |̂

D1
h.

Observe that this closure does not depend on the generic type p. Let q be another generic type and g be
in clq(D). Choose some D1 ⊃ D and h |= p, generic over D1. Given b |= q generic over D ∪ {h}, then h
and b−1 · h are independent over D1. Likewise b and b−1 · h are independent over D1, so b is generic over
D1 ∪ {b−1 · h}. Hence

b |̂
D1∪{b−1·h}

g,

thus
h |̂
D1∪{b−1·h}

g and therefore h |̂
D1

g.

We will therefore denote the closure of a set D by clGen(D). Since any element of G can be written as
the product of two generic elements, the above definition agrees with [97, Definition 3.5.1], thanks to [97,
Remark 5.1.19].

In contrast to the closure operators acl or bdd, the cardinality of clGen(D) may be comparable to the sat-
uration of the monster, even if D is finite. For example, if G is a differentially closed field in characteristic
0, the generic has Lascar rank ω, so it is regular. The closure clGen(∅) contains all elements which are
not generic, that is, differentially algebraic over Q. It contains in particular all the constants. The same
holds more generally for any type-definable group of monomial Lascar rank. Despite that the closure
clGen(A) of a set may be unbounded in the monster, it is compatible with non-forking independence (cf.
[97, Lemma 3.5.5]).
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Lemma 1.15. If A |̂
C
B, then clGen(A) |̂

clGen(C)
clGen(B). More precisely, given any subset A0 of

clGen(A), set C0 = bdd(A0C) ∩ clGen(C). Then

A0 |̂
C0

clGen(B).

1.5 The Group Configuration

Hrushovski’s group configuration [39] produces, out of a certain incidence relation, a ∗-definable
group, that is, a partial type π, possibly in infinitely many variables, equipped with both a type-definable
equivalence relation E and a type-definable binary relation · compatible with E such that the quotient
(π/E, ·) has a natural group structure. Technically, we should say ∗-interpretable, but we hope the reader
forgives this abus de langage. The basic idea is to obtain, out of the aforementioned incidence relation,
an infinite collection of invertible definable functions acting on the realisations of some strong type. The
group law will then be the composition of germs.

We will include a short overview of Hrushovski’s group configuration, to stress out that the con-
struction can be carried over even when the departing tuples are infinite. In this section, the theory
T is assumed stable, though a variant of the group configuration exists for simple theories [12]. Also,
more general closure operators, similar to the one introduced in Definition 1.14, could be considered [16],
instead of algebraic closure.

A group configuration over A is a given by the, possibly infinite, tuples {a, b, c, x, y, z} and the following
quadrangle:

a

xb

c y

z

satisfying the following conditions:

• On each line, every point is algebraic over the other two together with A.

• Every three non-colinear points are A-independent.

Observe that, if we replace any of the above points by a tuple which is interalgebraic over A, we obtain
again a group configuration. Furthermore, the tuple a is interalgebraic with Cb(b, c/Aa), and likewise for
each other point.

In order to construct a ∗-definable group out of the above configuration, the idea is to enlarge the set
of parameters A by carefully adding independent realisations of some of the types of the tuples, in order
to render z and y interdefinable over b. Hence, the realisations of stp(b/A) can now be seen as partial
functions from stp(z/A) to stp(y/A). Pairs of independent realisations of stp(b/A) induce a germ of a
function on stp(y/A), as desired.

Theorem 1.16. Suppose T admits a group configuration over A, where the corresponding tuples are
possibly infinite. Possibly after adding independent parameters B to A, there exist a connected ∗-definable
group G and generic independent elements g and g′ over B such that both a and g are interalgebraic over
B, and b and g′ are interalgebraic over B, as well as c and g · g′ are interalgebraic over B.
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Remark 1.17. Suppose that H is a type-definable group over A. Choose generic independent elements
h1, h2 and h3 in H over A. The following diagram yields a group configuration:

h1

h3h2

h1 · h2 h3 · h1

h3 · h1 · h2

However, we do not obtain any new groups. The ∗-definable group obtained in Theorem 1.16 to the
above group configuration is isogenous to H, by Lemma 1.11, and hence, type-definable.

CHAPTER I. PRELIMINARIES 29



Groupes définissables dans des expansions de théories stables

30 CHAPTER I. PRELIMINARIES



Groupes définissables dans des expansions de théories stables

“Je üppiger die Pläne blühen,
um so verzwickter wird die Tat.”

Erich Kästner – Spruch in der Silvesternacht

II
Ampleness

The dichotomy principle, formulated by Zilber, establishes a division line on the geometry of the min-
imal sets in a given theory: Either the lattice of algebraically closed sets (in T eq) is modular or an

algebraically closed field can be interpreted. At the base of many key applications of Geometric Model
Theory to Diophantine Geometry [42, 83] lie Zariski Geometries [48], for which this division principle
holds. The dichotomy principle does not hold for strongly minimal sets, as shown by Hrushovski, who
developed a general method [40, 41] to produce ω-stable theories with prescribed geometries in terms
of underlying dimension functions, which agree with Morley rank on the resulting theories. Despite the
exotic behaviour of the geometry of his ab initio example, it satisfies a weakening of the modularity prin-
ciple, which in itself prevents an infinite field to be interpretable [67]. Motivated by this, Pillay [71] and
Evans [31] introduced the ample hierarchy of stable theories, in order to provide finer division lines on
the analysis of the geometry of strongly minimal sets. Little is known about definable groups in theories
with large degree of ampleness, or whether there are such examples of finite rank which do not interpret
an infinite field.

2.1 Amalgams and Collapse

Notation. Though some of the notions presented in this section can be adapted to a wider context [82],
we will assume that all underlying theories are stable.

Since Hrushovski-Fraïssé’s amalgamation construction will be a recurring topic in this document (and
in the author’s own research), we will first introduce a general overview of the main features of this
construction, extracted (almost) verbatim from [BMW15, Section 6].

The amalgams we will consider fall into two different categories:

Fusion (cf. [40, 7, 103]) We consider several theories Ti, together with a common reduct Tcom. Let F
denote the class of models of all T ∀i .

Colored (cf. [41, 5, 80, 81, 1, 8, 9, 6]) Given a underlying theory T0 and a new predicate P , whose points
are called colored, we denote by F the class of colored structures whose L-restriction are models of
T ∀0 .
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Remark 2.1. The ab initio construction (or rather, constructions [95]) in a pure relational language can
be seen as a colored expansion of the theory of equality, in which a collection of tuples are colored if they
lie in one of the distinguished relations.

All model-theoretic notions in the sense of the reduct Ti, such as algebraic or definable closure, types,
independence or canonical basis, will be denoted by the index i, that is, dcli, acli, tpi, Cbi, |i^ . We
assume that all the base theories Ti’s have elimination of quantifiers.

In order to construct a certain structure M with a prescribed geometry, we first consider a pre-
dimension function δ, defined on the class of finitely generated models of F , satisfying the submodular
inequality:

δ(A ∪B) ≤ δ(A) + δ(B)− δ(A ∩B),

where we write δ(A) in order to denote the value of the predimension of the structure generated by the
set A. Since every theory Ti has elimination of quantifiers, the i-diagram Diagi(A) of a structure A
determines its i-type, so

(δ)
⋃
i Diagi(A), together with the color of A (in case there is), determine δ(A).

Thus, the fusion of two theories T1 and T2 of finite Morley rank with the definable multiplicity property
(DMP) uses the following predimension:

δ(A) = n1 RM1(A) + n2 RM2(A)− n|A|,

with n = n1 RM(T1) = n2 RM(T2).

The predimension for the fusion of two strongly minimal theories over an infinite Fp-vector space is given
by

δ(A) = RM1(A) + RM2(A)− ldimFp(A).

Poizat’s colored fields are algebraically closed fields equipped with a predicate P for a distinguished subset
and predimension

δ(k) = 2 degtr(k)− dimP (P (k)).

In the black field, the predicate P denotes a subset N , such that dimP (N) = |N |. The predicate of the
red field in positive characteristic is a proper additive subgroup R with dimP (R) = ldimFp(R). In the
green fields, whose collapse produced a bad field of characteristic 0 [6], the predicate P denotes a divisible
torsion-free multiplicative subgroup Ü (considered as a Q-vector space) with dimP (Ü) = ldimQ(Ü),
though the requirement on the torsion can be removed [25].

According to the negative factor which is substracted when computing the predimension, we distin-
guish two types:

Degenerated The negative factor corresponds to the cardinality of some predicate (more generally, to
the dimension of some degenerated pregeometry), e.g., the fusion over equality or the black field.

Modular There is an abelian group, which is ∅-definable in a language common to all theories, and
which is either an Fp-vector space (e.g., the fusion of two theories over an Fp-vector space or the
red field) or divisible of finite n-torsion for every natural number n. (e.g., the green field). Every
structure is then equipped of the aforementioned group law. The collection of colored points (if
they exists) forms a subgroup, which is divisible if the group is.
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In the modular case, we will assume, in order to simplify the notation, that the abelian ∅-definable group
has as underlying set the same universe as the structure (For the green field, this is verified if we virtually
add to the multiplicative group of the field the element 0). Up to Morleyisation, we may also assume that
the given theories (Ti, Tcom) eliminate quantifiers in a purely relational language, except for the group
law in the modular case, e.g., addition for the red fields, multiplication for the green fields and vector
addition for the fusion over a vector space.

If the group is divisible with finite n-torsion for every natural number n, we will refer to the divisible
closure of the group generated by the set B as the structure generated by B. Thus, a finitely generated
structure corresponds hence to a divisible group of finite rank in the group-theoretical sense, that is, a
finite-dimensional vector space modulo the torsion.

We define a relative predimension δ(./A) working over a substructure A. Submodularity implies that

δ(ā/A) = lim
A0→A

{δ(ā/A0)} = inf{δ(ā ∪A0)− δ(A0) : A0 ⊆ A f.g }.

Thus, the limit exists and the relative predimension is again submodular. Again, for a set A, we write
δ(./A) to denote the relative predimension over the substructure generated by A. So that the pre-
dimension becomes meaningful, restrict F to the subclassK of structures such that every finitely generated
substructure has non-negative predimension. Given M in K, a substructure A of M is self-sufficient in
M , denoted by A ≤M , if

0 ≤ δ(b/A)

for every finite tuple b in M .

By submodularity, the intersection of two self-sufficient structures of M in K is again self-sufficient in
M , so for every subset A of M , there is a smallest self-sufficient structure in M containing A, which we
call the self-sufficient closure A of M and denote by 〈A〉M . If M ≤ N are two structures in K, then
〈A〉M = 〈A〉N , for the relation of self-sufficiency is clearly transitive. Hence, we will simply refer to the
self-sufficient closure of A by 〈A〉. Uniqueness implies that 〈.〉 is contained in the algebraic closure of A
and has finite character:

〈A〉 =
⋃
{〈A0〉 : A0 ⊂ A f.g. },

Remark 2.2. The red differential field [81, 15] does not fit into our treatment, since the algebraic closure
does not contain the self-sufficient closure, due to the floating constants. However, it does fit in spirit
into this general presentation.

For a finite tuple a, we have that

δ(〈a〉) = lim inf{δ(b) | a ⊂ b finite }.

Observe that, if δ is integer-valued (which is the case in all of the aforementioned examples, except [95]),
then the self-sufficient closure of a finitely generated structure is again finitely generated.

Remark 2.3. Given a set A and a finite tuple b such that δ(b/A) < 0, but δ(b′/A) ≥ 0 for every proper
subtuple b′ of b, then b lies in 〈A〉.

Indeed, if b′ = b ∩ 〈A〉 were a proper subtuple of b, then

δ(b/〈A〉) ≤ δ(b/A ∪ b′) < 0,

by submodularity.

The following property:

(?)1 δ(b/A) ≤ 0 whenever b lies in
⋃
i acli(A)
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holds for all predimension functions considered so far. Indeed, in the colored case, there is a unique
reduct T0 and the positive part of the predimension is 0 when b lies in acl0(A). For a fusion, notice that
each of the positive factors in the predimension function is bounded from above by the negative part.

By choosing a subclass K0 ⊂ K of finitely generated structures having the amalgamation property
with respect to self-sufficient embeddings, Fraïssé’s amalgamation method yields a countable amalgam
M which is universal and strongly homogeneous for self-sufficient substructures. This generic model
M is a model of

⋃
i<n Ti, and it is stable. If δ is integer-valued, it is superstable, and it is ω-stable if

the base-theories have the DMP [100]. Collapsing renders it of finite Morley rank, by restricting to a
subclass of K where (certain) elements of predimension 0 become algebraic. In both cases, collapsed and
uncollapsed, the quantifier-free type of a self-sufficient structure determines its type.

The independence in the theory T of M is characterised as follows for two tuples a and b over an
algebraically closed set C:

a |̂
C

b

if and only if

〈ā∪C〉 |i^
C

〈b̄∪C〉

for each i
and



Degenerated 〈āb̄ ∪ C〉 = 〈ā ∪ C〉 ∪ 〈b̄ ∪ C〉.

Modular 〈āb̄∪C〉 equals the subgroup generated by
〈ā ∪ C〉 and 〈b̄ ∪ C〉, and its colored points (if
any) are the products of those of 〈ā∪C〉 and of
〈b̄ ∪ C〉.

All known amalgamation classes K0 so far satisfy furthermore that the free amalgam of two structures
A and B of K0 over a common self-sufficient substructure C lies in K0 whenever C is maximal self-sufficient
in B and δ(B/C) > 0. In particular, we have the following property:

(?)2 Any finite tuple b in acl(A) can be extended to some finite b′ in acl(A) with δ(b′/〈A〉) = 0.

The above properties allows us to isolate two crucial features of the self-sufficient closure over the
given data.

Lemma 2.4. The operator 〈〉 satisfies the following condition with respect to the given theories Ti:

(†) If C is algebraically closed and a |̂
C
b, then 〈Cab〉 ⊂

⋂
i<n acli(〈Ca〉, 〈Cb〉).

(‡) Given b in
⋃
i<n acli(A), then 〈acl(b), A〉 ⊂

⋂
i<n acli(acl(b), 〈A〉).

Property (†) is clear in the degenerated case. In the modular case, it follows from the fact that the
group law is defined in the common sublanguage.

For property (‡), suppose A is self-sufficient and let b be in
⋃
i acli(A). Set B = acl(b). It suffices to

show that the structure generated by A∪B is already self-sufficient. We will show that it is an increasing
union of self-sufficient substructures, each being the self-sufficient closure of a finite tuple.

Let a in A be finite such that b lies in
⋃
i acli(ā). By (?)1,

δ(b/〈a〉) = 0,

Hence, the structure C generated by b ∪ 〈a〉 is self-sufficient.

Choose now some finite b′ in B extending b. By (?)2, we may assume that δ(b′/〈b〉) = 0, so δ(〈b′〉) = δ(〈b〉).
In particular,

〈b〉 ⊂ C ∩ 〈b′〉.
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Let us now show that the structure generated by 〈a〉 ∪ 〈b′〉 is self-sufficient. Observe that it equals the
structure generated by C ∪ 〈b′〉, so it suffices to show that δ(〈b′〉/C) = 0. Submodularity implies that

0 ≤ δ(〈b′〉/C) ≤ δ(〈b′〉/C ∩ 〈b′〉).

Together with δ(〈b′〉) = δ(〈b〉) ≤ δ(C ∩ 〈b′〉), we have that δ(〈b′〉/C) = 0, as desired.

2.2 Ampleness and Variants

We first recall the definition of 1-basedness, CM-triviality and n-ampleness [71, 31] for a simple theory
T , though they were originally formulated in the stable context.

Definition 2.5. The theory T is 1-based if for every pair of boundedly closed subsets A ⊂ B and every
real tuple c, we have that Cb(c/A) is bounded over Cb(c/B). Equivalently, for every boundedly closed
set A and every real tuple c, the canonical base Cb(c/A) is bounded over c.

The theory T is CM-trivial if for every pair of boundedly closed subsets A ⊂ B and every real tuple
c, if bdd(Ac) ∩B = A, then Cb(c/A) is bounded over Cb(c/B).

The theory T is called n-ample if there are n+1 real tuples satisfying the following conditions (possibly
working over parameters):

(a). bdd(a0, . . . , ai) ∩ bdd(a0, . . . , ai−1, ai+1) = bdd(a0, . . . , ai−1) for every 0 ≤ i < n,

(b). ai+1 |̂ ai a0, . . . , ai−1 for every 1 ≤ i < n,

(c). an 6 |̂ a0.

By inductively choosing models Mi ⊃ ai such that

Mi |̂
ai

M0, . . . ,Mi−1, ai+1, . . . , an,

Fact 1.3 allows us to replace, in the definition of n-ampleness, all tuples by models. This was already
remarked in [67, Corollary 2.5] in the case of CM-triviality. Likewise, if the theory T is 1-based, resp.
CM-trivial, the corresponding conclusion holds whenever the tuple c is a hyperimaginary. Likewise for
n-ample.

Given a definable subset X of a model M of T such that the theory of X equipped with the induced
structure is n-ample, then so is T [BMZ14a, Lemma 8.3].

Every 1-based theory is CM-trivial. A theory is 1-based if and only if it is not 1-ample; it is CM-trivial if
and only if it is not 2-ample [71]. Observe that n-ampleness implies (n− 1)-ampleness: by construction,
if a0, . . . , an witness that T is n-ample, then a0, . . . , an−1 witness that T is (n − 1)-ample. In order to
see this, we need only show that

an−1 6 |̂ a0,

which follows from
an 6 |̂ a0

and
an |̂

an−1

a0,

by transitivity. Ampleness establishes thus a hierarchy among simple theories, according to which both
(pure) algebraically closed fields [71] and the free non-abelian group [65, 88] are n-ample for every natural
number.
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The full strength of ampleness was not required in [BMZ14b, BMZ14a], but a weaker notion, further
studied by Carmona [22, Definition 2.3.2]:

Remark 2.6. If a theory is n-ample, then there are (possibly infinite) tuples a0, . . . , an such that:

(a). an |̂ ai ai−1 for every 1 ≤ i < n.

(b). bdd(ai, ai+1) ∩ bdd(ai, an) = bdd(ai) for every 0 ≤ i < n− 1.

(c). an 6 |̂
bdd(ai)∩bdd(ai+1)

ai for every 0 ≤ i < n− 1.

A definable set X is weakly normal if its canonical parameter is algebraic over any element in X.
Equivalently, if, given any collection {Xi}i∈N of pairwise distinct conjugates of X, then⋂

i∈N
Xi = ∅.

A stable theory T is 1-based if and only if every definable set is a Boolean combination of weakly normal
definable ones. Note that weakly normal definable sets are Srour-closed, so 1-based stable theories are
in particular equational. Hrushovski and Pillay showed [44] that in, a stable one-based group, definable
sets are finite unions of cosets of acleq(∅)-definable subgroups and every connected subgroup is definable
over acleq(∅). Thus, the group itself is abelian-by-finite. In the finite Lascar rank context, the notion
of 1-basedness agrees with both local modularity and k-linearity (i.e. the canonical parameter of any
uniformly definable family of curves has Lascar rank at most k) for any k > 0. In particular, all these
notions agree for different k’s.

The simplest example of a CM-trivial theory that is not 1-based is the free pseudoplane: an infinite
forest with infinite branching at every node. Hrushovski’s ab initio strongly minimal set does not interpret
any infinite field, since a CM-trivial stable theory interprets neither infinite fields nor bad groups, as shown
by Pillay [67], who deduces that a CM-trivial group of finite Morley rank must be nilpotent-by-finite.
Thus, the new uncountably categorical group due to Baudisch [5], being CM-trivial and connected, had
to be nilpotent. If T is stable CM-trivial with continuous finite Lascar rank (e.g., a CM-trivial strongly
minimal theory or a CM-trivial group of finite Morley rank), then T is equational [50, Corollary 4.21]. This
may partially justify why the first unpublished example of a stable non-equational theory [47] happens
to be an expansion of the free pseudospace [10], whose theory is not CM-trivial.

Inspired by Hrushovski’s original proof of functional Mordell-Lang, but avoiding the use of Zariski
Geometries, Pillay and Ziegler [77] reproved the function field case of the Mordell-Lang conjecture in
characteristic zero. Instead, motivated by work of Campana [21] in bimeromorphic geometry, they isolated
a crucial property, the Canonical Base Property (in short, CBP), on the collection of types of finite rank
of several theories of fields with operators, in particular, the theory of differentially closed fields in
characteristic zero, as well as the theory of existentially closed difference fields in any characteristic.

Definition 2.7. ([BMW12b, Definitions 2.1 and 3.1] and [BMZ14b, Definition 2.6])

Fix an ∅-invariant family Σ of partial types in a simple theory T .

A collection F of partial types in T is 1-tight with respect to Σ if, for every set A0 of parameters,
every realisation c of a tuple of types in F with parameters in A0 and every boundedly closed set A
containing A0, the type tp(Cb(c/A)/A0c) is almost Σ-internal.

A collection F of partial types in the theory T is 2-tight with respect to Σ if for every set A0 of
parameters, every realisation c of a tuple of types in F with parameters in A0 and every pair of boundedly
closed sets A ⊂ B containing A, if bdd(Ac)∩bdd(B) = bdd(A), then tp(Cb(c/A)/A0 Cb(c/B)) is almost
Σ-internal.

The theory T is 1-tight, resp. 2-tight, if the collection of all types is.
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The theory T is called n-tight with respect to the family Σ if, whenever there are n + 1 real tuples
a0, . . . , an satisfying (possibly over parameters) the following conditions:

1. bdd(a0, . . . , ai) ∩ bdd(a0, . . . , ai−1, ai+1) = bdd(a0, . . . , ai−1) for every 0 ≤ i < n.

2. ai+1 |̂ ai a0, . . . , ai−1 for every 1 ≤ i < n,

then Cb(an/bdd(a0)) is almost Σ-internal over a1.

Since algebraic types are always internal to any invariant family Σ, a theory is n-tight whenever it
is not n-ample. Clearly, if a theory is n-tight, it is n + 1-tight: Indeed, suppose a0, . . . , an+1 satisfy the
hypothesis of n + 1-tightness. Then, the tuples a0, . . . , an satisfy the conditions of n-tightness, so α =
Cb(an/bdd(a0)) is almost Σ-internal over a1. Since an+1 |̂ an a0, transitivity implies that an+1 |̂ α a0.
Thus Cb(an+1/bdd(a0)) is bounded over α and hence Σ-internal over a1, as well.

The CBP, as defined in [63], states that the collection of all types of finite Lascar rank is 1-tight with
respect to the family of types of Lascar rank one. Chatizidakis [26] showed that, for a supersimple theory
of finite rank, the CBP is equivalent to a strengthening of this notion, called UCBP, introduced by Moosa
and Pillay in their study of compact complex spaces. Hrushovski, Palacín and Pillay [43], elaborating on
an example of Hrushovski, have constructed a theory of finite Morley rank without the CBP. We have
not attempted to determine whether their theory is 2-tight.

Generalising some of the results for groups definable in a 1-based theory, Kowalski and Pillay proved
the following:

Fact 2.8. [57, Theorems 4.2 and 4.3] Let G be a type-definable group in a stable 1-tight theory with
respect to the invariant family Σ.

1. Given a connected type-definable subgroup H ≤ G, the type of its canonical parameter tp(pHq) is
almost Σ-internal.

2. If G is connected, then G/Z(G) is almost Σ-internal.

The previous result motivated us to prove the following (cf. [BMW12b, Theorem 3.6]).

Theorem 2.9. Let T be a stable 2-tight theory with respect to the invariant family Σ.

(a). An interpretable field K is Σ-internal.

(b). An interpretable group G of finite Lascar rank is nilpotent-by-(almost Σ-internal). In particular,
an interpretable non-abelian simple group is Σ-internal.

Part (a) of 2.9 is a straight-forward adaptation of the proof of [67, Proposition 3.2], by taking a generic
point p in a generic line l inside a generic plane P , and observing that Cb(p/acleq(P ) is almost Σ-internal
over Cb(p/acleq(l)), which implies that the generic type of K is almost Σ-internal, and thus Σ-internal,
by the remark after Lemma 1.13. Part (b) reduces to treat several cases separately: If G is a simple
non-abelian group of finite Lascar rank, which is unidimensional, we may suppose, by induction on the
rank, that all proper connected type-definable subgroups of G are nilpotent, a situation which mimics
the structure of a bad group, with a slight modification of the configuration exhibited in [67, Lemma 3.4].
For a general group G of finite Lascar rank, Baudisch’s analysis [4] yields a increasing chain of definable
groups, such that the quotients are either finite, simple or abelian. In the latter case, we can subsequently
split this quotient into Σ-internal ones and eventually Σ-foreign ones. If C denotes the centraliser in G
of all the Σ-internal quotients, which is solvable, observe that G/C embeds into a product of Σ-internal
groups and thus it is Σ-internal, as well. It suffices hence to show that the connected component C0 of
C is nilpotent. Otherwise, a field can be interpreted as a section in C. The field is then Σ-internal, by
Part (a), which yields the desired contradiction, for the scalar multiplication of K∗ on K+ arises from
conjugation in the ambient group G, but C acted trivially on the internal quotients.
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2.3 Relative Ampleness

Pillay [69] showed that every differentially algebraic group could be embedded into an algebraic group.
answering thus a question of Kolchin. A similar result, modulo a finite kernel, was obtained by Kowalski
and Pillay [56] for connected constructible groups in an existentially closed difference field. Hrushovski
and Pillay [45, 46] showed that a semialgebraic connected affine Nash group is Nash isogenous to the
semialgebraic connected component of the group H(R) of real points of some algebraic group H defined
over R. The proofs to these three examples follow a similar approach, replacing the given groups with a
purely algebraic group configuration, in order to obtain an algebraic group.

Hrushovski’s ab initio strongly minimal set has a flat geometry, which prohibits the existence of infinite
groups. He remarks in the introduction of [40] that the fusion T of two strongly minimal theories T1 and
T2 over a trivial reduct is flat over the given theories, and thus, any definable group in T is isogenous
to a product H1 × H2, where H1 is definable in the reduct Ti. Motivated by this remark, we started
in [BMW15] an analysis of groups definable in Hrushovski’s amalgams, which led us in [BMW12a] to
a proof of his assertion, as well as, among other various results, a description of definable groups in
the collapsed green fields. As a by-product of this study, we develop a general approach to the study
of definable groups in differentially closed fields or existentially closed difference fields. However, our
approach requires the underlying universe of both theories to be the same, so it does not cover interesting
cases, such as definable groups in local fields [45] or definable groups in separably closed fields [17].

Notation. For this section, fix a simple theory T in a language L together with a family of stable reducts
(Ti : i < n) in sublanguages Li. All model-theoretic notions, such as definable, algebraic or bounded
closure, types, independence or canonical bases, are to be understood with respect to the theory T . If we
want to consider any of them with respect to the reduct Ti, we will denote them with the index i, e.g.,
dcli, acli, tpi, Cbi, |i^ .

Since imaginaries in the sense of T have no meaning in the reducts, we will, unless specified, only consider
real elements when taking the operators dcl or acl, even if applied to (hyper-)imaginary sets. However,
for the bounded closure, we mean as usual the collection of hyperimaginaries in T with a bounded orbit.
We will furthermore assume that all the reducts have geometric elimination of imaginaries.

Assume furthermore that the theory T comes equipped with a finitary invariant closure operator 〈.〉 on
the real sort such that A ⊂ 〈A〉 ⊆ acl(A) for every subset A (cf. Section 2.1).

Definition 2.10. The theory T is relatively 1-based over the reducts (Ti : i < n) with respect to 〈.〉 if,
given real algebraically closed sets A ⊂ B and a real tuple c such that:

〈Ac̄〉 |i^
A

B for each i < n,

then the canonical base Cb(c/bdd(B)) is bounded over A.

The theory T is relatively CM-trivial over the reducts (Ti : i < n) with respect to 〈.〉 if, given real
algebraically closed A ⊂ B and a real tuple c such that:

〈Ac̄〉 |i^
A

B for each i < n,

then the canonical base Cb(c/bdd(A)) is bounded over Cb(c/bdd(B)).

The theory T is relatively 1-ample over the reducts (Ti : i < n) with respect to 〈.〉 if there are real
tuples a, b and c such that

acl(a, b) |i^
acl(a)

〈acl(a), c〉 for each i < n,

but b 6 |̂
a
c.

The theory T is relatively 2-ample over the reducts (Ti : i < n) with respect to 〈.〉 if there are real
tuples a, b and c such that

acl(a, b) |i^
acl(a)

〈acl(a), c〉 for each i < n
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and
c |̂
b

a,

but c 6 |̂
bdd(a)∩bdd(b)

a.

Remark 2.11. Note that T is relatively 1-based, resp. relatively CM-trivial, over the reducts (Ti : i < n)
with respect to 〈.〉 if it is not relatively 1-ample, resp. not relatively 2-ample, over the reducts (Ti : i < n)
with respect to 〈.〉

If T is relatively 1-based, then it is relatively CM-trivial over the same reducts with respect to the same
closure operator.

Due to the distinguished role of 〈.〉, there is an inherent asymmetry in the definition of relative
ampleness, which prevents us from given a suitable definition for larger values. A possible definition is
that the theory T is relatively k-ample over the reducts (Ti : i < n) with respect to 〈.〉 if there are real
tuples a0, . . . , ak satisfying the following conditions:

• acl(a0, . . . , aj) |i^ acl(a0,...,aj−1)
〈acl(a0, . . . , aj−1), ak〉 for each i < n and j < k.

• ak |̂ aj a0, . . . , aj−1 for each j < k.

• ak 6 |̂ bdd(a0)∩bdd(a1)
a0.

However, this definition gives a special role to the tuple ak, somewhat similar in spirit to Pillay’s original
definition of ampleness. We have not yet been able to obtain a relative version of ampleness which
corresponds to Evans’ definition.

Remark 2.12. Every theory is relatively 1-based, resp. relatively CM-trivial, over itself with respect
to acl. Similarly, if T is relatively 1-based, resp. relatively CM-trivial, over the reduct to equality with
respect to acl, then T is 1-based, resp. CM-trivial. The converse holds if T eliminates geometrically
hyperimaginaries.

Whenever the closure operator 〈.〉 satisfies Property (†) of Lemma 2.4, the above notions are preserved
by adding or removing parameters.

In the general situation of a simple theory T with a stable reduct T0, which has geometric elimination
of imaginaries, with no further assumptions, we can canonically construct, out of a connected T -type-
definable group G, a T0-∗-definable group H together with a definable morphism G → H. However, in
this full generality, the above map could well be the trivial one. The following result was first stated in
[BMW15, Theorem 3.1], though slightly reformulated in [BMW12a, Theorem 1.10].

Theorem 2.13. Let G be a type-definable group in T over ∅. Over an algebraically closed set of parame-
ters A containing a Morley sequence of a principal generic type of G, there are a definable homomorphism
φ with domain a type-definable subgroup of G of bounded index, and target a T0-∗-definable group H over
A, and two independent generic elements a and b of G over A, such that

acl(b, A), acl(ab,A) |0^
φ(a),A

acl(a,A).

Let us describe the different steps of the proof. Given two independent elements a and b of some
principal generic type in G, we want to capture the behaviour of each one of the elements a, b and ab over
the other two. Therefore, we will need to work with a particular Morley sequence D of some principal
generic type in G, independent from the pair a, b. Set:

a1 = acl0(acl(b,D), acl(ab,D)) ∩ acl(a,D),

b1 = acl0(acl(a,D), acl(ab,D)) ∩ acl(b,D),

(ab)1 = acl0(acl(a,D), acl(b,D)) ∩ acl(ab,D).
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The tuples a1, b1 and (ab)1 are pairwise independent. By a finitary argument, taking a finite tuple
d in D, we consider Cb0(acl(b, d), acl(ab, d)/acl(a, d)), which is 0-algebraic over any Morley sequence
(in the sense of T0) of tp0(acl(b, d), acl(ab, d)/acl(a, d)). It suffices to take (see [BMW15, Lemma 2.1])
a Morley sequence (in the sense of T ) of tp(acl(b, d), acl(ab, d)/acl(a, d)). A suitable choice of D en-
sures that enough such Morley sequences lie in acl(b,D) ∪ acl(ab,D), so a1 contains the canonical
base Cb0(acl(b, d), acl(ab, d)/acl(a, d)). Running over all possible finite tuples of D, we conclude that
Cb0(acl(b,D), acl(ab,D)/acl(a,D)) coincides with a1. So each of the infinite tuples a1, b1, (ab)1 is 0-
algebraic over the other two, and

acl(b,D), acl(ab,D) |0^
a1

acl(a,D).

Choosing now a third generic c independent from a and b over D, one shows that the a1 coincides
with the set

acl0(acl(c,D), acl(ca,D)) ∩ acl(a,D),

so the tuples (a1, b1, (ab)1, c1, (ca)1, (cab)1) yield a 0-group configuration, and thus a 0-∗-definable group
H1, possibly over new parameters A1, which may be supposed independent from a, b, c,D, together with
a definable endogeny φ1 from G to H1 by Lemma 1.11. Replacing H1 by

NH1(coker(φ1))/coker(φ1),

we may assume that φ1 is an actual homomorphism. Iterating this process countably many times yields
an algebraically closed set set A ⊃ D and definable homomorphism φ from a type-definable subgroup of
G to a 0-∗-definable group H over A such that

acl(b, A), acl(ab,A) |0^
φ(a),A

acl(a,A),

as desired.

Remark 2.14. The above theorem, as stated, will not suffice in order to describe definable and inter-
pretable groups. Indeed, notice that if we require to add parameters B ⊃ A independent of a,B over A,
it need no longer be the case that

acl(b, B), acl(ab,B) |0^
φ(a),B

acl(a,B),

for we cannot ensure the independence in T0 over the set acl0(φ(a), B), which is not algebraically closed
in the sense of T (cf. [BMW15, Lemma 2.1]).

A stronger version of the theorem is required, which allows to consider extensions of the base set of
parameters: Assume that there is some algebraically closed set B, over which there is a bound on the
0-rank (either Lascar or Morley) of ψ(a), where ψ is a definable homomorphism from G to a T0-definable
group, then the above group H can be chosen to be T0-interpretable. Furthermore, whenever C ⊃ B is
algebraically closed, and a and b are two two independent generic elements of G over C, we have that

acl(b, C), acl(ab, C) |0^
φ(a),C

acl(a,C).

For the sake of the presentation, when we quote Theorem 2.13, we mean this stronger form, except for
the relative 1-based case, where the weaker form suffices.

Notation. In order to use the strength of relative non-ampleness, we will assume that the closure operator
〈.〉 satisfies Properties (†) and (‡) of Lemma 2.4. Notice that Property (†) does not hold for the algebraic
closure over the reduct to equality, whenever the theory T defines an infinite group.

Let us list below some examples of theories and operators satisfying the above definitions:
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• The theory DCF0 of differentially closed fields is relatively 1-based over its reduct ACF0 with respect
to the model-theoretic algebraic closure aclδ, which satisfies (†) and (‡).

• If the stable theory T0 eliminates ∃∞, the expansion T of T0 by a generic predicate [28] is relatively
1-based over T0 with respect to the algebraic closure, which satisfies (†) and (‡). Likewise, the
model-completion T , if it exists, of a stable NFCP theory T0 by a generic automorphism is relatively
1-based over T0 with respect to the algebraic closure aclσ, which satisfies (†) and (‡). Thus, the
theory ACFA of an existentially closed difference field is relatively 1-based over its reduct to a pure
algebraic closed field with respect to aclσ.

• The theory T of a Hrushovski-Fraïssé amalgam, as described in Section 2.1, is relatively CM-trivial
[BMW15, Theorem 6.4] over the given theories (Ti : i < n) with respect to the self-sufficient closure
〈.〉, which satisfies (†) and (‡).

In the degenerated case, the proof of the last point is immediate and resonates with Hrushovski’s proof
[41, Lemma 13] that the ab initio construction is CM-trival. Indeed, we need only consider two tuples a
and b enumerating small models in the amalgam with acleq(a) ∩ acleq(b) = acleq(∅) and a tuple c such
that:

• acl(a, b) |i^ acl(a)
〈acl(a), c〉,

• c |̂
b
a.

In order to show that c |̂ a,observe that, by the characterisation of independence in amalgams, the sets
acl(a, b) and acl(c, b) are freely amalgamated over acl(b), and their union is self-sufficient. Thus, so is its
intersection with 〈acl(a), c〉. We conclude that 〈acl(a), c〉∩acl(b, c) is independent from acl(a) over ∅, and
hence c |̂ a, as desired.

Thw above result allows us to recover Kowalski and Pillay’s result for groups definable in existentially
closed difference fields and, partially, Pillay’s result on differentially algebraic groups.

Theorem 2.15. [BMW15, Theorem 4.9] If the simple theory T is relatively 1-based over the reducts
(Ti : i < n) with respect to 〈.〉, satisfying (†) and (‡), then every type-definable group G is isogenous to a
subgroup of a cartesian product of groups Hi, each Ti-interpretable.

Name the required parameters and assume that G is connected. For each reduct Ti, we have a
definable homomorphism φ : G → Hi, where each Hi is Ti-∗-definable. Observe that, by stability, each
Hi is an inverse limit of Ti-interpretable groups. Set

φ =
∏
i<n

φi : G′ → H =
∏
i<n

Hi.

Choose two generic independent elements a and b of G. Since φi(a) is algebraic over φ(a), which is
algebraic over a, we conclude that, for each i < n,

acl(b), acl(ab) |i^
acl(φ(a))

acl(a).

Observe that b and ab are independent, so the closure 〈b, ab〉 is contained in⋂
i

acli(acl(b), acl(ab)),

by Property (†). Since φi(a) is interalgebraic with a1 ⊂ acli(acl(b), acl(ab)), we conclude that
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〈acl(φ(a)), acl(b), acl(ab)〉 |i^
acl(φ(a))

acl(a),

by Property (‡). Thus, relatively 1-basedness implies that

acl(b), acl(ab) |̂
acl(φ(a))

acl(a),

so a and φ(a) are interalgebraic. By Lemma 1.11, we may replace each group Hi by a Ti-interpretable
one.

In the case of relative CM-trivial theories, the kernel may well be non-trivial, but, as we will see below,
it is almost central. Recall that, for a type-definable group in a stable theory, the center is relatively
definable, since it agrees with a finite intersection of centralisers. This no longer holds for a group G
type-definable in a simple theory, but its approximate center [97, Definition 4.4.9]

Z̃(G) = {g ∈ G : [G : CG(g)] <∞}

is relative definable. It agrees with the usual center whenever G is stable and connected.

Theorem 2.16. [BMW15, Theorem 5.7] If T is relatively CM-trivial over the reducts (Ti : i < n) with
respect to 〈.〉, satisfying (†) and (‡), then every type-definable group G has a type-definable subgroup of
bounded index which definably maps to a cartesian product of Ti-interpretable groups, such that the kernel
of the map is contained, up to finite index, in Z̃(G).

As in the previous case, working over some parameters containing a Morley sequence of G, we have
that

〈φ(a), acl(b), acl(ab)〉 |i^
acl(φ(a))

acl(a).

Choosing generic elements h, h′ and e in the Morley sequence contained in the base parameters, we have
that

〈b, ab, hbe, e−1abh′, φ(a)〉 |i^
acl(φ(a))

acl(a).

Relative CM-triviality implies that, for c = (b, ab, hbe, e−1abh′), the canonical base Cb(c/φ(a)) is bounded
over Cb(c/a). Let N be the kernel of the map φ and consider Z = Z̃(G) ∩ N . If N were not almost
contained in Z̃(G), then hZ would lie in acleq(Cb(c/φ(a))) \ acleq(Cb(c/a)), providing the final contra-
diction.

Though the above theorem conveys little information on abelian groups, if the type-definable group
G is simple, then it is a definably isomorphic to a type-definable subgroup of a cartesian product of
Ti-interpretable groups [BMW15, Corollary 5.10]. Likewise, if K is a type-definable field, then it is a
definably isomorphic to a subfield of an interpretable field in one of the reducts [BMW15, Corollary 5.11].

Since Hrushovski amalgams are CM-trivial over the base theories with respect to the self-sufficient closure,
we deduce the following:

Corollary 2.17. [BMW15, Corollary 6.6] Every simple definable in a colored field is linear.
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“Es grünt so grün / Wenn Spaniens Blüten blühen; / ... ”
Robert Gilbert (German version of the text by Alan Jay Lerner)

III
Colored Fields

According to the Algebraicity Conjecture, a group of finite Morley rank is an algebraic group over an
algebraically closed field, which is itself interpretable in the group structure. A first approach to

the conjecture consisted in a characterisation of the Borel subgroups, that is, maximal solvable definable
subgroups, which are then of the form K+ o T , where T stands for torus and is a divisible definable
subgroup of K∗. The study of a Borel subgroups, if they arise from a field, simplifies considerably if the
torus T happens to be trivial. Thus, the notion of a bad field so appeared: a field of finite Morley rank
with a proper definable divisible multiplicative subgroup. Though the existence of a bad field in positive
characteristic is unlikely [99], it does exist [6] in characteristic 0, obtained by collapsing Poizat’s green
field [81].

Based on the results stated in the previous chapter, a finer analysis [BMW12a] of definable groups in
colored fields, and in particular, in the bad field so obtained allows us to conclude that every definable
simple group of finite Morley rank is an algebraic group. Furthermore, we describe definable groups in
the fusion of two strongly minimal theories over equality. They are isogenous to a cartesian product of
groups interpretable in the base theories.

3.1 Green Fields

Additionally to the general presentation of amalgams given in Section 2.1, let us now recall some
specific properties of the bad field obtained in [6]. It consists of an algebraically closed field K of
characteristic 0 of Morley rank 2, together with a proper definable divisible torsion-free multiplicative
subgroup of Morley rank 1, which we will denote by Ü and whose elements are green points. Elements in
K \ Ü are white.

Though the condition on Ü being torsion-free can be relaxed [25], in our case the group Ü can be
seen as a Q-vector space, which is strongly minimal with the induced structure from K. The language
consists solely of the green predicate, elements 0 and 1, as well as the mutiplicative group law (and the
multiplicative inverse map outside of 0) and the scalar multiplication by rationals on the green points.
Removing the 0 element of K, a structure is therefore a multiplicative subgroup of K, whose subgroup
of green points is divisible torsion-free. Given two structures A and B, we denote by A ∗B the structure
they generate: modulo the 0 element, it is the smallest multiplicative subgroup containing them and
closed under extracting green roots.
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The corresponding predimension of a finitely generated structure A is

δ(A) = 2 tr(A)− ldimQ(Ü(A)).

For every finitely generated substructure A ⊂ K, the predimension δ(A) is non-negative. A self-sufficient
extension A ≤ B is minimal if there is no proper intermediate structure self-sufficient in B. Given a self-
sufficient structure A and a minimal self-sufficient extension B of A, there is a self-sufficient embedding
of B in K over A. Furthermore, if δ(B/A) = 0, then there are only finitely many such embeddings. This
implies that every white point is sum of two green ones. Each of these couples of green points is algebraic
over the given white point. The collection of all these couples is finite.

The self-sufficient closure 〈A〉 of a set A is A-invariant and algebraic over A in the sense of the theory T
of K. If A is finitely generated, then so is 〈A〉. Furthermore,

RM(b/A) = δ(〈Ab〉/〈A〉).

Following the terminology of Section 2.1, the theory T of K is of modular type over the base theory T0

of algebraically closed fields in characteristic 0: Two tuples a and b are independent over C = 〈aC〉∩〈bC〉
if and only if the following conditions hold:

• δ(〈abC〉/〈bC〉) = δ(〈aC〉/C)

• 〈aC〉 |0^C
〈bC〉, 〈abC〉 = 〈aC〉 ∗ 〈bC〉 and Ü(〈abC〉) = U(〈aC〉) · Ü(〈bC〉).

Notice that, whenever A and B are self-sufficient and independent over their intersection, then A ∗ B
equals, modulo 0, the product of A and B.

Given structures A ⊂ B, a green basis of B over A is any tuple in Ü(B) which completes a linear
basis of Ü(A) in a linear basis of Ü(B). Since any linear combination of green points remains green, a
green basis is in particular linearly independent over A. Hence, any green basis of B is a basis of Ü(B).
The following remark will be useful for the description of definable groups in T .

Remark 3.1. Suppose that the substructure A is self-sufficient. Then

1. So is the substructure acl0(A), which has no new green points.

2. The algebraic closure satisfies condition (?)2 of Section 2.1: The element b is algebraic over A if
and only if there is some B ⊃ Ab finitely generated over A with δ(B/A) = 0. If x is a green basis of
B over A, then tr(B/A) = tr(x/A) = |x|/2. In particular, the set B is contained in acl0(A, Ü(B)).
If A is green, then B ⊂ acl0(Ü(B)).

The following result provides a criterion to show that a definable subgroup of an algebraic group is
itself algebraic. Stability of the base theory T0 is required (in the proof), for we use that a type is generic
if and only if it only contains generic formulae.

Lemma 3.2. [BMW12a, Remark 4.1] Fix some algebraically closed set A, and consider a generic element
b of a translate, defined over A, of a connected A-definable subgroup H of an algebraic group G, defined
over A. If Ü(〈Ab〉) = Ü(A), then H is algebraic.

After translation, we may assume that b realises the generic type p of H over A. Observe that H =
Stab(p). Let H0 = Stab0(p�T0). The characterisation of the independence yields that H ⊂ H0. Actually
H0 is the T0-definable envelope of H in G, which is therefore connected and p�T0 is its unique T0-generic
type.
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The condition Ü(〈Ab〉) = Ü(A) implies that p is the unique generic type of H0, so H = H0 is algebraic,
as desired.

Since the green bad field is a field of finite Morley rank, it eliminates imaginaries [98]. Therefore, the
quotient K∗/ Ü is definably isomorphic to a definable group. Given two real tuples a and b in bijection
with two independent generics of K∗/ Ü, the corresponding tuple a1 from Theorem 2.13 is empty, so the
associated morphism would be trivial. We require hence a finer analysis in order to describe definable
groups.

Theorem 3.3. [BMW12a, Theorem 3.14] Every interpretable group in a collapsed green field is isogenous
to a quotient of a definable subgroup of an algebraic group by a central subgroup, which is itself isogenous
to a cartesian power of Ü.

The idea behind the proof consists in taking two generic independent elements a and b of G, and
studying a set of predimension 0 over a, b containing the element ab, which is algebraic over the latter.
However, we have a priori little control on the green basis of this extension. Thus, the actual proof
has several intricate steps. Starting from three generic points a, b and c of a definable connected group
G over a Morley sequence of its generic, we replace the point a by an interalgebraic tuple ā, which is
self-sufficient and equals the T0-algebraic closure of a finitely generated tuple over a1. The reason to do so
is to reduce our study to a finitely generated situation (so that the predimension is defined), since neither
a1 nor the full algebraic closure acl(a) are. Decompose the tuple ā so obtained into a T0-transcendental
part and a green part. Completing these green bases to a green basis of 〈ā, b̄, āb〉, we obtain a green tuple
t, which is T -generic over ā. Hence, up to isogeny, the locus t over ā is some cartesian power of Ü.

We obtain hence a connected pro-algebraic group H, which projects onto the algebraic group H1 obtained
in 2.13 from the corresponding points a1, b1, etc. The kernel N of this projection is central in H, since
N is the T0-definable envelope of its torsion, which is finite and thus centralised by H, being connected.
Inside H, we produce an element k, which is T0-interalgebraic over ā with the green tuple t. Lemma 1.11
provides an isogeny S between N and a certain cartesian power of K∗. Set Γ to be the preimage under
this isogeny of the corresponding cartesian power of Ü. The group Γ is again central in H, since N is.
The final step consists in showing that the element a is interalgebraic with the coset kΓ. In particular,
we may assume that H is an algebraic group, by compactness.

3.2 Definable Subgroups of Algebraic Groups and in the Fusion

From the result in the previous section and Theorem 2.16, we are bound to study definable subgroups
of algebraic groups. They are indeed quite tame.

Theorem 3.4. [BMW12a, Theorems 4.2 and 4.3, and Corollary 4.4]

• In a (possibly uncollapsed) green field, every connected definable subgroup G of an algebraic group
has a normal algebraic subgroup N such that the quotient G/N is definably isomorphic to a cartesian
power of Ü.

• In a (possibly uncollapsed) red field, every connected definable subgroup G of an algebraic group has
a normal algebraic subgroup N such that the quotient G/N is definably isogenous to the red points
of an algebraic subgroup of some cartesian power of the additive group K+.

• Every simple definable group in a colored field is definably isomorphic to an algebraic group. No
bad groups are definable in a colored field.

The proof of the above is drastically simpler than the proof of Theorem 3.3, for the group law inside a
definable subgroup of an algebraic group is already field-algebraic. Hence, given generic points a and b
of a definable subgroup G of an algebraic group, it follows that 〈a · b〉 is contained in acl0(〈a〉 ∗ 〈b〉), by
Remark 3.1(1). Up to linear transformation, we may assume that the green basis t of 〈a · b〉 equals s · r,
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where s, resp. r, is the green basis of 〈a〉, resp. 〈b〉. An easy application of Lemmas 1.10 and 1.11 yields
an endogeny between G and the colored points of some cartesian power of (K∗), or (K+), according to
whether the color is green or red. In the former case, since Ü has no torsion, it is easy to see that the
cokernel of this map is trivial. As the endogeny S maps a tuple to its colored basis, Lemma 3.2 implies
that the connected component of the kernel of S is an algebraic group, and so is the kernel itself.

The third point was already observed by Poizat for the black field [80, Proposition 2.4 et conclusion
p.1354]. For red and green fields, it follows from Corollary 2.17 and the previous two parts of the above
result, since the quotient G/N is abelian, so G = N must be algebraic.

We will finish this chapter with the study of that groups definable in the (possibly uncollapsed)
fusion T of two strongly minimal theories T1 and T2 over equality. As remarked by Hrushovski, they are
isogenous to a cartesian product of groups interpretable in the base theories.

Recall that no infinite group is interpretable in Hrushovski’s new strongly minimal set since its theory
is flat : whenever A1, . . . , An are finitely generated structures, then∑

s⊂{1,...,n}

(−1)|s|RM(As) ≤ 0,

where A∅ =
n⋃
1
Ai and As =

⋂
i∈s

Ai, for non-empty s ⊂ {1, . . . , n}. Indeed, if an infinite group G were

definable, let A1, A2, A3 and A4 list all four lines in the corresponding group configuration given by G:

g1

g3g2

g1 · g2 g3 · g1

g3 · g1 · g2

A2

A3A4

A1

In a group of finite Morley rank, Lascar rank and Morley rank coincide, so it is additive. Thus, the rank
RM(A∅) = 3 RM(G), whereas

RM(Ai) = 2 RM(G), for i = 1, . . . , 4

RM(A{i,j}) = RM(G), for i 6= j ∈ {1, . . . , 4}
RM(As) = 0, for s ⊂ {1, . . . , 4} with |s| ≥ 3,

so
RM(G) =

∑
s⊂{1,...,n}

(−1)|s|RM(As) ≤ 0

implies that G is finite.

Some of the ideas behind the notion of flatness allow us to show that a definable group in the fusion
T of dimension 0 must be then finite, which is not obvious in the uncollapsed case. If we define a subset
of imaginary sorts S1 of T1 and S2 of T2 to be intepretable if it is the projection of a definable set in the
real sort, we obtain the following result.

Lemma 3.5. Let Hi be a Ti-interpretable group, for i = 1, 2. Every interpretable connected subgroup K
of H1 ×H2 has the form K1 ×K2, where each Ki ≤ Hi is Ti-interpretable. A generic g = (g1, g2) of K
is an independent pair of generics of each Ki. Furthermore,

RM(gi) = RMi(g
i) and RM(K) = RM1(K1) + RM2(K2).
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Choosing a Morley sequence {gi = (g1
i , g

2
i )} of K, and studying the asymptotical behaviour of the Morley

rank of {gi · g−1
j }, we deduce that g1

i and g2
i are independent. Lemma 1.11 yields projections K → Hi

with image Ki ≤ Hi. A straight-forward adaptation of Lemma 3.2 implies that each Ki is Ti-definable.

Notice that, if φ : G → H is a definable homomorphism of a connected definable group G to a Ti-
interpretable group H, then RMi(φ(a)) ≤ RM(a), whenever a is a generic of G. Combining this with
Theorem 2.13 and Lemma 3.5, we have that, given a definable group G, there are surjections φk : G→ Hk,
for k = 1, 2, where each Hk is Tk-interpretable such that

acl(b), acl(ab) |k^
acl(φk(a))

acl(a).

The kernel of the map φ = (φ1, φ2) is of dimension 0, so finite, which gives the following.

Theorem 3.6. [BMW12a, Theorem 5.5] In the (possibly uncollapsed) fusion of two strongly minimal
theories T1 and T2 over equality, every definable group is isogenous to a cartesian product of groups
interpretable in the base theories T1 and T2.
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“Paris, . . ., quelle belle ville !
– Je m’en fous, dit Zazie, moi ce que j’aurais voulu c’est aller dans
le métro.”

Raymond Queneau – Zazie dans le métro

IV
Groups in Belles Paires

Differentially closed fields in characteristic 0 play the universal role of algebraically closed fields in
the differential setting, providing generic solutions to differential systems of equations. Differentially

closed fields are in particular algebraically closed, and thus, the field of constants, consisting of the
elements of derivation 0, forms a proper algebraically closed subfield. Therefore, the theory of differentially
closed fields has, as a reduct, the theory of belle paires of algebraically closed fields in characteristic 0.

Recenlty, Delon [30] has exhibited a natural expansion of the language LP to obtain quantifier elimi-
nation for belles paires of algebraically closed fields. Her idea consists in rendering structures in this
language P -independent (cf. Section 1.2), by adding the coefficients witnessing any linear dependence
over the predicate, mimicking the λ-functions for separably closed fields. During her talk in Antalya
Algebra Days, we became aware of the similarities of the theory of belle paires with our previous work on
relative geometries and definable groups in colored fields, and consequently described [BM14] definable
and interpretable groups in belles paires.

Fix a complete theory T , with quantifier elimination and elimination of imaginaries in the language L.
Suppose furthermore that T has NFCP, so it is stable, and let (M,E) be a sufficiently saturated model
of the theory TP of belles paires of T . In contrast to the previous chapters, the index P will refer to the
theory TP and otherwise, we refer to the base reduct T .

Recall that TP is again stable and non-forking independence of two P -algebraically closed subsets A and
B over their intersection C = A ∩B is described as follows:

A |P^
C

B if and only if


A |̂
C,E

B

and

EA |̂
EC

EB

A straight-forward application of this implies the following:

Lemma 4.1. [BM14, Lemma 1.2] Whenever A and B are two P -algebraically closed subsets independent
over their intersection, we have that

aclP (A,B) = acl(A,B) and EaclP (A,B) = acl(EA, EB).

CHAPTER IV. GROUPS IN BELLES PAIRES 49



Groupes définissables dans des expansions de théories stables

The above gives us an explicit description, for two independent sets, of their algebraic closure in the
sense of TP , which consists of the algebraic closure in the sense of T .

Lemma 3.2 can be directly adapted to this context, to prove the following:

Lemma 4.2. [BM14, Lemma 2.1] Fix some TP -algebraically closed set A, and consider a generic element
b of a translate, defined over A, of a connected TP -type-definable subgroup H over A of a T -type-definable
group G, defined over A. If EaclP (Ab) = EA, then H is T -type-definable.

All these ingredients suffice to easily prove the following result.

Proposition 4.3. [BM14, Proposition 2.6] Every TP -type-definable group G is isogenous to a subgroup
of a T -type-definable group. Furthermore, the group G is, up to isogeny, the extension of the E-points of
a T -type-definable group over E by a T -type-definable group.

0→ N → G→ H(E)→ 0

In order to see that the TP -type-definable group G is, up to isogeny, a subgroup of a T -type-definable
ambient group, choose three independent principal generics a, b and c of G. Lemma 4.1 implies that
āb = aclP (ab) is T -algebraic over ā, b̄. Lemma 1.11 gives an isogeny between G and a subgroup of a
type-definable group in T , as desired. We may thus assume that G is a subgroup of a T -type-definable
ambient group.

Together with Lemma 1.11, Lemma 4.1 applied to the infinite tuples Eacl(a), Eacl(b) and Eacl(ab) yields
a projection from G to the E-points of a ∗-definable group H over E. The connected component of the
kernel N is T -type-definable, by Lemma 4.2. An easy compactness argument allows us to assume that
H is type-definable, correcting the published proof. Since TP induces no extra structure on E, the group
H is T -type-definable, as desired.

Let us now consider interpretable groups. Though T has elimination of imaginaries, this need not be
the case for the theory TP , which eliminates imaginaries if and only if no infinite group is definable in T
[76]. Indeed, if G is an infinite T -definable group over E, given any element g in G, the coset g ·G(E) is
a new imaginary.

Whenever T is strongly minimal theory with infinite acl(∅), e.g., algebraically closed fields, Pillay [72]
exhibited new sorts in order for TP to have geometric elimination of imaginaries. He proves in particular
the following:

Fact 4.4. [72, Lemmas 2.2, 2.4 and 2.5] Let T be a strongly minimal theory with infinite acl(∅). Then,
up to interalgebraicity, every imaginary α of T eq

P is definable over a real tuple a such that tpP (a/α) is
almost P -internal and a |̂

α
E.

Let F ( K denote a proper pair of algebraically closed fields.

Proposition 4.5. [BM14, Theorem 3.5 and Corollary 3.6] Up to isogeny, every interpretable group G
in the pair (K,F ) is the extension of the F -rational points of an algebraic group H over F by a group
N , which is a quotient of an algebraic group V by a normal subgroup N ′(F ), consisting of the F -rational
points of an algebraic group over F .

0 // N(K) // G(K) // H(F ) // 0

with

0 // N ′(F ) // V (K) // N(K) // 0 ,

such that both H and N ′ are algebraic groups over F .

If G is interpretable over k 6⊂ F , then V and N are defined over kF , which is an elementary submodel
of (K,F ).

50 CHAPTER IV. GROUPS IN BELLES PAIRES



Groupes définissables dans des expansions de théories stables

Assume that (K,F ) is a sufficiently saturated model of the theory TP of belles paires of algebraically
closed fields. Let α, β and γ be three independent principal generics of G. The imaginary α is algebraic
over some real tuple a, which is TP -independent of F over α. Furthermore, the type tpP (a/α) is almost
P -internal.

Observe that, for a real subset A, if the type tpP (a/A) is almost P -internal, then a is algebraic over
A∪E. Indeed, assume A is P -algebraically closed and let B = aclP (B) contain A such that a |P^A

B and
a ∈ aclP (B,E) = acl(B,E). By the characterisation of non-forking independence in TP , we have that
a |̂

A,E
B, so a lies in acl(A,E).

Choosing now suitable non-forking extensions, we may find real tuples b, c, d, e and f such that, in the
theory TP , the pairs

(α, a) ≡ (β, b) ≡ (γ, c) ≡ (α · β, d) ≡ (γ · α, e) ≡ (γ · α · β, f),

have all the same type. Every colinear triple in the diagram

aclP (a)

aclP (c)aclP (b)

aclP (d) aclP (e)

aclP (f)

is TP -independent. Likewise, a point outside a given line is Tp-independent of it. Since a |P^ α
F , the

set FaclP (a) equals the points in F which are algebraic over α. By the previous discussion, we have
that FaclP (d) is algebraic over FaclP (a), FaclP (b). Lemma 1.11 yields a projection of G onto the F -rational
points of an algebraic group, with kernel N . By the previous discussion, the above diagram yields a group
configuration over F , and thus we obtain an algebraic group V over E which projects onto N . Lemma
4.2 shows that the connected component of the kernel of this projection is of the form N ′(F ), where N ′
is an algebraic group over F , as desired.
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“I am not bound to please thee with my answers.”
William Shakespeare – The Merchant of Venice

V
Bounded Operators

The group of automorphisms of a countable structure, equipped with pointwise convergence, is a Polish
group, a topological group homeomorphic to a complete separable metric space. The automorphism

group Aut(M) of a (possibly uncountable) structure M contains a normal subgroup, consisting of the
strong automorphisms, that is, those automorphisms which fix each class of every 0-definable equivalence
relation with only finitely many classes, or equivalently, the automorphisms which fix acleq(∅) pointwise.
By elimination of imaginaries, an automorphism of C is strong if and only if it fixes Qalg. Thus, the
quotient Aut(C)/Autf (C) is isomorphic to the absolute Galois group of Q. More generally, given a
sufficiently saturated model M of a complete theory T , the quotient Aut(M)/Autf (M) is an invariant
of the theory T , called the Galois group of T .

Though the Galois group is far from being classified in general, the subgroup Autf (M) can be sometimes
characterised. Lascar proved [61] that, for a countable saturated model M of an almost strongly minimal
theory, the group Autf (M) is simple modulo the subgroup of bounded strong automorphisms of M . An
automorphism τ ofM is bounded if there is a finite set A such that τ(b) is algebraic over A∪{b} for every
element b. The simplicity of Autf (M) modulo the bounded strong automorphisms has been generalised,
to any structure equipped with a dimension function and a compatible stationary independance relation,
e.g., Hrushovski’s amalgams, by Evans, Ghadernezad and Tent [32], replacing algebraic by 0-dimensional
in the definition of bounded automorphisms.

The group of bounded automorphisms may be described in the presence of some algebraic structure.
Lascar shows [61] that the only bounded automorphism of C is the identity, so Autf (C) is simple. He
mentions that Ziegler has a general description of bounded automorphisms of an algebraically closed
field, valid in any characteristic. The only bounded automorphisms of an an algebraically closed field
of positive characteristic are the integer powers of Frobenius. Ziegler, who did not publish his proof,
provides instead in [104] an abelian version of Lemma 1.10. For a saturated differentially closed field of
characteristic 0, Konnerth [55] shows that, replacing algebraic by differentially algebraic in the definition
of bounded automorphisms, then the only such automorphism is the identity. His approach to proving
so seems unrelated to Lascar’s treatment of bounded automorphisms for algebraically closed fields in
characteristic 0.

We present in this chapter work contained in [BHM15]. Motivated by Lascar and Konnerth’s results,
we give a uniform characterisation, probably not any different from Ziegler’s approach, of bounded auto-
morphisms in various theories of fields with operators. An automorphism τ of a group or a field, possibly
with additional structure, is bounded if there is a finite set A such that, for every element b, the image
τ(b) belongs to clGen(A ∪ {b}), where clGen is the closure operator introduced in Definition 1.14.
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In particular, for the following fields with operators:

• Algebraically closed fields (K, Id) in all characteristics with associated automorphism (to be defined
later on) either identity or Frobenius in positive characteristic.

• Differentially closed fields with n commuting derivations (K, δ1, . . . , δn) in characteristic 0 with
associated automorphism the identity.

• Generic automorphisms (K,σ) in all characteristics with associated automorphisms σ as well as
Frobenius, in positive characteristic.

• Generic automorphisms of a differentially closed field (K, δ, σ) in characteristic 0 with associated
automorphism σ, as considered by Hrushovski and later Bustamante-Medina [20].

• Fields with free operators (K,F1, . . . , Fn) in characteristic 0 with associated automorphisms σ0, . . . , σt,
as considered by Moosa and Scanlon [64].

every bounded automorphism is a product of the associated automorphisms and their inverses. Recently,
Wagner generalised [BHM15] to show [101] that the bounded automorphisms of either a field or a simple
group type-definable in a simple theory are definable.

Our proof reduces to isolate common properties to all the above examples, in order to study bounded
automorphisms in a general set-up. Given a bounded automorphism, Lemma 1.10 gives us a generic
action of a multiplicative subgroup on a type-definable subgroup of G2

a, a situation which resonates with
[37]. The generalised Leibniz rule allows us to conclude that the graph of the bounded automorphism
is (generically) an affine transformation composed with a product of the associated automorphisms and
their inverses.

It shall be mentioned that we have not used that the underlying field is algebraically closed. As suggested
by Chatzidakis, our treatment may most likely transfer to other theories of fields with operators, e.g.,
pseudofinite fields or separably closed fields.

Let us now start by introducting the objects in question. Moosa and Scanlon [64] developed a
formalism to treat simultaneously various fields with operators, which play a relevant role in model theory,
such as algebraically closed fields, differentially closed fields or fields with a generic automorphism.

Definition 5.1. A field with operators over a base subfield F is a structure

(K, 0, 1,+,−, ·, {λ}λ∈F, F1, . . . , Fn)

satisfying the following conditions:

• The operators F1, . . . , Fn are F-linear and

Fk(xy) =
∑

0≤i,j≤n

aki,jFi(x)Fj(y),

for some constants {aki,j}0≤i,j,k≤n in F, where F0 is the identity operator.

• The F-vector space D(F) = Fε0 ⊕ . . .⊕ Fεn is a commutative F-algebra, with

εi ? εj =
∑

0≤k≤n

aki,jεk.

A field with operators is bi-interpretable with (K, 0, 1,+,−, ·, {λ}λ∈F, D(K), ϕ), where the K-algebra

D(K) = D(F)⊗F K = Kε0 ⊕ . . .⊕Kεn

54 CHAPTER V. BOUNDED OPERATORS



Groupes définissables dans des expansions de théories stables

has linear dimension n + 1, as a K-vector space, and it is equipped with a morphism of F-algebras
ϕ : K → D(K) such that the projection of D(K) onto the first coordinate, composed with ϕ, is the
identity. Indeed, it suffices to set

ϕ(x) =
∑

0≤k≤n

Fk(x)εk,

which is the approach exhibited in [64].

The F-algebra D(F) is finite-dimensional and thus it is (isomorphic to) a product of local F-algebras
B0(F), . . . , Bt(F). Their residue fields are finite algebraic extensions of F. We will suppose that all residue
fields equal F. Hence, tensoring each local algebra with K, if θi, resp. ρi, denotes the projection of D(K)
onto Bi(K), resp. the projection of Bi(K) onto its residue K, we obtain associated endomorphisms

σi = ρi ◦ θi ◦ ϕ

of K. The endomorphism σ0 is the identity. Observe that the morphisms so obtained are F-linear
combinations of the operators, and thus, they do not change whenever we apply an invertible F-linear
transformation on the operators.

For the sake of the presentation, we will assume that K is algebraically closed. Suppose as well that
the associated endomorphisms σ1, . . . , σt are field automorphisms. If the characteristic of K is positive,
include Frobenius and its inverse among the list of associated automorphisms.

Let us denote by Θ the family of formal words on the operators F1, . . . , Fn as well as on σ−1
1 , . . . , σ−1

t ,
equipped with the following lexicographic order:

Fi < Fj and σ−1
i < σ−1

j , for i < j,

and
σ−1
i < Fj for any i , j.

Each K-linear combination S(x) of words in x has a degree, that is, the largest word occuring in S with
non-trivial coefficient, which is called the leading coefficient of S. Set σFj = σij and σσ−1

j
= σ−1

j , and
extend this to every word θ in the obvious way.

An F-linear transformation which renders simultaneously several nilpotent applications triangular yields
the following result.

Lemma 5.2. [BHM15, Proposition 1.4 and Corollary 1.5] Up to F-linear transformation, the operators
are in triangular form, that is,

Fj(xy) = σij (x)Fj(y) +
∑
l<j

Rj,l(x)Fl(y),

where each Rj,l(x) is a polynomial over F in the variables {Fr(x)}0≤r≤j. In particular, given a K-linear
combination S(x) of words in x of degree θ and leading coefficient λθ, given g in K, we have that

S(gx) = λθσθ(g)θ(x) +R(x),

with R(x) a K-linear combination of words in x of degree strictly less than θ.

In contrast to [64], where the operators considered are as free as possible, we are interested in theories
of fields with operators which may impose some relations between the operators, such as commutation,
e.g., differentially closed fields with n commuting derivations or generic automorphisms of differentially
closed fields [20]. Among all K-linear combinations of words in Θ which are equivalent to a fixed one,
there exists one of least degree.

Fix now a sufficiently saturated field K with operators and assume the following conditions on its
theory T :
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• The algebraic closure of a subset A coincides with the field algebraic closure of the structure it
generates.

• The theory T of K is simple and eliminates both hyperimaginaries and imaginaries. It is relatively
1-based over the reduct of algebraically closed fields with respect to the operator algebraic closure
in the sense of T , that is, given real algebraically closed sets A and B,

A |̂
A∩B

B

if and only if A is linear disjoint from B over A ∩B.

As in the previous two sections, relative ampleness and the description of algebraic closure suffice to
partially describe the nature of additive definable groups.

Corollary 5.3. A connected subgroup H of some cartesian power Gka of unbounded index and type-
definable over an algebraically closed subset D is contained in a subgroup of unbounded index of the
form

{(x1, . . . , xk) ∈ Gka |S(x1, . . . , xk) = 0},
where S is some linear combination of words in the xi’s with coefficients in D.

Given two generic elements a and b of H independent over D, there is a finite sequence of words θ̄,
common to a, b and a + b, witnessing an algebraic relation between each element over the other two.
Considering the additive stabilisers, in the reduct to pure algebraically closed fields, of the tuples θ̄a, θ̄b
and θ̄(a + b), an application of Lemma 1.10 yields the desired non-trivial linear combination S over D,
which implies a new relation among the wods in the xi’s not imposed by the theory, since a is not a
generic element of Gka,

Recall (cf. Definition 1.14) that the closure operator clGen is the collection of all elements whose type
is coforeign to the generics of K. An automorphism τ of the field with operators (K,+, ·, F1, . . . , Fn) is
bounded if there is a finite set D such that, whenever a is a generic over D, then τ(a) lies in clGen(D∪{a}).
In particular, the element τ(a) is not generic over D ∪ {a}.

An easy application of Lemma 1.15 yields the following:

Lemma 5.4. Given a bounded automorphism τ over a finite set D of parameters, and two generic
elements a and b independent over D, the pairs (a, τ(a)), (b, τ(b)) and (ab, τ(ab)) are pairwise independent
over

D0 = clGen(D) ∩ acl(D(a, b, τ(a), τ(b)).

Likewise, the pairs (a, τ(a)), (b, τ(b)) and (a+b, τ(a+b)) are pairwise independent over D0. Furthermore,
the element a is generic over D0.

We have now all the ingredients to prove the following:

Theorem 5.5. [BHM15, Theorem 3.1] Given a sufficiently saturated algebraically closed field with op-
erators (K,+, ·, F1, . . . , Fn) over a base subfield F satisfying the following conditions :

• The residue fields of all the local algebras associated to the F-algebra D(F) are F.

• The associated endomorphisms are surjective and include both Frobenius and its inverse in case the
characteristic is positive.

• The theory T of K is simple and eliminates imaginaries and hyperimaginaries. It is relatively 1-
based over the reduct to pure algebraically closed fields with respect to the model theoretic algebraic
closure acl, which coincides with the field algebraic closure of the generated structure. Hence

A |̂
C

B ⇐⇒ acl(A ∪ C) and acl(B ∪ C) are linearly disjoint over
acl(C).
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Every bounded automorphism of K is a product of integer powers of the associated automorphisms (and
Frobenius, in positive characteristic).

The proof is quite straight-forward. We may assume that the operators are in triangular form, by Lemma
5.2, since the associated automorphisms do not change. Given a bounded automorphism τ of K over the
finite set D, take two generic independent elements a and b over D ∪ τ−1(D). Thus, both a and τ(a) are
generic over D. Lemmas 5.4 and 1.10, together with Corollary 5.3, yield a non-trivial linear combination

λθ1θ1(a) + µθ2θ2(τ(a)) + S1(a) + S2(τ(a)) = ξ,

over D0 = clGen(D)∩ acl(D(a, b, τ(a), τ(b)), where λθ1 ·µθ2 6= 0, and S1, resp. S2, is a linear combination
of words in a, resp. τ(a), of degree less than θ1, resp. θ2.

Again, Lemmas 5.4 and 1.10 imply that the multiplicative stabiliser StabG2
m

(a, τ(a)/D0) is infinite. By
choosing a generic element of StabG2

m
(a, τ(a)/D0) independent from (a, τ(a)) over D0, the generalised

Leibniz rule and induction on the degrees θ1 and θ2 allow us to conclude that there is some λa 6= 0 in D0

such that
τ(a) = λa · σθ(a),

for some word θ. We need only show that λa = 1 for every generic element a over D, since every element
of K is the product of two generics. Notice that

λa+bσθ(a+ b) = τ(a+ b) = τ(a) + τ(b) = λaσθ(a) + λbσθ(b),

so λa = λa+b = λb. The equality λa+b = λa · λb implies that λa = 1, as desired.
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“Every building is like a person. Single and unrepeatable.”
Ayn Rand – The Fountainhead

VI
Ample Buildings

The ample hierarchy, introduced in Section 2.2, is far from being well understood beyond the first two
levels. The free pseudospace, constructed by Baudisch and Pillay [10] by glueing free pseudoplanes

in a clever fashion, was the first example of a stable 2-ample structure which did not interpret an infinite
field. In [89, BMZ14b], an n-ample but not (n + 1)-ample stable structure was constructed: the free
n-dimensional pseudospace, which is n-tight with respect to the family of Lascar rank 1 types. However,
the free pseudospaces, which have trivial forking, provide no insight on the nature of definable groups of
low ample degree.

Tent noticed that the free n-dimensional pseudospace could be understood as a building, which led us in
[BMZ14a] to investigate the model-theoretic nature of right-angled buildings, for most of the techniques
developped in [BMZ14b] can be adapted to this wider context. Note that we did not deal with buildings
directly, but with certain biinterpretable graphs associated to them. In this chapter, we will provide a
slightly different presentation of the results from [BMZ14a], without passing to the corresponding graphs.

6.1 Basics on Buildings

Buildings were introduced by Tits [91] in order to study certain groups of Lie type, akin to the role
played by trees to capture some of the properties of free groups. A building is a combinatorial structure
which generalises certain aspects of finite projective planes and Riemannian symmetric spaces. Although
the theory of semisimple algebraic groups provided the initial motivation for the notion of a building,
not all buildings arise from a group, e.g., the incidence geometry in projective planes satisfies the axioms
of a building and has no connection to some underlying group. We will mostly concentrate on the
combinatorial nature of buildings and refer the reader to [35] for a pleasant introduction to buildings.

A Coxeter group (W,Γ) consists of a group W with a fixed set Γ of generators and defining relations
(γ · δ)mγ,δ = 1, where mγ,γ = 1 and mγ,δ = mδ,γ , for γ 6= δ, is either ∞ or an integer larger than 1. For
the presentation, we will exclusively consider finitely generated Coxeter groups, with Γ finite, though this
is not a major obstruction.

A word w is a finite sequence on the generators from Γ. It is reduced if its length is minimal with respect
to all words representing the same element of W . The word w′ is a permutation of w, or w′ is equivalent
to w, if it can be obtained from w by a sequence of swaps of commuting consecutive generators.
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The Coxeter group (W,Γ) is right-angled if for every pair γ 6= δ, the value mγ,δ is either 2 or ∞. Note
that, for involutions γ and δ, the relation (γ · δ)2 = 1 means that γ and δ commute. As a convention,
no element γ commutes with itself. A right-angled Coxeter group (W,Γ) is determined by its Coxeter
diagram: a graph with vertex set Γ such that γ and δ are adjacent, that is, they have an edge connecting
them, if and only if mγ,δ = ∞. In an abuse of notation, we will denote this graph again by Γ. The
elements of Γ will be referred to as colours or levels. In right-angled Coxeter groups, a word w is reduced
if and only if no permutation of w has the form w1 · γ · γ ·w2, for some generator γ. Every element of W
is represented by a unique reduced word, up to permutation.

A chamber system (X,W,Γ) for a Coxeter group (W,Γ), possibly not right-angled, is a setX, equipped
with a family of equivalence relations (∼γ , γ ∈ Γ). If w = γ1 · · · γn is a reduced word, a reduced path
of type w from x to y in X is a sequence x = x0, . . . , xn = y such that xi−1 and xi are ∼γi-related and
different for every 1 ≤ i ≤ n. A chamber system (X,W,Γ) is a building if each ∼γ-class contains at least
two elements, and so that for every pair x and y in X, there exists an element g ∈ W such that there is
a reduced path of type w from x to y if and only if the word w represents g. It follows that g is uniquely
determined by x and y, and that the reduced path connecting x and y is uniquely determined by its type
w. We will denote the existence of a path of type w connecting x to y by x w−→ y. In particular, we have
that x γ−→ y if and only if x 6= y are ∼γ-related. In a building (X,W,Γ), the class x/∼γ is the γ-residue
of x.

We will say that a building is right-angled if its corresponding Coxeter group is. From now on, all Coxeter
groups in this chapter will be right-angled.

A right-angled Coxeter group admits a unique (up to isomorphism) countable building B0(Γ) with
infinite residues [36, Proposition 5.1], which we call rich. In the particular case of the free n-dimensional
pseudospace, its associated Coxeter diagram is as follows:

[0, n]
0 1 2 n− 1 n

Notice that, in order to study the model-theoretic properties of the above building B0(Γ), elementary
extensions involve non-standard paths between elements, so we will consider the following expansion of
the natural language. Given a chamber system X for (W,Γ) and a subset s of Γ, set ∼∅ to be the diagonal
in X×X, and otherwise, let ∼s, for ∅ 6= s ⊂ Γ, denote the the transitive closure of all ∼γ , with γ ∈ s ⊂ Γ.
The ∼s-class of an element is called its s-residue. In particular, its γ-residue is its ∼γ-class, which is
often called γ-panel in the literature. It is easy to see that x ∼s y if and only if x w−→ y for some w with
support in s, that is, the letters γ occuring in w belong to s.

For γ in Γ, set ∼γ=∼Γ\{γ}. The chamber system (X,∼γ)γ∈Γ is called the associated dual chamber system
of X. Observe that:

∼s1∩s2 =∼s1 ∩ ∼s2 ,

and, in particular,

∼s =
⋂
β/∈s

∼β .

Thus, setting s = {γ}, we conclude that the chamber system (X,∼γ)γ∈Γ of a building is definable in
its associated dual chamber system (X,∼γ)γ∈Γ. The converse holds only in Lω1,ω, where countable
disjunctions are allowed.

For a building (X,∼γ)γ∈Γ, its associated dual chamber system has the following properties, which are
elementary in the above expansion of the language:

• Given x and y in X with x ∼γ y for all γ ∈ Γ, then x = y.
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• If (xγ)γ∈Γ is a coherent sequence in X, i.e. whenever γ and δ are adjacent, there exists some yγ,δ
in X with xγ ∼γ yγ,δ ∼δ xδ, then there exists an element z ∈ X with z ∼γ xγ for all γ ∈ Γ.

A chamber system (X,∼γ)γ∈Γ satisfying the above properties is a dual quasi-building. The aim of this
chapter is to study the complete theory of B0(Γ), the dual quasi-building associated to B0(Γ). This was
done in [BMZ14a] by means of Γ-spaces.

A Γ-graph M is a coloured graph with colours Aγ(M) for γ in Γ, and no edges between elements of
Aγ(M) and Aδ(M) whenever γ and δ are not adjacent in Γ. A (full) flag of the Γ-graphM is a subgraph
F = {fγ}γ∈Γ, where each fγ lies in Aγ(M), such that the map γ 7→ fγ induces a graph isomorphism
between Γ and F .

A Γ-space M is a Γ-graph satisfying two additional properties:

• Every vertex belongs to a flag of M .

• Any two adjacent vertices in M can be expanded to a flag of M .

Out of a dual chamber system (X,∼γ)γ∈Γ, we define the following Γ-graphM(X): for every γ ∈ Γ, the
colour Aγ is X/ ∼γ , the set of ∼γ-classes of elements in X. We consider the Aγ ’s as being pairwise
disjoint. For the graph structure onM(X), we impose that two elements u and v are adjacent if u lies
in Aγ and v in Aδ, with adjacent colours γ and δ in Γ, and there is some common z in X with z ∼γ u
and z ∼δ v.

Every x ∈ X gives rise to the flag φ(x) = {x/∼γ | γ ∈ Γ} ofM(X). Thus, given a dual chamber system
of a building X, we have that M(X) is a Γ-space. Actually, the class of Γ-spaces is bi-interpretable
with the class of dual quasi-buildings [BMZ14a, Lemma 2.13 and Theorem 2.17]. However, the whole
model-theoretical study of B0(Γ) can be done without passing to its corresponding Γ-space.

6.2 Axiomatising Right-Angled Buildings

In order to study dual quasi-buildings (X,∼γ)γ∈Γ, recall that letters, denoted usually by s, t, etc.,
are now non-empty connected subsets of the graph Γ. A word u is a finite sequence of letters. Two
letters s and t commute if s ∪ t is not a letter, i.e. if all elements of s commute with the elements of t.
In particular, no letter commutes with itself. Two words commute if their corresponding letters do. A
word is commuting if it consists of pairwise commuting letters. We recover in this context the notion of
a permutation of a word, or when two words are equivalent.

Given two elements x and y in a dual quasi-building (X,∼γ)γ∈Γ, we say that there is a weak path
between them with word w = s1 · · · sn, denoted by x −→

w
y, if there is a sequence x = x0, x1, . . . , xn = y

such that xi ∼si+1
xi+1 for 0 ≤ i < n. Two elements x and y are A-equivalent, for A ⊂ Γ, denoted by

x ∼A y,

if the set of γ’s such that their ∼γ-classes differ is contained in A ⊂ Γ. By decomposing any subset
of Γ as a disjoint union of its connected components, it is easy to see that two elements x and y are
A-equivalent if and only if they can be connected by a weak path whose word is commuting and consists
of letters contained in A. In particular, any two elements are connected by a weak path. Given a weak
path P : x −→

u
y and a permutation u′ of u, there is a unique weak path P ′ : x −→

u′
y. Such a path P ′ is a

permutation of P .

Weak paths between two given elements are far from being canonical, so we aim to isolate a property,
similar to the case of buildings, which will ensure the existence of canonical paths between elements, up
to permutation. This is where simple connectedness and reduced (strong) paths appear. A splitting of a
letter s is a (possibly trivial) word, whose letters are properly contained in s. Given words u and v, we
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write u ≺ v if u is equivalent to a word obtained from v by replacing at least one occurrence of a letter
in v by a splitting. The relation ≺ is transitive, irreflexive and well-founded. The notation u � v stands
for either u ≺ v or u ≈ v.

Write x s−→ y if x −→
s
y but no weak path whose word is a splitting of s connects x to y. A path from x to

y with word u = s1 · · · sn, denoted by x u−→ y, is a weak path x = x0, . . . , xn = y such that xi
si+1−−−→ xi+1

for i = 0, . . . , n− 1. Notice that a permutation of a path is again a path. If x −→
u
y, then x v−→ y for some

reduction v � u. Thus, we say that a word v = s1 · · · sn is reduced if there is no pair i 6= j such that
si ⊂ sj and si commutes with all letters in v between si and sj . A path is reduced if its associated word
is. A word u, resp. a path P , is reduced if and only if any permutation of u, resp. of P , is.

A dual quasi-building is simply connected if there are no non-trivial closed reduced paths, or equivalently,
if the word of any closed path can be reduced to the trivial word 1. The dual quasi-building B0(Γ)
happens to be simply connected [BMZ14a, Theorem 3.16], since any reduced path between two elements
must have singletons as letters. In a simply connected dual quasi-building X, given two elements x and
y and reduced paths connecting x to y with words u and v, we have that u ≈ v. Thus, we denote this
reduced word connecting x to y, unique up to permutation, by wX(x, y). Simple connectedness is an
elementary property [BMZ14a, Theorem 3.26]. Indeed, given a weak path of length n between x and
y of length n whose word is reduced, it suffices to require that there is no splitting of length n at each
intermediate step to conclude that the reduction of the weak path cannot be trivial.

The theory of B0(Γ) is then completely axiomatised by the collection of axioms PS Γ stating that
the universe is a simply connected dual quasi-building with associated Coxeter graph Γ such that the
∼γ-class of every element is infinite. In order to show that PS Γ is complete [BMZ14a, Theorem 4.12],
we observe that every ω-saturated model can be obtained as an increasing chain of nice extensions. A
non-empty subset A of a dual quasi-building X is nice if, whenever x and y in A are connected in X by
a reduced path of word u, then so are they in A. Observe that a nice subset of a simply connected dual
quasi-building is again simply connected. As a by-product of the completeness of PS Γ, we deduce that it
is ω-stable and that the quantifier-free type of a nice subset determines its type. Furthermore, the model
B0(Γ) is the prime model, since it is constructible and countable.

6.3 Equationality and Ampleness of Right-Angled Buildings

Work now inside a big sufficiently saturated model M of the theory PS Γ, as a universal domain.
Given a nice subset A of M and an element x, there is some y in A such that u = w(x, y) is not only
≺-minimal but ≺-smallest among all possible connections of x to some element in A. Such a point y is
called a base-point of x over A, and x |̂

y
A with respect to non-forking independence, since the theory

is stable. The type of x over A is uniquely determined by y and u.

The canonical base of x over A is a certain collection of residues of any base-point of x over A, de-
termined exclusively by w(x, y). This shows one of the advantages of considering Γ-spaces instead of
dual quasi-buildings, for it grants elimination of imaginaries, since residues become now real elements.
Forking in PS Γ is trivial [BMZ14a, Corollary 7.27]: given three pairwise independent tuples, they form
an independent set . Thus, no infinite group can be interpreted.

In order to show that the theory PS Γ is equational (cf. Section 1.2), non-splitting reductions are
required, that is, reduction of words where no splitting ever occurs. Up to permutation, such reductions
are unique [BMZ14b, Corollary 5.3]. Thus, given two reduced words u and v, we denote by [u · v] the
non-splitting reduct of u · v. The collection of reduced words equipped with the partial order � and
the above operation is hence an ordered monomial [BMZ14b, Lemma 5.29]. Furthermore, if u and v are
reduced words, then u � [u · v].

A particular case of non-splitting happens when the letter t is properly left-absorbed, resp. properly right-
absorbed, by the word s1 · · · sn, that is, the letter t is properly contained in some si and commutes with
s1 · · · si−1, resp. with si+1 · · · sn. The notion of left-absorbed, resp. right-absorbed is defined similarly, but
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it may be that t = si. There is a Symmetric Decomposition [BMZ14b, Corollary 5.23] of two reduced
words Given u and v, as follows:

u = u1 · u′ · w w · v′ · v1 = v,

such that:

(a). w is a commuting word,

(b). u′ is properly left-absorbed by v1,

(c). v′ is properly right-absorbed by u1,

(d). u′, w and v′ pairwise commute,

(e). u1 · w · v1 is reduced.

Furthermore,
[u · v] = u1 · w · v1.

The above decomposition result, used all throughout [BMZ14b] and [BMZ14a], has many consequences.
In particular, it allows to prove, given reduced words u � v, the existence of a reduced word w, unique
up to permutation, such that for every reduced word x,

[x · u] � v ⇔ x � w.

We denote the above word by v/u. Notice that v/u � v.

Let us now describe which of the formulae form our collection of equations. Let Pu(x, y) state that,
between x and y there is a weak path with word u. The formula Pu(x, y) is an equation. Indeed, the
existence of the quotient v/u as above and an easy compactness argument imply that, given elements
a and b in M with reduced path P connecting a to b, and reduced words u1 and u2 such that neither
Pu1(X, a) nor Pu2(X, b) imply the other, the conjunction Pu1(X, a) ∧ Pu2(X, b) is equivalent to

n∨
i=1

Pwi(X, ci)

for elements c1, . . . , cn occurring in some permutation of P and reduced words w1, . . . , wn ≺ u1, u2. Since
the relation ≺ is well-founded, we conclude that each formula Pu(x, y) is an equation [BMZ14a, Corollary
7.6], as desired.

The theory PS Γ is equational once we show that the type of n elements x1, . . . , xn is uniquely determined
by the collection of words w(xi, xj) connecting each pair, for i 6= j [BMZ14a, Theorem 7.24]. This is
not a trivial consideration, though by induction, it suffices to prove it for three elements a, b and c with
reduced words u, v and w, as in the following diagram:

a b

c

u v

w

By [BMZ14a, Proposition 7.21], there is a decomposition of the form:
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u ≈ u1 · α−1 · ε−1,

v ≈ ε · β · v1,

w ≈ u1 · x · v1,

such that α, β and x pairwise commute, the word x is properly right-absorbed by ε, the word α is properly
left-absorbed by v1, and β is right-absorbed by u1. The words u1, v1, ε, x, α and β are furthermore
unique, up to permutation. There is some element d occuring in some permutation of the path P : a→ b,
such that w(c, d) ≈ ε · α · β, and the scaffold consisting of the base set P together with the path from c
to d is nice, so its type is determined by P and w(c, d), as desired.

Let us now conclude this chapter by providing lower and upper bounds, explicitly computable in terms
of the underlying Coxeter graph, on the ample degree of the theory PS Γ. If Γ has at least one edge,
define its minimal valency as the minimum of the valencies of the non-isolated vertices of Γ. A subgraph
Y ⊂ Γ is full if, whenever two vertices in Y are adjacent in Γ, then so are they in Y .

If the graph Γ has no edges, the theory PS Γ is biinterpretable with the theory of an infinite set M
partitioned into |Γ| many infinite sets, which is a trivial theory of Morley rank 1 (and degree |Γ|) and
1-based. Otherwise, we have the following result.

Theorem 6.1. [BMZ14a, Theorem 8.6] Let Γ be a Coxeter graph with at least one edge, and denote r
its minimal valency and let n in N be maximal such that the graph [0, n] fully embeds in Γ. The theory
PS Γ is n-ample but not (|Γ| − r + 1)-ample.

Thus, the theory PS Γ is not 1-based if and only if Γ contains at least one edge. The complete graph Kn

has minimal valency n− 1, so the theories PSKn are all CM-trivial, for every n.

Notice that these bounds are best possible, atttained either by the graph [0, n] itself, whose associated
theory is n-ample but not (n + 1)-ample (cf. [89, Theorem 3.3], [BMZ14b, Theorem 8.4]), or, as Evans
and Wagner pointed out, by the graph consisting of 0, . . . , n+ 1 arranged in a circular way:

2

1
0n+ 1

n

which has valency 2, so its theory is n-ample but not (n+ 1)-ample.
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“This is the end.
Beautiful friend.

Of our elaborate plans, the end.”

The Doors – The End

Perspectives
Future Research Directions

This last section contains some of the open problems and research directions, which arose from the work
here presented, that we would like to pursue in the future, though the feasibility of some of them has

not been thoroughly determined.

Given a geometric theory T , the expansion T ind by adding a dense independent subset H was ax-
iomatised and studied in [14]. In particular, if T is supersimple of SU rank 1, then so is T ind of SU
rank at most ω. Carmona showed [22] that ampleness is preserved betweend T and T ind, for n ≥ 2.
If T is 1-based, the theory T ind need not be. Take H a basis in a vector space V , and notice that, in
the ω-stable group (V,H), the predicate H is not a boolean combination of cosets of subgroups. This
marks a difference with respect to the theory of belles paires of a stable NFCP theory, for TP is 1-based,
whenever T is [11, Proposition 7.7].

Question /Problem A. If T is stable NFCP and CM-trivial, then so is TP ? More generally, if T is
stable NFCP and not n-ample, then so is TP ?

In order to show that a simple theory is 1-based, notice that it suffices to show that it is weakly 1-based
[13, Definition 2.3], that is, given a tuple a over a model M , there is some a′ |= tp(a/M) such that
a′ |̂

M
a and a′ |̂

a
M . The advantage of this formulation is that no canonical bases, and therefore no

(hyper)-imaginaries, appear. We ignore any equivalent formulation of CM-triviality, where imaginary
closure does not appear. The characterisation in TP of non-forking independence stated before Lemma
4.1 holds exclusively for real sets, and unfortunately, the theory TP of belles paires need not eliminate
imaginaries modulo imaginaries from T , whenever T interprets an infinite group. A possible reformulation
of n-ampleness similar to weakly 1-based could then be most helpful.

Work by Casanovas and Ziegler [24] implies that formulae in the theory TP of belles paires of a stable
NFCP theory with quantifier elimination are boolean combination of bounded formulae, that is, the
quantified variables run over the predicate. Delon’s language [30] for belles paires of algebraically closed
field yields in particular that formulae in this theory are boolean combination of bounded existential
formulae.

Question /Problem B. Is there a natural expansion of the language which provides a description of
formulae in the theory of belles paires of a stable NFCP theory ?

The above relates to the following question:

Question /Problem C. Let T be equational with NFCP. Is the theory TP equational?

Ongoing work with Ziegler suggests that the above holds for the theory of belles paires of algebraically
fields. At the moment of writing, we have a complete proof in characteristic 0, which we hope to
adapt to all characteristics. Unfortunately, our proof uses the expansion of differentially closed fields in
characteristic 0, for which there is no equivalent in positive characteristic.
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In belles paires of a stable NFCP 1-based theory, every acleq-closed set is P -independent. In particular,
if T is 1-based strongly minimal with geometric elimination of quantifiers, the TP -type of an infinite
algebraically closed set is determined by its the quantifier-free type. Recall that 1-based theories are
equational, which relates to the above question.

Question /Problem D. Which geometrical conditions of T imply that (certain) structures are P -
independent?

Lascar and Junker [50] introduced a topology, the indiscernible topology, which agrees with Srour’s
topology on definable sets. They introduce an ordinal-valued invariant, called iT , to mesure the complex-
ity of this topology in a given theory. If T is stable, then iT ≤ |T |+. If T is 1-based, then iT ≤ 2. They
observe that for CM-trivial groups of finite Morley rank, the value iT is finite. Carmona showed that the
free pseudoplane has iT ≤ 3.

Question /Problem E. If T is not n-ample, then is iT ≤ n+ 1? As a test: is iT ≤ n+ 2 for the free
n-dimensional pseudospace?

Lascar [61] and subsequently Evans, Ghadernezad and Tent [32] showed that, for a pure algebraically
closed field or a differentially closed field in characteristic 0, given an unbounded strong automorphism,
every strong automorphism can be written as a product of a fixed number of its conjugates. The proof
uses the stationarity of strong types in a stable theory in a fundamental way, in order to show that a
certain continuous map has non-meager image. If T is simple, stationarity no longer holds.

Question /Problem F. Describe the algebraic structure of the group of Lascar strong automorphisms of
a generic difference field modulo the group generated by σ and Frobenius, if the characteristic is positive.

Recall that the canonical base property CBP generalises 1-basedness. Chatzidakis [26] shows that, if
a supersimple theory T = T eq of finite SU rank has the CBP with respect to an invariant family Σ, then
every algebraically closed set E contains a smallest algebraically closed set subset A such that the type
of E/A is almost Σ-internal.

Question /Problem G. Does the above hold for a supersimple CM-trivial theory (of finite SU-rank)?
Do supersimple CM-trivial theories have the CBP?

Hrushovski and Pillay studied groups in certain local fields [45, 46]. A Nash affine group definable
in a real closed field is hence Nash isomorphic to the real points of an algebraic group. A remarkable
example of a lovely pair of geometric structures is the theory of dense pairs of real closed fields, which is
complete and has o-minimal open core [93].

Question /Problem H. Describe definable groups in dense pairs of real closed fields, analogously to
the theory of belles paires of algebraically closed fields in characteristic 0.

Were the above problem solved successfully, then the study of interpretable groups in dense pairs of real
closed fields seems the natural step. However, the issue of geometric elimination of imaginaries could
represent an obstacle. Boxall showed [18] that imaginaries in the theory of dense pairs of real closed fields
are interalgebraic with imaginaries coming from the associated belle paire of algebraically closed fields
in characteristic 0. However, his proof is not explicit and does not provide natural geometric sorts, in
contrast to Pillay’s proof [72].

Question /Problem I. Describe geometric sorts to have elimination of imaginaries in dense pairs of
real closed fields.
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Groupes définissables dans des expansions de théories stables
Ampleur et notions relatives

Résumé: Les travaux de recherche présentés dans ce document portent sur la hiérar-
chie ample, introduite par Pillay et Evans comme réformulation du Principe de la
Trichotomie pour les ensembles fortement minimaux. Nous étudions la théorie de
modèles d’immeubles à angles droits et résidues infinis en une expansion du langage
naturelle des immeubles, pour donner des bornes explicites sur le degré d’ampleur,
qui se calculent à partir du graphe de Coxeter associé. En particulier, la hiérarchie
ample est stricte.
En outre, nous nous inspirons des divers résultats sur les groupes définissables dans
certaines théories des corps munis d’opérateurs, fondamentales en théorie des modè-
les géométriques, pour donner une approche générale à l’étude des groupes définissa-
bles dans une théorie simple à partir de son ampleur relative à une (ou plusieurs)
théorie stable de base, en présence d’un opérateur clôture modéré. Cette approche,
qui s’applique aux corps différentiellement clos de caractéristique nulle et aux corps
aux différences génériques en toute caractéristique ainsi qu’à tous les amalgames de
Hrushovski connus, nous permet aussi d’établir une description des groupes définissa-
bles dans des corps colorés, introduits par Poizat, et en particulier dans le mauvais
corps obtenu par collapse du corps vert. Les outils développés pour cette étude
s’étendent aux groupes définissables et interprétable dans des belles paires de corps
algébriquement clos. En outre, nous caractériserisons les automorphismes bornés de
nombreuses théories des corps munis d’opérateurs.
Mots clés: Théorie des modèles Géométrique, Groupes, Ampleur.

Definable groups in expansions of stable theories
Abstract: We present research around the ample hierarchy, as introduced by Pillay
and Evans to reformulate the Trichotomy Principle for strongly minimal theories.
We study the model theory of right-angled buildings with infinite residues in an
expansion of the natural language of buildings, in order to provide explicit bounds
on their ample degree, computable in terms of the associated Coxeter graph. In
particular, the ample hierarchy is strict.
We generalise various results on definable groups in several theories of fields with
operators, such as differentially closed fields in characteristic 0 as well as generic
difference fields in all characteristics, which play a crucial role in geometric model
theory, to study type-definable groups in a simple theory according to its relative
ampleness over some base stable reducts with respect to a tame closure operator.
This approach applies to all known examples of Hrushovski’s amalgams. We pursue
further this analysis to definable groups in colored fields, as introduced by Poizat,
and in particular the bad field obtained as a collapse of the green field. The tools
we develop thereupon can be adapted to study definable groups in belles paires
of algebraically closed fields, as well as to characterise bounded automorphisms in
various theories of fields with operators.
Keywords: Geometric Model Theory, Groups, Ampleness.

Image en couverture : La configuration de groupe (d’après E. Hrushovski). Crédit image : Thomas Blossier.


	Remerciements
	Introduction
	Introduction en français
	Preliminaries
	Forking and Imaginaries
	NFCP and Equationality
	Generics, Stabilisers and Isogenies
	Internality, Analysability and P-closure
	The Group Configuration

	Ampleness
	Amalgams and Collapse
	Ampleness and Variants
	Relative Ampleness

	Colored Fields
	Green Fields
	Definable Subgroups of Algebraic Groups and in the Fusion

	Groups in Belles Paires
	Bounded Operators
	Ample Buildings
	Basics on Buildings
	Axiomatising Right-Angled Buildings
	Equationality and Ampleness of Right-Angled Buildings

	Perspectives
	Liste de Travaux presentés dans ce Mémoire
	Références Bibliographiques

