
GALOIS COHOMOLOGY OF FIELDS WITH A DIMENSION
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Abstract. We consider fields K with an abstract notion of dimension as
stated by Pillay and Poizat in their paper of 1995. We prove that, for every

finite extension L of K and for every finite Galois extension L1 of L, the Brauer

group Br(L1/L) is finite. Moreover, given an algebraic group G defined over
L, we have that H1(L1/L,G) is finite.

1. Introduction and preliminaries

The existence of a rank induces some primitive concept of dimension on definable
sets. In [6], basic requirements for the well-behaviour of a dimension were considered
and in particular, fields equipped with a dimension such that, given a

definable set X and a definable equivalence relation E on X, there is only a fi-
nite number of classes of dimension equal to the dimension of X. These fields were
called surgical (from the french chirurgical). Examples of these fields are finite
fields, totally transcendental fields and o-minimal fields. It was proven in the afore-
mentioned article that surgical fields are perfect and have bounded Galois group:
i.e.for each n in N, there a e only finitely many non-isomorphic field extensions of
degree n.

In [7], the above treatment was also applied to the case of supersimple fields
in some of the proofs. By a supersimple field we mean a definable field in some
sufficiently saturated model of a theory which is supersimple. In [3], supersimple
fields were later studied and some results about their cohomological behaviour was
exhibited. We realized that the proofs of [7] and [3] can be generalized to this
setting if we are purely interested in finiteness of certain cohomological groups.
We will work inside a fixed sufficiently saturated structure M. We remark that
by definable we mean usually definable in Meq (other people will call this inter-
pretable). Neve theless, for simplicity, we will use the word definable in a more
general etting. We also remarkark that interpretable means interpretab e in the
structurrem maybe with parameters. The structure M is emphsurgical if there
is some poset such that we can assign (in a way that is invariant under definable
automorphisms of M) to each efinable set U an elemmaent dim(U) of the afore-
markentioned po et satisfying the following conditions: rem
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• If U and V are both definable in M, and there is a finite partition of U
into definable subsets U1, . . . , Un such that each Ui can be mapped to V
via some definable (in M) finite-to-one function, then dim(U) ≤ dim(V ).
• If U is a definable set and E is a definable equivalence relation on U , then

there are only finitely many equivalence classes of dimension dim(U).

By a surgical field K, we mean a field K that is definable in M. Moreover, we fix
an algebraic closure for K, and denote it by K.
Given a perfect field K, we consider a central simple algebra A over K: a finite
dimensional K-algebra whose center is K and with no non-trivial two-sided ideals.
Any such algebra A is a matrix algebra Mm(A) over some finite dimensional division
ring whose center is K (note that m may vary in N). The Brauer group Br(K)
classifies the classes of central simple algebras over K modulo K-isomorphism of
their respective matrix algebras. The trivial elemmaent in Br(K) corresponds to
the class of K. Given a finite Galois extension L/K and a central simple algebra
A over K, we obtain a central simple algebra A′ over L by setting A′ = A ⊗ L.
Hence, we obtain a map Br(K)→ Br(L) and we denote by Br(L/K) its kernel.
An abstract variety V defined over K is Severi-Brauer if V is rationally isomorphic
to Pn over K. Equivalently, V is a Severi-Brauer variety over K if V and Pn are
rationally isomorphic over K ′, where K ′/K is a finite algebraic extension. The set
of classes of Severi-Brauer varieties over K modulo rational isomorphism over K
is in bijection with Br(K). A Severi-Brauer variety V corresponds to the trivial
elemmaent in Br(K) if V has a K-rational point.
With the above notation, given an algebraic group G over K, we say that an
abstract variety E over K is a principal homogeneous space (denoted by PHS) for
G if E is non-empty and G acts strictly transitively on it (that is, for each x and
y in E, there is a unique g ∈ G such that y = gx). Two PHS’s E and E′ for
G defined over K are isomorphic if there is a rational G-isomorphism φ : E → E′

defined over K (i.e.for any g in G and e ∈ E φ(ge) = gφ(e) and likewise for φ−1).
We denote by H1(K,G) the set of classes under rational G-isomorphism of PHS′s
for G defined over K. Again, considering K as a subfield of L, we obtain a map
H1(K,G)→ H1(L,G) and we denote its kernel by H1(L/K,G).
We will prove the following:

Theorem 1.1. Let K be a surgical field. For each finite algebraic extension L of K
and for each finite Galois extension L1 of L, the Brauer group Br(L1/L) is finite.
Moreover, H1(L1/L,G) is finite for any algebraic group G defined over L.

The proof of the above theorem uses an induction argument on the degree of the
extension, reducing it to the cyclic case, for which there is a particular description
of the above objects as quotient sets. By our hypotheses, we need only show that
each class in the quotient has at least the dimension of the ambient set, and hence,
there are only finitely many. In order to do so, we reduce it to the case of abelian
varieties (in the case of H1), and exhibit a finite-to-one map using the p-torsion
points of the abelian variety, which is a finite set.
We should remark that, due to the weakness of our hypotheses, we cannot expect
to obtain the same results as in [7], where in fact, triviality of the Brauer group
was shown. Note that Br(C/R) = Z/2Z. Hence, triviality cannot hold in this more
general context.
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2. Galois Cohomology

In this section we give some details about the nature of the cohomology groups
that we will use. The reader is referred to [9] and [10] for a more detailed exposition
about Galois Cohomology over perfect fields.
Let L/K be a Galois extension. The Galois group Gal(L/K) is the projective limit
of all Galois groups Gal(Li/K), where L/Li/K is a Galois subextension with Li/K
finite. Hence, Gal(L/K) is a profinite group (i.e. a compact, Hausdorff and totally
disconnected topological group). Any closed subgroup of a profinite group is again
profinite.
A supernatural number is a formal product

∏
p prime

pnp , where np ∈ Z≥0 or np =

∞. In a natural way we define the product, l.c.m. and the g.c.d. of a collection of
supernatural numbers.
Let G be a profinite group and H ≤ G a closed subgroup. We define the index of
H in G by

(G : H) = l.c.m.{(G/U : H/(H ∩ U)) | U ≤ G open of finite index }

By the order of G we mean (G : 1). Let p be a prime number. The subgroup
H is a pro-p-subgroup of G if its order is a pth-power (as a supernatural number).
Equivalently, H is a pro-p-subgroup if it is a projective limit of finite p-groups. The
group H is a Sylow p-subgroup if it is a pro-p-group whose index in G is coprime
to p. As in the case of finite groups, there are Sylow subgroups for each prime
dividing the order of G and moreover, any two are conjugate in G.
Let us now return to the case of a Galois extension L/K and let A be an abelian
algebraic group defined over K endowed with the discrete topology. There is
an action of Gal(L/K) on A(L). Given a subgroup U ≤ Gal(L/K), we define
AU = {x ∈ A(L) | ∀g ∈ U gx = x}.
Setting G = Gal(L/K), we denote by Cn(G,A) the set of continuous functions
from Gn to A(L) (with C0(G,A) = A). We define the coboundary maps {δn}n∈Z≥0

as follows:

C0(G,A)
δ0−→ C1(G,A)

a −→ δ0(a) : G −→ A(L)

g −→ ga− a

Cn(G,A)
δn−→ Cn+1(G,A)

f −→ δn(f) : Gn+1 −→ A(L)

(g1, . . . , gn+1) −→ g1 · f(g2, . . . , gn+1)

+
n∑
i=1

(−1)if(g1, . . . , gi−1 · gi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn)

Note that δn+1 ◦ δn = 0. The family C•(G,A) = {Cn(G,A), δn}n∈Z≥0 is called
a complex. We define the nth-cohomology group of the complex C•(G,A) as
Hn(G,A) = Ker(δn)/Im(δn−1), for n ≥ 1 (H0(G,A) = AG = A(K)), and call
it the nth-cohomology group of G with coefficients in A. Elemmaents of Hn(G,A)
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in the same coset are called cohomologous. Elemmaents of Ker(δn) are called n-
cocycles. We write Hn(L/K,A) = Hn(Gal(L/K), A).
For each n ≥ 1, the group Hn(G,A) is torsion. If H = Gal(L/K ′) is a closed
subgroup of G, then H acts on A(L). Hence, Hn(H,A) is defined. The following
holds:

Lemma 2.1. Let G, A and H as above. If H is normal, the following exact
sequences hold:

0→ H1(K ′/K,A)→ H1(L/K,A)→ H1(L/K ′, A)

0→ H2(K ′/K,A)→ H2(L/K,A)→ H2(L/K ′, A)

If B is another commutative algebraic group defined over K containing A, the
quotient group C = B/A is again an algebraic group defined over K and we obtain
the following exact sequence:

0→ A(K)→ B(K)→ C(K)→ H1(L/K,A)→ H1(L/K,B)→ H1(L/K,C)

Suppose now that A is an algebraic group, not necessarily commutative. In this
case, only the zeroth and first cohomology groups can be defined naturally, similarly
as done above. Note that the set H1(G,A) need no longer have a composition law. It
is a pointed set (i.e.it has a distinguished elemmaent, the class of the unit cocycle,
called the neutral elemmaent). Hence, the notion of an exact sequence can be
extended to this setting (that is, the image of a map is equal to the inverse image
of the neutral elemmaent). In fact, by means of twisting principal homogeneous
spaces, an exact sequence gives again information about the equivalence relation
that a map determines. Suppose A and B are algebraic groups defined over K
and u : A → B is a rational homomorphism defined over K. It induces a map
v : H1(L/K,A)→ H1(L/K,B) and by twisting, we transform each fiber of v into a
kernel, so that they occur in exact sequences.

Proposition 2.2. Let A , B be algebraic groups over K such that A/B, and denote
B/A by C. There is a map δ : C(K)→ H1(L/K,A) such that the following sequence
is exact:

0→ A(K)→ B(K)→ C(K)
δ→ H1(L/K,A)→ H1(L/K,B)→ H1(L/K,C)

As stated in the introduction, H1(L/K,A) is in bijection with the set of classes of
isomorphism of PHS′s for A. Moreover, Br(L/K) = H2(L/K,L∗). We now state
a well-known result about the cohomology of the additive and multiplicative group
of a field:

Proposition 2.3. (Hilbert 90) For any perfect field K and for any Galois extension
L/K, the following hold:

• H1(L/K,L∗) = 0.
• Hn(L/K,L+) = 0 for each n in Z≥1.

Suppose now A is a commutative algebraic group over K and the extension L/K
is finite cyclic of order n. Choose a generator σ for Gal(L/K). In this case, we can
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define the following maps on A:

A(L)
D−→ A(L)

N−→ A(K)

Q −→ D(Q) = Qσ −Q

P −→ N(P ) =
n−1∑
i=0

Pσ
i

With notation as above, we have:

Proposition 2.4. (see Section VIII.4 in [9])

• H1(L/K,A) = Ker(N)/Im(D) and,
• H2(L/K,A) = A(K)/Im(N)

We now state a result regarding the cohomological behaviour of fields with bounded
absolute Galois group, that will be useful for the induction process in the proof of
the theorem.

Proposition 2.5. (see Section III.4 in [10]) Suppose K is a perfect field with
bounded absolute Galois group Gal(K/K). Given a finite algebraic group A de-
fined over K, we have that H1(K/K,A) is finite. The same holds if A is a linear
algebraic group defined over K.

3. Results

As stated in the introduction, we work inside a sufficiently saturated surgical
structure M, and K denotes a definable field in M. We also fix an algebraic
closure K for K.
Let us first recall an obvious result:

Fact 3.1. dim(K∗) = dim((K∗)n) for each n in N. Therefore, (K∗)n has finite
index in K∗.

The theorem stated in the introduction refers to a finite algebraic extension L of
K. Since such an extension is again interpretable inM via a basis for the extension
L/K, and the surgical behaviour ofM applies to any definable set, we may assume
that L = K is our base field, for simplicity of notation.

Theorem 3.2. Let L/K be a finite Galois extension. Then Br(L/K) is finite.

Proof. By 2.1, it is enough to prove the result for any Sylow subgroup of Gal(L/K).
Since any p-group has a subgroup of index p, and again by 2.1, we reduce it to the
case of L/K cyclic of degree p. It follows from 2.4 that Br(L/K) = K∗/Im(N),
where N : L∗ → K∗ is the norm map of the field extension. Recall that for any x
in K∗, its norm is N(x) = xp. Hence, (K∗)p ⊂ Im(N) ⊂ K∗, and it follows from
3.1 that the quotient K∗/Im(N) is finite. �

We now consider the case where A is an algebraic group defined over K, not nec-
essarily commutative.

Theorem 3.3. Let L/K be a finite Galois extension. The group H1(L/K,A) is
finite.
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Proof. Let A0 denote the connected component of A (which is a connected algebraic
group defined over K such that A/A0 is a finite group). By 2.2, finiteness from
H1(L/K,A) will follow from finiteness of H1(L/K,A0) and H1(L/K,A/A0). Since
Gal(L/K) is bounded, we have that H1(L/K,A/A0) is finite by 2.5. Hence, we
need only consider the case where A is connected.
By Chevalley’s theorem, we conclude that there exists a connected linear algebraic
group T and an abelian variety B, both defined over K, such that the following
exact sequence holds:

0→ T → A→ B → 0

Again by 2.2, we need to consider H1(L/K, T ) and H1(L/K,B). However, we have
that H1(L/K, T ) is finite, since Gal(L/K) is bounded (see 2.5). Therefore, we may
assume that A is an abelian variety defined over K. Hence, A is commutative. We
can therefore reduce the proof, via a similar argument as in 3.2, to the case where
L/K is cyclic of degree p.
We conclude by 2.4 that H1(L/K,A) = Ker(N)/Im(D), where N and D are defined
as in 2.4 via a generator σ of Gal(L/K). Choosing a basis of L over K and since
A is definable in the field structure K, we have that both Ker(N) and Im(D) are
definable in M. Since M is surgical, it is enough to prove that each class in the
quotient has dimension at least dim(Ker(N)). Let P be in Ker(N), and define the
following map:

Ker(N)
φ−→ P/Im(D)

Q −→ φ(Q) = P +D(Q)

The statement follows once we prove that φ is finite-to-one. This is clear: if Q and
Q′ in Ker(N) are such that φ(Q) = φ(Q′), we have that D(Q − Q′) = 0. Hence,
Q−Q′ is in A(K). It follows that 0 = N(Q−Q′) = [p](Q−Q′), where [p] denotes
addition p times in the abelian variety. Therefore, Q−Q′ is in A[p] (the p-torsion
of A), which is a finite set. �

Remark 3.4. Inspecting the above proof, it follows that the whole argument goes
through for the case L = K up to finiteness of H1(K/K,A), with A an abelian
variety over K, that is, the induction argument. In general, we do not have tools
enough to conclude finiteness for the absolute Galois group (considering the weak-
ness of our assumptions, it would be too much to expect). Nontheless, it can be
the case that, when specifying where the dimension comes from (i.e. o-minimal
dimension, algebraic dimension, Shelah rank, etc), we are able to conclude stronger
results.

References

[1] R. Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer-

Verlag, Berlin, Germany, 1977.
[2] J.E. Humphreys. Linear Algebraic Groups, volume 21 of Graduate Texts in Mathematics.

Springer-Verlag, Berlin, Germany, 1975.
[3] A. Martin-Pizarro. Algebraic Curves over Supersimple Fields. PhD thesis, University of Illi-

nois at Urbana-Champaign, Urbana-Champaign, IL, USA, dec 2003.

[4] A. Pillay. Algebraically closed fields. In Model Theory and Algebraic Geometry: An intro-
duction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture, pages 61–84.
Springer, Berlin, Germany, 1991.

[5] A. Pillay. Remarks on galois cohomology and definability. Journal of Symbolic Logic, 62:487–
492, 1997.



GALOIS COHOMOLOGY OF FIELDS WITH A DIMENSION 7

[6] A. Pillay and B. Poizat. Corps et chirurgie. Journal of Symbolic Logic, 60:528–533, 1995.
[7] A. Pillay, T. Scanlon, and F. Wagner. Supersimple fields and division rings. Mathematics

Research Letters, 5:473–483, 1998.

[8] J. Rotman. An Introduction to Homological Algebra, volume 85 of Pure and Applied Mathe-
matics. Academic Press, San Diego, CA, USA, 1979.

[9] J.P. Serre. Corps Locaux, volume 8 of Publications de L’Institut de Mathématique de
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