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Abstract2

We introduce and study the notion of an abelian anti-power in the context of combinatorics on3

words. An abelian anti-power of order k (or simply an abelian k–anti-power) is a concatenation4

of k consecutive words of the same length having pairwise distinct Parikh vectors. This definition5

therefore generalizes to the abelian setting the notion of a k–anti-power, as introduced in [G. Fici6

et al., Anti-powers in infinite words, J. Comb. Theory, Ser. A, 2018], that is a concatenation of k7

pairwise distinct words of the same length. In particular, we deal with the question to determine8

whether a word contains abelian k–anti-powers for arbitrarily large k. A word with bounded abelian9

complexity clearly cannot contain abelian anti-powers of every order. We show that the Sierpiǹski10

word (whose abelian complexity grows logarithmically) does not contain abelian 11–anti-powers.11

Another question is to find words with low factor complexity that contain both abelian powers and12

abelian anti-powers of every order. We show that all paperfolding words have this property.13

1 Introduction14

Many of the classical definitions in combinatorics on words (e.g., period, power, factor complexity, etc.)15

have a counterpart in the abelian setting, though they may not enjoy the same properties.16

Recall that the Parikh vector P (w) of a word w over a finite ordered alphabet A = {a1, a2, . . . , a|A|} is17

the vector whose i-th component is equal to the number of occurrences of the letter ai in w, 1 ≤ i ≤ |A|.18

For example, the Parikh vector of w = abbca over A = {a, b, c} is P (w) = (2, 2, 1). This notion is at the19

basis of the abelian combinatorics on words, where two words are considered equivalent if and only if20

they have the same Parikh vector.21

The fundamental result of Morse and Hedlund [7] (an infinite word is aperiodic if and only if its factor22

complexity is unbounded) does not hold anymore in the case of the abelian complexity (the function23

that counts the number of distinct Parikh vectors of factors of length n for each n), as there exist24

aperiodic words with bounded abelian complexity. In fact, Richomme et al. [8] observed that if a word25

has bounded abelian complexity, then it contains abelian powers of any order — an abelian power of order26

k is a concatenation of k words having the same Parikh vector. However, this is not a characterization27

of words with bounded abelian complexity. Madill and Rampersad proved that the regular paperfolding28

word has unbounded abelian complexity [6], and Štěpán Holub proved that it contains abelian powers29

of every order [5]. Actually, Holub proved that all paperfolding words have this property.30

In a recent paper [4], the first and the third author, together with Antonio Restivo and Luca Zamboni,31

introduced the notion of an anti-power. An anti-power of order k, or simply a k–anti-power, is a32

concatenation of k consecutive pairwise distinct words of the same length. E.g., aabaaabbbaba is a33

4–anti-power.34

In [4], it is proved that the existence of powers of every order or anti-powers of every order is an35

unavoidable regularity for infinite words:36
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Theorem 1. [4] Every infinite word contains powers of every order or anti-powers of every order.37

Note that in the previous statement there is no hypothesis on the alphabet size.38

In this paper, we extend the notion of an anti-power to the abelian setting.39

Definition 2. An abelian anti-power of order k, or simply an abelian k–anti-power, is a concatenation40

of k consecutive words of the same length having pairwise distinct Parikh vectors.41

For example, aabaaabbbabb is an abelian 4–anti-power. Notice that an abelian k–anti-power is a42

k–anti-power but the converse does not necessarily holds (which is dual to the fact that a k–power is an43

abelian k–power but the converse does not necessarily holds).44

We think that an analogous of Theorem 1 may still hold in the case of abelian anti-powers, but45

unfortunately the proof of Theorem 1 does not seem to be generalizable to the abelian setting.46

Problem 1. Does every infinite word contain abelian powers of every order or abelian anti-powers of47

every order?48

Clearly, if a word has bounded abelian complexity, then it cannot contain abelian anti-powers of every49

order. However, we show in this paper that the converse is not true. Indeed, we prove that the Sierpiǹski50

word, which is the fixed point starting with a of the substitution (a → aba, b → bbb), does not contain51

abelian 11–anti-powers. The Sierpiǹski word has logarithmic abelian complexity (by construction) and52

contains abelian powers of every order (as it contains arbitrarily long blocks of b’s).53

An infinite word can contain both abelian powers of every order and abelian anti-powers of every54

order. This is the case, for example, of any word with full factor complexity. However, finding a55

class of words with low factor complexity satisfying this property seems a more difficult task. Indeed,56

most of the well-known examples of aperiodic words (Thue-Morse, Sturmian words, etc.) have bounded57

abelian complexity, hence they cannot contain abelian anti-powers of every order — whereas, by the58

aforementioned remark of Richomme et al. [8], they contain abelian powers of every order. Building59

upon the theory that Štěpán Holub developed to prove that all paperfolding words contain abelian60

powers of every order [5], we prove that all paperfolding words contains also abelian anti-powers of every61

order.62

2 Sierpiǹski Word63

Recall that the Sierpiǹski word s is the fixed point starting with a of the substitution

σ : a→ aba

b→ bbb

so that the word s begins as follows:64

ababbbababbbbbbbbbababbbabab27a · · ·

Therefore, s can be obtained as the limit, for n → ∞, of the sequence of words (sn)n≥0 defined by:65

s0 = a, sn+1 = snb
3n

sn for n ≥ 1. Notice that for every n one has |sn| = 3n.66

Theorem 3. The Sierpiǹski word s does not contain 11–anti-powers, hence it does not contain abelian67

11–anti-powers.68

Proof. Suppose that s contains an 11–anti-power u = u1u2 · · ·u11, of length 11m. Let us then consider69

the first occurrence of u in s. Let n be the smallest integer such that u occurs in sn+1b
3n+1 but not in70

snb
3n .71

Let us first suppose that no ui is equal to bm for some i. Then u1 · · ·u10 is a factor of sn+1 = snb
3n

sn,72

so 10m < 3n+1 hence m < 3n−1. Then, by minimality of n, there are only two possible cases: either u173

starts before the block b3n , or u1 starts in the block b3n and ends in sn.74

In the first case, by minimality of n, u ends after the block b3n , and since no ui equals bm, we get75

2m > 3n, which is in contradiction with m < 3n−1.76
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If u1 starts in the block b3n and ends in sn, u2 · · ·u10 is a factor of sn = sn−1b
3n−1

sn−1 and so77

9m < 3n hence m < 3n−2. By minimality of n, u11 ends after the block b3n−1 . Again, since no ui equals78

bm, we get 2m > 3n−1, which is in contradiction with m < 3n−2.79

Let us then suppose that u11 = bm, so that u1 · · ·u9 is a factor of sn+1. The same reasoning as before80

holds, since (9m < 3n+1) ⇒ (m < 3n−1) and (8m < 3n) ⇒ (2m < 3n−1). If u1 = bm, u2 · · ·u10 is a81

factor of sn with no ui = bm and we can again apply the same reasoning.82

Finally, suppose that ui = bm with i 6= 1 and i 6= 11. Hence, u1 · · ·u10 is a factor of sn+1 = snb
3n

sn,83

and 10m < 3n+1. If u1 starts before the block b3n (and ends after by minimality of n), we get 3m > 3n
84

since otherwise u would contain two blocks bm. If u1 does not start before the block b3n , then by85

minimality of n it starts in this block, so u2 · · ·u10 is a factor of sn = sn−1b
3n−1

sn−1 which ends after86

the block b3n−1 , again by minimality of n. This shows that 9m < 3n, and at the same time 3m > 3n−1,87

which produces a contradiction.88

3 Paperfolding Words89

In what follows, we recall the combinatorial framework for dealing with paperfolding words introduced90

in [5], although we use the alphabet {0, 1} instead of {1,−1}.91

A paperfolding word is the sequence of ridges and valleys obtained by unfolding a sheet of paper92

which has been folded infinitely many times. At each step, one can fold the paper in two different ways,93

thus generating uncountably many sequences. It is known that all the paperfolding sequences have the94

same factor complexity c(n), and that c(n) = 4n for n ≥ 7 [1].95

The regular paperfolding word96

p = 00100110001101100010011100110110 · · ·

is obtained by folding at each step in the same way. It can be defined as a Toeplitz word (see [2] for a
definition of Toeplitz words) as follows: Consider the infinite periodic word γ = (0?1?)ω, defined over
the alphabet {0, 1} ∪ {?}. Then define p0 = γ and, for every n > 0, pn as the word obtained from pn−1
by replacing the symbols ? with the letters of γ. So,

p0 = 0?1?0?1?0?1?0?1?0?1?0?1?0?1? · · · ,
p1 = 001?011?001?011?001?011?001? · · · ,
p2 = 0010011?0011011?0010011?0011 · · · ,
p3 = 001001100011011?001001110011 · · · ,

etc. Thus, p = limn→∞ pn, and hence p does not contain occurrences of the symbol ?.97

More generally, one can define a paperfolding word f by considering the two infinite periodic words98

γ = (0?1?)ω and γ̄ = (1?0?)ω. Then, let b = b0b1 · · · be an infinite word over {0, 1}, called the sequence99

of instructions. Define (γn)n≥0 where, for every n, γn = γ if bn = 0 or γn = γ̄ if bn = 1. The paperfolding100

word f associated with b is the limit of the sequence of words fn defined by f0 = γ0 and, for every n > 0,101

fn is obtained from fn−1 by replacing the symbols ? with the letters of γn.102

Recall that every positive integer i can be uniquely written as i = 2k(2j + 1), where k is called the103

order of i (a.k.a. the 2-adic valuation of i), and (2j + 1) is called the odd part of i. One can verify that104

the previous definition of f is equivalent to the following: for every i = 1, 2, . . . define wi = (−1)jbk,105

where i = 2k(2j + 1). Then fi = 0 if wi = 1 and fi = 1 if wi = −1. This is equivalent to106

fi = 1 iff i ≡ 2k(2 + bk) mod 2k+2.

Remark 1. The regular paperfolding word corresponds to the sequence of instructions b = 1ω.107

Definition 4. Let f be a paperfolding word. An occurrence of 1 in f at position i is said to be of order108

k if the letter at position i is ? in fk−1 and 1 in fk. We consider the 1’s occurring in f0 as of order 0.109

Hence, in the paperfolding word f, the 1’s of order 0 appear at positions 2 + b0 + 4t, t ≥ 0, the 1’s of110

order 1 appear at positions 2(2 + b1 + 4t), t ≥ 0, and, in general, the 1’s of order k appear at positions111

2k(2 + bk + 4t), t ≥ 0.112
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Let f = f1f2 · · · be a paperfolding word associated with the sequence b = b0b1 · · · . A factor of f of113

length n starting at position `+1, denoted by f[`+1, . . . , `+n], contains a number of 1’s that is given by114

the sum, for all k ≥ 0, of the 1’s of order k in the interval [`+ 1, `+n]. For each k, since the 1’s of order115

k are at distance 2k+2 one from another, the number of occurrences of 1’s of order k in f[`+ 1, . . . , `+n]116

is given by117 ⌊
n− `
2k+2

⌋
+ εk,bk

(`, n),

where εk,bk
(`, n) ∈ {0, 1} depends on the sequence b (in fact, bk determines the positions of the occur-118

rences of the 1’s of order k in f). We set119

∆(`, n) =
∑
k≥0

εk,bk
(`, n)

the number of “extra” 1’s in f[`+ 1, . . . , `+ n].120

For example, in the prefix p[1, 14] of length 14 of the regular paperfolding word, we know that there121

are at least 3 = b 14
4 c 1’s of rank 0, 1 = b 14

8 c of rank 1 and 0 = b 14
16c of rank 2. In the interval [1, 14]122

there are three 1’s of rank 0 (at positions 3, 7 and 11), two 1’s of rank 1 (at positions 6 and 14), and one123

1 of rank 2 (at position 12), so we have in p[1, 14] no extra 1 of rank 0, i.e., ε0,1(0, 14) = 0, one extra 1124

of rank 1, i.e., ε1,1(0, 14) = 1 and one extra 1 of rank 2, i.e., ε2,1(0, 14) = 1, so that ∆(0, 14) = 2.125

We set126

Ek,bk
(`, d,m) = (εk,bk

(`, `+ d), . . . , εk,bk
(`+ (m− 1)d, `+md))

and127

∆(`, d,m) =
∑
k≥0
Ek,bk

(`, d,m) = (∆(`, `+ d), . . . ,∆(`+ (m− 1)d, `+md)) .

The factor of f of length dm starting at position ` + 1 is an abelian k-power if and only if the128

components of the vector ∆(`, d,m) are all equal, while it is an abelian k-anti-power if and only if the129

components of the vector ∆(`, d,m) are pairwise distinct.130

The next result (Lemma 4 of [5]) will be the fundamental ingredient for the construction of abelian131

anti-powers in paperfolding words.132

Lemma 5 (Additivity Lemma). Let `, `′ ≥ 0, and d, d′ ≥ 1 be positive integers with `′ and d′ both even.133

Let r be such that 2r > ` + md, and for each k ≥ 0 the following implication holds: if Ek,1(`′, d′,m) 6=134

Ek,−1(`′, d′,m) then bk = bk+r.135

Then136

∆(`, d,m) + ∆(`′, d′,m) = ∆(`+ 2r`′, d+ 2rd′,m).

Using the Additivity Lemma, Holub [5] proved that all paperfolding words contain abelian powers137

of every order. We are now using the Additivity Lemma to prove that all paperfolding words contain138

abelian anti-powers of every order. We start with the regular paperfolding word, then we extend the139

proof to all paperfolding words.140

3.1 Regular paperfolding word141

Let142

Φ : {0, 1}2 → {x, y, z}
00 7→ x
01 7→ y
10 7→ y
11 7→ z

be the morphism that identifies words of length 2 over the alphabet {0, 1} that are abelian equivalent.143

We have the following lemma:144

Lemma 6. Let n ≥ 3 be an integer. Let p = p[` + 1, . . . , ` + 2n] = u1v1 · · ·u2n−1v2n−1 be a factor of p
of length 2n. Then, no q < 2n−1 exists such that

Φ(p) = Φ(u1v1) · · ·Φ(u2n−1v2n−1) = Φ(uq+1vq+1) · · ·Φ(u2n−1v2n−1)Φ(u1v1) · · ·Φ(uqvq). (1)
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Proof. First, notice that if q′ is the smallest solution of (1), then q′|2n−1. Indeed, writing wi = Φ(uivi),
we have

w1 · · ·w2n−1 = w1 · · ·wq′wq′+1 · · ·w2n−1

= wq′+1 · · ·w2n−1w1 · · ·wq′ ,

and since two words commute if and only if they are powers of the same word, there exists a word z and
integers a and b such that

w1 · · ·wq′ = za and wq′+1 · · ·w2n−1 = zb.

This gives |z| · (a + b) = 2n−1 and |z| · a = q′. By the minimality of q′, we have that a = 1 and so145

|z| = q′|2n−1. Thus, q′ = 2j for some integer j < n.146

By the Toeplitz construction of p, we immediately have that147

u1v1 · · ·u2n−1v2n−1 = av1av2av3a · · · av2n−1

or148

u1v1 · · ·u2n−1v2n−1 = u1au2au3au4a · · ·u2n−1a

with a ∈ {0, 1} and a = 1− a.149

Suppose q′ 6= 1 and q′ 6= 2n−1. Since q′ is even, we have that Φ(uivi) = Φ(ui+q′vi+q′) implies150

uivi = ui+q′vi+q′ . But this cannot be the case, since two consecutive letters of order j occur in p at151

distance 2j+1. Since j ≤ n − 2, we have 2j+2 ≤ 2n, so the factor p contains at least two consecutive152

letters of order j. Suppose that the first of such letters is ui; then ui+q′ is at distance 2q′ = 2j+1, so153

ui+q′ 6= ui, against the hypothesis that q′ is a solution of (1).154

Thus, we must have q′ = 1 or q′ = 2n−1. Since n ≥ 3, p[` + 1, . . . , ` + 2n] contains two consecutive155

letters of order 1. Let us first suppose that vi is a 1 of order 1 and vi+2 is a 0 of order 1. Then,156

Φ(uivi) = Φ(11) 6= Φ(10) = Φ(ui+2vi+2). The other cases would give 10ui+1vi+111 with vi a 0 of order157

1 and vi+2 a 1 of order 1, 10ui+1vi+100 and 00ui+1vi+110 if ui is a 1 of order 1 and ui+2 a 0 of order158

1 or vice versa. Every case leads to Φ(uivi) 6= Φ(ui+2vi+2). This implies q′ 6= 1 and so q′ = 2n−1. By159

minimality of q′, the only solution of (1) is q = 2n−1.160

Theorem 7. The regular paperfolding word contains abelian m-anti-powers for every m ≥ 2.161

Proof. The proof is mainly based on the Additivity Lemma. Fix m. To prove the result it is sufficient to162

find a vector ∆(s, d,m) filled with pairwise distinct components. Let k be an integer such that 2k ≥ m.163

Consider the first factor of length 2k+2 − 1 containing a 1 of order k in the middle; our factor is then of164

the form165

w1w′

with |w| = |w′| = 2k+1 − 1. Since for every positive integers i, j166

pj of order i⇒ pj+2i+2 = pj 6= pj+2i+1 (2)

then, up to applying a translation, we can suppose w = w′. In fact, the equality is true for every letter167

of order smaller than k by (2). Now, taking the smallest order r > k of a letter in w or w′ such that this168

letter differs from 1, if we consider the factor translated of 2r+1, by (2) the letters of order smaller than169

r are the same and the letter we considered becomes a 1. Since the length of w1w′ is 2k+2 − 1 and the170

distance between two letters of order higher than k is at least 2k+2, we have that in less than 2 steps we171

get w1w with every letter of order greater than k being a 1. Writing ` + 1 the starting position of an172

occurrence in p of the factor w1w, we set `′ = ` if ` is even or `′ = `+ 1 otherwise. Consider the vectors173

∆(`′, 2, 2k),∆(`′ + 2, 2, 2k),∆(`′ + 4, 2, 2k),∆(`′ + 6, 2, 2k), . . . ,∆(`′ + 2k+1 − 2, 2, 2k).

We claim that these vectors are pairwise distinct. By contradiction, if ∆(`′+2p, 2, 2k) = ∆(`′+2q, 2, 2k)174

for some p, q with p ≤ q, then we have that Φ(p`′+2p+1 · · · p`′+2p+2k+1) = Φ(p`′+2q+1 · · · p`′+2q+2k+1).175

Since the factor we are considering is w1w, we have pl′+2p+1 · · · pl′+2q−1 = pl′+2p+1+2k+1 · · · pl′+2q−1+2k+1176

and so177

Φ(u`′+2p+1 · · ·u`′+2p+2k+1) = Φ(u`′+2q+1 · · ·u`′+2p+2k+1u`′+2p+1 · · ·u`′+2q+2k+1)
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but this contradicts Lemma 7.178

Finally, as the vectors are different, we use the Additivity Lemma to obtain a vector whose components179

are pairwise distinct: Applying n times the Additivity Lemma on ∆(`′+2p, 2, 2k) one can obtain n∆(`′+180

2p, 2, 2k). It then suffices to take a sequence of integers α0, . . . , α2k−1 increasing enough to have181

Σ2k−1
i=0 αi∆(s′ + 2i, 2, 2k),

a vector whose components are pairwise distinct. Indeed, labelling aj the j-th component of this vector182

and xi,j the j-th component of ∆(s′ + 2i, 2, 2k), we have183

aj = aj′ ⇔ Σ2k−1
i=0 αixi,j = Σ2k−1

i=0 αixi,j′ ⇔ Σ2k−1
i=0 αi(xi,j − xi,j′) = 0.

By “increasing enough”, we precisely mean αr > Σr−1
i=0αi sup

0≤q,q′≤2k−1
(xi,q − xi,q′), so that by decreasing184

induction we have that for every i, with 0 ≤ i ≤ 2k − 1, one has xi,j = xi,j′ . In particular, this gives185

∆(`′+2j, 2, 2k) = ∆(`′+2j′, 2, 2k), which implies j = j′. Hence, all the components are pairwise distinct186

and the proof is complete.187

3.2 All paperfolding words188

To generalize the result above to all paperfolding words, one has to take care of the condition bi = bi+r189

in the Additivity Lemma.190

Lemma 7 can be modified so that the translation is not by 2 but by 2u, for any u > 1. Let191

φ : {0, 1}2u → N
(a1 · · · a2u) 7→ |{i | ai = 1}|

be the morphism that identifies words of length 2u over {0, 1} that are abelian equivalent. Then we have192

the following lemma, analogous to Lemma 7:193

Lemma 8. Let n ≥ u + 3 be an integer and let f be a paperfolding word. Every factor f =
f [`+ 1, `+ 2n] = a1,1a1,2 · · · a2n−1,2u−1a2n−1,2u of f of length 2n satisfies the following property: If q
is such that

φ(f) = φ(a1,1 · · · a1,2u) · · ·φ(a2n−1,1 · · · a2n−1,2u) =
φ(aq+1,1 · · · aq+1,2u) · · ·φ(a2n−1,1 · · · a2n−1,2u)φ(a1,1 · · · a1,2u) · · ·φ(aq,1 · · · aq,2u),

then q = 2n−1.194

Proof. The proof of Lemma 7 mainly applies here; all we have to change is the part where we are using195

the Toeplitz construction to justify j = n − 1. Here, in each 2u-tuple one can find one letter of order196

u − 1 and one letter of higher order. Using (2), we then see that φ(ai,1 · · · ai,2u) is totally determined197

by the letter of order u − 1 and the letter of higher order in (ai,1 · · · ai,2u). Applying again (2) to the198

letter of order u − 1 we see that we can apply exactly the same reasoning as in the proof of Lemma 7199

(in a sense, our new φ is the previous one modulo the letters of order smaller than u− 1). Thus, we can200

follow the same proof than in Lemma 7.201

Now we can prove the main theorem:202

Theorem 9. Every paperfolding word f contains abelian m-anti-powers for every m ≥ 2.203

Proof. Let k be an integer such that 2k ≥ m. As before, we will prove that f contains abelian 2k-anti-204

powers, hence it will contain abelian m-anti-powers. Since the alphabet {0, 1} is finite, there must exist205

a factor bu−1 · · · bu+k+4 of b that occurs infinitely often. As before, let us start with the first block of206

length 2u+k+2 − 1 containing a 1 of order u+ k in the middle; our block is then207

w1w′
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with |w| = |w′| = 2u+k+1 − 1. As before, in at most two steps, we can have w = w′, and the maximum208

order of a letter appearing in this factor is u + k + 4. Again, writing ` the starting position of an209

occurrence of this factor, we set `′ = ` if ` is even or `′ = `+ 1 otherwise. Consider the vectors210

∆(`′, 2u, 2k),∆(`′ + 2u, 2u, 2k),∆(`′ + 2u+1, 2u, 2k), . . . ,∆(`′ + 2u+k+1 − 2u, 2u, 2k).

Here again, these vectors are pairwise distinct: if ∆(`′ + 2up, 2u, 2k) = ∆(`′ + 2uq, 2u, 2k), we have that211

φ(a1,1, · · · , a1,2u) · · ·φ(a2n−1,1 · · · a2n−1,2u) = φ()CHECK − THE − INDEXES

and this contradicts Lemma 9.212

Moreover, εi,0(l′ + 2up, 2u, 2k) 6= εi,1(l′ + 2up, 2u, 2k) ⇒ u − 1 ≤ i ≤ u + k + 4, using (2) and the213

fact that no letter of order higher than u + k + 4 appears in the factor w1w. So, choosing r such that214

2r > l′ + 2u+k+1 − 2u + 2u+k and bu−1 · · · bu+k+4 = br+u−1 · · · br+u+k+4, we can apply the Additivity215

Lemma and, as for the regular paperfolding word, construct an abelian 2k-anti-power that occurs as a216

factor in f.217
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