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Abstract: Let A be a finite non-empty set and � a total order on AN verifying the

following lexicographic like condition: For each n ∈ N and u, v ∈ An, if uω ≺ vω then

ux ≺ vy for all x, y ∈ AN. A word x ∈ AN is called ω-Lyndon if x ≺ y for each proper

suffix y of x. A finite word w ∈ A+ is called ω-Lyndon if wω ≺ vω for each proper suffix

v of w. In this note we prove that every infinite word may be written uniquely as a non-

increasing product of ω-Lyndon words.
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1 Introduction

Given a finite non-empty set A, let A+ =
⋃

n∈N A
n denote the free semigroup generated

by A consisting of all finite words over A and let AN = {a1a2a3 · · · | ai ∈ A} be the set

of all right infinite words over A. We also let A∗ = A+ ∪ {ε} where ε denotes the empty

word. Let � be a total order on AN verifying the following lexicographic like condition

denoted (*): For each n ∈ N and u, v ∈ A
n if uω ≺ vω then ux ≺ vy for all x, y ∈ A

N.
A special case of this setting was previously considered in [2]. The authors consider a

sequence (<n)n∈N of total orders on A. This induces a total lexicographic like order � on

AN defined by x � y if and only if either x = y or if x = uax′ and y = uby′ for some

u ∈ A∗, a, b ∈ A and x′, y′ ∈ AN and a <|u|+1 b. It is easily checked that the induced total

order on AN satisfies condition (*). However the two settings are not equivalent. In fact, in

the context of the generalised lexicographic order in [2], if for example (bb)ω ≺ (ba)ω then

it would mean that b <2 a and hence (ab)ω ≺ (aa)ω. This is no longer true in the setting
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considered herein as one may have (bb)ω ≺ (ba)ω and (aa)ω ≺ (ab)ω. In [2] the authors

introduce the notion of generalised Lyndon words with respect to the induced total order

on AN : a finite word w ∈ A+ is a generalised Lyndon word if wω ≺ vω for every proper

suffix v of w. They then prove that every finite word w ∈ A+ may be written uniquely in

the form w = l1 · · · lk where each li is a generalised Lyndon word and lω1 � lω2 � · · · � lωk
(see Theorem 16 in [2]). Analogously, given a total order on AN verifying (*) we adopt

the above definition to define the notion of ω-Lyndon words: a finite word w is ω-Lyndon

if wω ≺ vω for every proper suffix v of w. We may also borrow from the usual definition

of infinite Lyndon words to define a class of infinite ω-Lyndon words: An infinite word

x ∈ AN is called ω-Lyndon if x ≺ y for every proper suffix y of x. Alternatively, to

define an infinite ω-Lyndon word, we could have adapted the characterisation given in [1]:

An infinite word x is ω-Lyndon if it is non-periodic and contains an infinite number of

ω-Lyndon prefixes. It turns out that the two notions are equivalent (see Lemma 2.5).

The main purpose of this note is to extend the results in [4] on factoring infinite words

as a non-increasing product of Lyndon words. We prove that every infinite word may be

written uniquely as a non-increasing product of ω-Lyndon words. This provides a positive

answer to a question raised in [2].

2 Main results

Let us fix once and for all a total order � on AN verifying the lexicographic condition (*).

Note that if x, y ∈ AN and x � y then for each prefix u of x and v of y with |u| = |v|
one has uω � vω with equality if and only if u = v. We also observe that if uω � vω, and

neither u nor v is a prefix of the other, then uω ≺ vω. In particular, if uω � vω and u and v
are primitive, then either u = v or uω ≺ vω. We begin with the following lemma which is

analogous to Lemma 13 in [2]. We omit the proof as it is identical to that of Lemma 13 in

[2].

Lemma 2.1. For each u, v ∈ A+ and ⋆ ∈ {=,≺,≻} the following are equivalent :

1. uω ⋆ vω;

2. (uv)ω ⋆ vω;

3. uω ⋆ (vu)ω;

4. (uv)ω ⋆ (vu)ω;

We remark that a slightly modified version of the above lemma also applies in case

one of u and v is infinite and the other finite: For example if u ∈ A+ and v ∈ AN then

uω ⋆ v if and only if uv ⋆ v.
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Given a total order on AN it is natural to consider the notion of a Lyndon word, namely

an element x ∈ AN which is smaller (relative to the prescribed total order) than each of

its proper suffixes. It will be useful to extend this notion also to finite words, however

given that the order is defined only on infinite words, we shall be required to pass to

infinite words by associating to each finite word w its (periodic) infinite counterpart wω.
Following [2]:

Definition 2.2. An infinite word x ∈ A
N is called ω-Lyndon if x ≺ y for each proper

suffix y of x. A word w ∈ A+ is called ω-Lyndon if wω ≺ vω for each proper suffix v of

w. We let Lω denote the set of all ω-Lyndon words (finite and infinite) relative to the total

order � .

Remark 1. We note that A ⊆ Lω. If w ∈ A+ is ω-Lyndon, then w is primitive and

similarly if x ∈ A
N is ω-Lyndon, then x is not periodic. It follows from Lemma 2.1 that

w ∈ A+ is ω-Lyndon if and only if for all factorisations w = uv with u, v ∈ A+ we have

uω ≺ vω (see Theorem 14 in [2]). This in turn implies that if w ∈ Lω, then for each prefix

u of w and each factor v of w with |u| = |v|, either u = v or uω ≺ vω. In fact, suppose

u 6= v and let z be a suffix of w beginning in v. Then if w ∈ A+ we have that wω ≺ zω

and hence uω ≺ vω. If w ∈ A
N, then w ≺ z and hence uω ≺ vω.

Remark 2. As is the case for usual Lyndon words, each finite ω-Lyndon word w =
w1w2 · · ·wn of length n ≥ 2 is a prefix of some infinite ω-Lyndon word w′. In fact, if

w is unbordered we may take w′ = wwω
n . For let s be a suffix of w. Then as w1 · · ·w|s| 6= s

we have (w1 · · ·w|s|)
ω ≺ sω and hence w′ ≺ swω

n . On the other hand, if w is bordered,

we may take w′ = wu where u is the longest border of w. In fact, let s be a suffix of w.
Then if s is not a border of w then as before we deduce that w′ ≺ suω. While if s is a

prefix of w, and hence also a prefix of u, let k be the first position in which wω and sω first

differ. If k ≤ |s|, then (w1 · · ·wk)
ω ≺ (s1 · · · sk)

ω and hence w′ ≺ suω. If |s| < k ≤ |u|
then (w1 · · ·wk)

ω ≺ (su1 · · ·uk−|s|)
ω and so again we have w′ ≺ suω. Finally if k > |u|

then writing s = za and u = zb for some z ∈ A+ and a, b ∈ N we again get w′ ≺ suω

as required. A similar proof shows that each finite ω-Lyndon word w /∈ A is a prefix of a

longer finite ω-Lyndon word.

Remark 3. In contrast to the previous remark, many fundamental properties of usual

Lyndon words no longer hold for ω-Lyndon words. First of all, every primitive finite word

and every non-periodic infinite word is ω-Lyndon relative to some total order � on AN

verifying (*). As a consequence, a finite ω-Lyndon word need not be unbordered. Or an

infinite ω-Lyndon word x may be a product of prefixes of x. Or if u, v ∈ A+ are ω-Lyndon

and uω ≺ vω it need not be the case that uv is ω-Lyndon. For example, let A = {a, b}
be ordered by a < b. Consider the total order � on AN defined as follows: For distinct

x, y ∈ AN consider the smallest n with xn 6= yn. Then set

x ≺ y ⇔

{

xn < yn if n is odd

yn < xn if n is even
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Then u = abba ∈ Lω and v = b ∈ Lω and uω ≺ vω, yet uv /∈ Lω. This example also

illustrates that ω-Lyndon words may be bordered.

The following proposition is essentially Theorem 16 in [2]. As with Lemma 2.1, we omit

the proof as it is identical to that of Theorem 16 in [2].

Proposition 2.3. Each w ∈ A+ admits a unique factorisation w = l1l2 · · · lk with li ∈ Lω

and lω1 � lω2 � · · · � lωk .

Definition 2.4. For x ∈ AN we say x admits an infinite ω-Lyndon factorisation if x =
∏∞

i=1 li with each li ∈ Lω ∩ A+ and lω1 � lω2 � lω3 � · · · . We say x admits a finite

ω-Lyndon factorisation if x = l1l2 . . . lk with li ∈ Lω and lω1 � lω2 � · · · � lωk−1 ≻ lk.

Remark 4. Because of the fact that if u and v are Lyndon in the usual sense and u < v
then uv is Lyndon, it follows that the factorisation of a finite word w as a non-increasing

product of Lyndon words is also the shortest factorisation of w as a product of Lyndon

words. This is no longer true in general for ω-Lyndon words. For example, relative to the

total order � defined in Remark 3, the word w = ababab is the product of ababa and b,
both of which are ω-Lyndon, yet the ω-Lyndon factorisation of w has length three and is

given by w = (ab)(ab)(ab).

The following lemma constitutes a generalisation of a characterisation of infinite Lyndon

words given in [1]:

Lemma 2.5. Let x ∈ AN. Then x /∈ Lω if and only if either x = lω for some l ∈ Lω or

only a finite number of prefixes of x are members of Lω.

Proof. Assume x /∈ Lω and pick a proper suffix y of x with y � x. If y = x, then x = uω

for some primitive word u ∈ A+. As u is primitive, for each nontrivial factorisation

u = u1u2 one has u2u1 6= u and hence (u2u1)
ω 6= uω. If u ∈ Lω we are done. If

u /∈ Lω, pick a factorisation u = u1u2 with (u2u1)
ω ≺ uω. Then by Remark 1, if v is a

prefix of x with |v| ≥ 2|u| then v /∈ Lω. If y ≺ x, pick a prefix v of y and a prefix u of

x with |u| = |v| and vω ≺ uω. Then again by Remark 1 any prefix of x containing v as a

factor cannot belong to Lω.

For the converse, we note that if x is periodic then x /∈ Lω. So assume x is not periodic

and only a finite number of prefixes of x belong to Lω. For n ∈ N, let x[n] denote the

prefix of x of length n, and let l(n) denote the length of a longest ω-Lyndon word occurring

in the ω-Lyndon factorisation of x[n] (see Proposition 2.3). If (l(n))n≥1 is unbounded, then

pick n such that i) l(n) is greater than the length of the longest ω-Lyndon prefix of x and

ii) l(n) is the length of the last ω-Lyndon word in the ω-Lyndon factorisation of x[n].
Then x[n] = l1l2 · · · lk with li ∈ Lω and lω1 � lω2 � · · · � lωk , and lk is not a prefix of

x. By iteration of Lemma 2.1, (l1l2 · · · lk)
ω � lωk and hence (l1l2 · · · lk)

ω ≻ lωk . Writing

x = l1l2 · · · lk−1y with y ∈ AN, since lk is a prefix of y but not of l1l2 · · · lk we have x ≻ y
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and hence x /∈ Lω. If (l(n))n≥1 is bounded then pick a finite set F ⊆ Lω such that all

ω-Lyndon words occurring in the ω-Lyndon factorisation of x[n] for n ∈ N belong to F.
Because of the non increasing order condition in the ω-Lyndon factorisation, there exist

l1, l2, . . . , lk in F with lω1 � lω2 � · · · � lωk such that l1l2 · · · lk−1l
m
k is a prefix of x for

every m ∈ N. Pick m such that lmk is not a prefix of x and write x = l1l2 · · · lk−1y with

y ∈ AN. Then as lmk is a prefix of y but not of l1l2 · · · l
m
k and (l1l2 · · · l

m
k )

ω � lωk we deduce

that x ≻ y and hence x /∈ Lω.

Proposition 2.6. Each x ∈ AN admits either an infinite or a finite ω-Lyndon factorisation.

Proof. Let x ∈ A
N and assume x does not admit an infinite ω-Lyndon factorisation. We

will show that x admits a finite ω-Lyndon factorisation. The result is immediate in case

x ∈ Lω so we may assume that x /∈ Lω. For n ∈ N, let l
(n)
i be the i’th ω-Lyndon word

occurring in the ω-Lyndon factorisation of x[n], where x[n] is the prefix of length n of x. In

other words x[n] = l
(n)
1 l

(n)
2 · · · l

(n)
k . We may take l

(n)
i to be the empty word if the ω-Lyndon

factorisation of x[n] has fewer than i terms. By Lemma 2.5, the set L1 = {l
(n)
1 : n ∈ N} is

finite and hence there exist l1 ∈ Lω and an infinite set A1 ⊆ N such that for each n ∈ A1

the ω-Lyndon factorisation of x[n] begins in l1. Put L2 = {l
(n)
2 : n ∈ A1}. If L2 is finite,

then we may pick l2 ∈ Lω and an infinite subset A2 ⊆ A1 such that for each n ∈ A2 the

ω-Lyndon factorisation of x[n] begins in l1l2 and put L3 = {l
(n)
3 : n ∈ A2}. Continuing as

above, if each Lk is finite then x would admit an infinite ω-Lyndon factorisation contrary

to our assumption. And hence, there exists k ≥ 2 and l1, l2, . . . , lk−1 ∈ Lω and an infinite

set Ak−1 ⊆ N such that for each n ∈ Ak−1 the ω-Lyndon factorisation of x[n] begins in

l1l2 · · · lk−1 and Lk = {l
(n)
k : n ∈ Ak−1} infinite. Define lk ∈ A

N by x = l1l2 . . . lk−1lk.
We claim lk ∈ Lω and lωk−1 ≻ lk. Observe that lk 6= lωk−1 for otherwise x = l1 · · · lk−2l

ω
k−1

is an infinite ω-Lyndon factorisation of x. Pick m ∈ N such that lmk−1 is not a prefix of lk

and n ∈ Ak−1 such that |lmk−1| < |l
(n)
k |. Since lωk−1 � (l

(n)
k )ω and lmk−1 is not a prefix of

l
(n)
k , it follows that lωk−1 ≻ lk. It remains to show that lk ∈ Lω. By Lemma 2.5, if lk /∈ Lω

then lk = uω for some u ∈ Lω and hence x = l1l2 · · · lk−1u
ω is an infinite ω-Lyndon

factorisation, a contradiction.

We now turn to the question of unicity of ω-Lyndon factorisations for infinite words. We

begin by establishing unicity for words admitting a finite ω-Lyndon factorisation.

Lemma 2.7. Let x ∈ AN and u1u2 · · ·uk be a prefix of x such that uω
1 � uω

2 � · · · � uω
k .

If x ∈ Lω then each ui is a prefix of x.

Proof. By iteration of Lemma 2.1, for 1 ≤ i ≤ k we have that (u1 · · ·ui)
ω � uω

i . Let

vi denote the prefix of x of length |ui|. If vi 6= ui then vωi ≻ uω
i contradicting that x ∈

Lω.
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Lemma 2.8. Let x ∈ AN and k ≥ 3. Assume u1u2 · · ·uk is a prefix of x such that uω
1 �

uω
2 � · · · � uω

k . If x ∈ Lω, then either |u1 · · ·uk−2| ≤ |uk| or u1 · · ·uk−2uk is a prefix of

x.

Proof. Assume |u1 · · ·uk−2| > |uk|. By Lemma 2.7, we have that uk is a prefix of x and

hence a prefix of u1 · · ·uk−2. By Lemma 2.1 we have that (u1 · · ·uk−2)
ω � uω

k−2 � uω
k−1

and hence (u1 · · ·uk−2uk−1)
ω � (uk−1u1 · · ·uk−2)

ω. Since x ∈ Lω it follows that uk−1uk

is a prefix of x and hence uk is a prefix of uk−1uk. Thus u1 · · ·uk−2uk is a prefix of x.

Lemma 2.9. Let (ui)i∈N be a sequence in A+ with uω
1 ≻ uω

2 ≻ · · · . Then
∏∞

i=1 ui /∈ Lω.

Proof. Put x = u1u2 · · · and suppose to the contrary that x ∈ Lω. We will show that

|uk| < |u1| for each k ≥ 3 and hence the sequence (ui)i∈N is ultimately constant, a

contradiction. To see that |uk| < |u1| for each k ≥ 3, suppose to the contrary that |uk| ≥
|u1| for some k ≥ 3. By iteration of Lemma 2.8, there exists 2 ≤ j ≤ k − 1 such that

u1 · · ·ujuk is a prefix of x and |u1 · · ·uj−1| ≤ |uk|. By Lemma 2.7 we have that uk is

a prefix of x and hence u1 · · ·uj−1 is a prefix of uk. As (u1 · · ·uj−1)
ω ≻ uω

j we have

that (u1 · · ·uj−1uj)
ω ≻ (uju1 · · ·uj−1)

ω and hence u1 · · ·uj−1uj 6= uju1 · · ·uj−1. Since

u1 · · ·uj−1 is a prefix of uk it follows that the suffix of x beginning in ujuk is smaller than

x contradicting that x ∈ Lω.

Lemma 2.10. Let x ∈ AN. If x = v1v2v3 · · · with vω1 � vω2 � · · · then x /∈ Lω.

Proof. Assume to the contrary that x ∈ Lω. Without loss of generality we may assume

that each vi is primitive. We claim (vi)i≥1 is ultimately periodic. In fact, if the sequence

(vi)i≥1 is not ultimately periodic, then by concatenating together the consecutive terms of

the sequence which are equal, we may write x = u1u2 · · · with uω
1 ≻ uω

2 ≻ · · · in contra-

diction with Lemma 2.9. As x ∈ Lω and hence not periodic, write x = v1 · · · vkv
ω
k+1 with

vω1 � · · · � vωk ≻ vωk+1 and pick m such that vmk+1 is not a prefix of x. As (v1 · · · vkv
m
k+1)

ω ≻
vωk+1, it follows that the suffix vωk+1 ≺ x contradicting that x ∈ Lω.

Lemma 2.11. If x admits an infinite ω-Lyndon factorisation, then no suffix of x belongs

to Lω. In particular x does not admit a finite ω-Lyndon factorisation.

Proof. Suppose x admits an infinite ω-Lyndon factorisation x = l1l2l3 · · · . Then any

suffix y of x may be written as y = sili+1li+2 · · · with i ≥ 1 and si a suffix of li. Since

sωi � lωi it follows that sωi � lωi+1 � · · · . By Lemma 2.10, it follows that y /∈ Lω.

Corollary 2.12. If an infinite word x ∈ AN admits a finite ω-Lyndon factorisation x =
l1l2 · · · lk, then it is the unique ω-Lyndon factorisation of x.

Proof. It follows from Lemma 2.11 that x does not admit an infinite ω-Lyndon factori-

sation. It remains to show that x admits no other finite ω-Lyndon factorisation. For this

purpose, write x = ulk with u ∈ A∗ and observe that if v ∈ A+ is any suffix of u, then (by
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iteration of Lemma 2.1) lk � vlk. In other words, vlk /∈ Lω and hence lk is necessarily the

first ω-Lyndon suffix of x. Unicity now follows from Proposition 2.3.

We next prove unicity of ω-Lyndon factorisations for those infinite words x not ad-

mitting a finite ω-Lyndon factorisation. We first consider the case that x is ultimately

periodic:

Lemma 2.13. Assume x ∈ AN is ultimately periodic. Then x admits a unique ω-Lyndon

factorisation.

Proof. By Corollary 2.12 we may suppose that x does not admit a finite ω-Lyndon fac-

torisation. Using Proposition 2.6 let x = l1l2 · · · be an infinite ω-Lyndon factorisa-

tion of x. We claim the sequence (li)i∈N is ultimately constant. It suffices to show that

lim inf i→∞ |li| < +∞. So pick a suffix x′ of x and an infinite set I ⊆ N such that

li is a prefix of x′ for each i ∈ I. Using lemmas 2.5 and 2.11 it follows that either

x′ = lω for some l ∈ Lω or x′ has only finitely many ω-Lyndon prefixes. In the latter

case {|li| : i ∈ I} is clearly bounded. In the former case pick j < k in I such that

x′ =
∏

i≥j li and min{|lj|, |lk|} ≥ 2|l|. Then as ω-Lyndon words are primitive it follows

that w = lj · · · lk−1 = lr for some r ∈ N contradicting Proposition 2.3.

Having proved that any infinite ω-Lyndon factorisation of x is ultimately contant, unic-

ity of the factorisation now follows. In fact, suppose x = l′1l
′
2 · · · is another ω-Lyndon

factorisation with l′i = l′ for all i greater than some k′ and l′ ∈ Lω. Then since l and l′

are each primitive, it follows that |l| = |l′| whence l = l′ and the two factorisations must

ultimately synchronise, i.e., li = l′i for all sufficiently large i. The rest now follows from

Proposition 2.3.

Definition 2.14. A factor u ∈ A+ of an infinite word x is said to be minimal in x if

uω � vω for all factors v of x with |v| = |u|.

We note that if u is a minimal factor of x then so is every prefix of u. The following lemma

will be applied to show that any infinite aperiodic word x admits at most one infinite ω-

Lyndon factorisation, and how to construct it.

Lemma 2.15. Assume x ∈ AN and u ∈ A+ is a minimal factor of x. Let w ∈ A∗ be the

longest prefix of x preceding the first occurrence of u in x. Assume x admits an infinite

ω-Lyndon factorisation x = l1l2l3 · · · with lim supi→∞ |li| = +∞. Then either w = ε or

w = l1 · · · lk for some k ∈ N.

Proof. Put n = |u| and write u = u1u2 · · ·un. Also write x = wux′ with x′ ∈ AN; by

assumption wu contains exactly one occurrence of u. Assume w 6= ε and let k be the least

positive integer such that
∑k

i=1 |li| ≥ |w|. We must show that
∑k

i=1 |li| = |w|. Suppose to

the contrary that
∑k

i=1 |li| > |w|. We first note that u cannot be fully contained inside lk
for otherwise, if v denotes the prefix of lk with |v| = |u|, then as v 6= u and lk ∈ Lω we

7



have vω ≺ uω which contradicts that u is minimal. Thus we may write lk = zu1 · · ·up for

some z 6= ε and p < n. Let r = min{|li| : i ≥ k + 1} and pick j ≥ k + 1 with |lj| = r.
Also pick j′ > j such that |lj′| ≥ p+ r.

Case 1: n ≥ p+ r
By definition of r it follows that up+1...up+r is a prefix of lk+1. We first claim that

up+1...up+r = u1 · · ·ur = (u1 · · ·up)
r

p (1)

where (u1 · · ·up)
r

p denotes the prefix of length r of (u1 · · ·up)
ω. In fact, as u is a mini-

mal factor of x we have that (u1 · · ·ur)
ω � (up+1 · · ·up+r)

ω. Furthermore since lωk+1 �
lωk ≺ (u1 · · ·up)

ω and up+1 · · ·up+r is a prefix of lk+1 it follows that (up+1 · · ·up+r)
ω �

((u1 · · ·up)
r

p )ω. Combining we get (u1 · · ·ur)
ω � (up+1 · · ·up+r)

ω � ((u1 · · ·up)
r

p )ω

from which (1) follows.

We also claim that

lj = u1 · · ·ur. (2)

Indeed, since u is a minimal factor of x we have (u1 · · ·ur)
ω � lωj . On the other hand lωj �

lωk+1 and so by taking the prefix of length r of both words we obtain lωj � (up+1 · · ·up+r)
ω.

So combining and using (1) we deduce that (u1 · · ·ur)
ω � lωj � (u1 · · ·ur)

ω from which

(2) follows.

Thus we have

(u1 · · ·ur)
ω = lωj � lωk ≺ (u1 · · ·up)

ω

and hence by Lemma 2.1

(u1 · · ·uru1 · · ·up)
ω ≺ (u1 · · ·upu1 · · ·ur)

ω. (3)

Using the fact u1 · · ·upup+1 · · ·up+r is a minimal factor of x together with (1) and (2)

gives

(u1 · · ·upu1 · · ·ur)
ω = (u1 · · ·up+r)

ω � (lj′[p+ r])ω � (lωj [p+ r])ω = ((u1 · · ·ur)
p+r

r )ω.

Together with (3) gives

(u1 · · ·uru1 · · ·up)
ω ≺ (u1 · · ·upu1 · · ·ur)

ω � ((u1 · · ·ur)
p+r

r )ω. (4)

It follows from (4) that u1 · · ·up = (u1 · · ·ur)
p

r and hence

u1 · · ·uru1 · · ·up = (u1 · · ·ur)
p+r

r

which by (4) gives ((u1 · · ·ur)
p+r

r )ω ≺ ((u1 · · ·ur)
p+r

r )ω, a contradiction.

Case 2: n < p+ r.

In this case up+1 · · ·un is a prefix of lk+1 and the same arguments used to prove (1) shows

that

u1 · · ·un = (u1 · · ·up)
n

p . (5)
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As lωk = (zu1 · · ·up)
ω ≺ (u1 · · ·up)

ω, it follows that |lk| = |z| + p < n for otherwise

u = u1 · · ·un would be a prefix of lk which would imply an earlier occurrence of u in x.
Thus

zu1 · · ·up = (u1 · · ·up)
|z|+p

p = (u1 · · ·up)
au1 · · ·uq (6)

for some choice of integers a, q and as lk is primitive we have that 1 ≤ q < p.

Finally, we have z = (u1 · · ·up)
a−1u1 · · ·uq and hence

u1 · · ·upu1 · · ·uq = u1 · · ·uqu1 · · ·up (7)

from which it follows that lk is not primitive, a contradiction.

Proposition 2.16. Let x ∈ AN be an aperiodic infinite word and x = l1l2l3 · · · = l′1l
′
2l

′
3 · · ·

two infinite ω-Lyndon factorisations of x. Then li = l′i for each i ∈ N.

Proof. Suppose to the contrary that li 6= l′i for some i ∈ N. Short of replacing x by some

suffix of x, we may assume that l1 6= l′1. By Lemma 2.11 it follows that x /∈ Lω and

hence x contains a minimal factor u which is not a prefix of x. Let w ∈ A+ denote the

prefix of x which precedes the first occurrence of u in x. As x is aperiodic it follows

that lim supi→∞ |li| = lim supi→∞ |l′i| = +∞. By Lemma 2.15 it follows that there exist

k, k′ ∈ N such that w = l1 . . . lk = l′1 · · · l
′
k′ contradicting Proposition 2.3.

Corollary 2.17. Each infinite word x ∈ AN admits precisely one ω-Lyndon factorisation.

Proof. Existence follows from Proposition 2.6. For unicity, if x admits a finite ω-Lyndon

factorisation, then unicity follows from Corollary 2.12. So we may suppose that x admits

only infinite ω- Lyndon factorisations. If x is ultimately periodic unicity follows from

Lemma 2.13 while if x is aperiodic unicity follows from Proposition 2.16.
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