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Introduction en Français

Cette introduction en français est destinée aux non-mathématiciens, et tente de rester accessible,
mettant pour cela sous le tapis la rigueur et les définitions très précises. Le lecteur intéressé (et
comprenant l’anglais) est renvoyé vers l’introduction en anglais, plus riche et plus précise.

La combinatoire des mots est une branche relativement récente des mathématiques, l’article
fondateur du domaine étant généralement considéré comme étant celui d’Axel Thue en 1906.
Cependant, malgré d’autres avancées telles que celles de Marston Morse sur les mots sturmiens,
la combinatoire des mots n’a véritablement pris son essor que sous l’impulsion de Marcel-Paul
Schützenberger et de ses coauteurs, entre autre aussi grâce à l’auteur fictif M. Lothaire, dans
les années 1970 et 1980. Depuis cette époque, la combinatoire des mots est devenue un sujet
de recherche très actif, notamment grâce aux liens très étroits du domaine avec l’informatique
théorique : on peut par exemple citer les suites automatiques, grâce auxquelles j’ai découvert
cette branche des mathématiques et sur lesquelles a porté mon stage de Master 2.

La combinatoire des mots est la branche des mathématiques traitant de l’étude des pro-
priétés des mots finis ou infinis. Les propriétés étudiées sont variées, souvent liées à d’autres
domaines des mathématiques comme la théorie des nombres ou la théorie des groupes. D’autres
questions sont de nature plus algorithmique, puisque le domaine a, évidemment, un lien fort
avec les questions informatiques d’étude de texte, comme par exemple la recherche de motifs.

Cette thèse regroupe des travaux ayant pour point commun des études de régularités glo-
bales et locales dans des mots infinis, bien que les sujets des différents chapitres soient globa-
lement indépendants les uns des autres. Ce type de questions est fréquent en combinatoire des
mots, l’article fondateur d’Axel Thue traitait justement d’un problème de régularité inévitable.

Le premier des trois chapitres présentés ici porte sur une généralisation des mots de Lyn-
don, le second sur l’étude de la complexité ouverte et fermée des mots infinis et le troisième sur
les antipuissances dans les mots infinis. Le premier et le second chapitres sont peu ou prou des
reproductions d’articles écrits au cours de la thèse, essentiellement modifiés au niveau de l’in-
troduction. Le dernier chapitre contient un article publié ainsi qu’un résultat ayant donné lieu
à un article sur arXiv, ainsi que plusieurs autres résultats encore trop épars pour une publication.

Définissons quelques notions incontournables à la compréhension du lecteur : un mot fini
est, comme dans le vocabulaire courant, une suite finie de lettres, c’est-à-dire d’éléments
d’un alphabet A. Cependant, rien n’oblige l’alphabet à être l’alphabet romain, grec, japonais
ou que sais-je, auxquels nous sommes habitués : l’alphabet est en fait un ensemble de sym-
boles, souvent, mais pas toujours, fini. Ainsi, les alphabets considérés peuvent être par exemple
A = {0, 1} dans le cas où l’on voudrait étudier du code informatique, ou bien A = {A,C, T,G}
si l’on s’intéresse à l’étude de l’ADN. Dans certains cas, l’alphabet peut être infini, comme
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nous le verrons lorsque nous parlerons du mot de Zimin, défini sur l’alphabet A = N. Pour
un mot fini u, on peut définir sa longueur |u| comme le nombre de lettres qui le composent.
L’ensemble des mots de longueur n est alors An = {a1 · · · an|∀i ∈ [[1, n]], ai ∈ A} et l’en-

semble des mots fini est A+ =
+∞⋃
n=1

An. D’autre part, il est aussi possible de définir l’ensemble

des mots infinis sur A, c’est-à-dire des suites à valeurs dans A : on le dénote AN et on a alors
AN = {a1a2 · · · |∀i ∈ N∗, ai ∈ A}. À cet ensemble de mots, on rajoute généralement le
mot vide ε, qui est le mot de longueur 0 (ne contenant aucune lettre) afin d’avoir un monoïde
A∗ = A+∪{ε}. Enfin, pour un mot fini ou infini w, on dit que u est un facteur de w si w = pus
pour p et s des mots, possiblement vides. Si p = ε on dit que u est un préfixe de w, et si s = ε
on dit que u est un suffixe de w.

Le premier chapitre de cette thèse s’intéresse à une généralisation des mots de Lyndon et
énonce le résultat suivant :

Théorème 1. Pour tout alphabet fini A, tout mot infini x ∈ AN admet une factorisation unique
en produit décroissant de mots de Lyndon généralisés.

Un mot de Lyndon fini est un mot qui est plus petit, au sens de l’ordre du dictionnaire
(l’ordre lexicographique), que toutes les rotations de ce mot. Par exemple, mot < otm < tmo
donc mot est de Lyndon pour l’ordre du dictionnaire. On constate ici que mot < ot et mot < t,
donc mot est plus petit que ses suffixes pour l’ordre lexicographique. En fait, ceci est une
propriété donnant une définition alternative des mots de Lyndon :

Définition 1. Un mot u ∈ A+ est de Lyndon s’il est strictement plus petit que tous ses suffixes
propres.

On constate alors que cette définition peut s’étendre aux mots infinis. De la même façon,
on définit donc les mots de Lyndon infinis :

Définition 2. Un mot u ∈ AN est de Lyndon s’il est strictement plus petit que tous ses suffixes
propres.

Les mots de Lyndon ont de nombreuses propriétés et applications, l’une des plus impor-
tantes est la suivante : tout mot fini ou infini peut s’écrire de façon unique comme un produit
décroissant de mots de Lyndon.

Reutenauer, d’abord seul puis avec Dolce et Restivo, a proposé de généraliser la définition
des mots de Lyndon à un ensemble plus large d’ordres sur les mots : plutôt que de prendre
l’ordre lexicographique du dictionnaire, ils ont étudié des ordres où la comparaison entre deux
lettres dépend de la position considérée dans le mot. Par exemple, on pourrait considérer l’ordre
entre deux lettres comme l’ordre de l’alphabet habituel si ces lettres sont en position impaires,
et l’ordre inverse si elles sont en position paires. Ainsi, il serait possible d’avoir ab < aa < ba
dans notre nouveau dictionnaire. Un tel dictionnaire serait par ailleurs toujours fonctionnel
puisque pour trouver un mot, il suffirait, comme dans notre dictionnaire actuel, de chercher
lettre à lettre. Par exemple, pour mot, se rendre dans la section des m puis chercher la sous
section des mo et ainsi de suite.

Munis d’un nouvel ordre basé sur cette idée (avec de petites modifications pour arriver à
leurs fins), Reteunauer et ses coauteurs définissent les mots de Lyndons généralisés comme
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ceux étant plus petits que leur suffixes propres. Ils parviennent alors à démontrer que tout mot
fini admet, là encore, une factorisation décroissante en produit de mots de Lyndon généralisés.
Ils laissent ouverte la question de l’existence et l’unicité d’une telle factorisation dans le cadre
des mots infinis. Avec Luca Zamboni, après avoir encore un peu plus généralisé la classe des
ordres sur lesquels nous définissons les mots de Lyndon, pour ne garder que la propriété stipu-
lant que pour chercher un mot, il suffit de chercher ses préfixes consécutifs, nous avons réussi
à répondre à leur question ouverte, avec le Théorème 1.

Le second chapitre de cette thèse propose un analogue d’un théorème majeur de la com-
binatoire des mots, le théorème de Morse-Hedlund. Ce théorème s’intéresse à la fonction de
complexité des mots infinis, c’est-à-dire la fonction comptant le nombre de facteurs de longueur
n d’un mot donné. Précisément, il stipule qu’un mot w est apériodique, c’est-à-dire qu’aucun
de ses suffixes n’est périodique, donc de la forme (a1 · · · an)ω = a1 · · · ana1 · · · ana1 · · · si, et
seulement si, sa fonction de complexité est non bornée.

L’objectif de ce chapitre est d’étendre ce résultat à deux nouvelles fonctions de complexité,
les complexités ouvertes et fermées. Le résultat auquel ce chapitre aboutit est le suivant :

Théorème 2. Soit x ∈ AN un mot infini sur un alphabet fini A. Les propositions suivantes sont
équivalentes :

1. x est apériodique ;

2. lim sup
n→+∞

Clx(n) = +∞ ;

3. lim inf
n→+∞

Opx(n) = +∞.

La fonction Clx (respectivement Opx) est la fonction de complexité fermée (resp. ouverte)
qui compte le nombre de facteurs fermés (resp. ouverts) de longueur n de x.

Définition 3. Un facteur u est fermé s’il a un préfixe non vide qui est aussi un suffixe et n’ap-
paraît que deux fois comme facteur de u, comme préfixe et comme suffixe. Cette notion est
étudiée depuis longtemps, particulièrement en lien avec les système dynamiques, et connue
sous le nom de mot de premier retour. Un facteur est ouvert s’il n’est pas fermé.

L’article sur lequel se base ce chapitre est un travail joint avec Olga Parshina.

Le troisième chapitre traite de la notion qui m’a occupé pendant l’essentiel de ma thèse,
les antipuissances. Les premières questions en combinatoires des mots, traitées par Axel Thue,
sont des questions de puissances évitables ou inévitables : un mot binaire de longueur supé-
rieure à trois ne peut éviter de contenir un carré, c’est-à-dire un facteur se répétant deux fois
consécutivement. Par exemple, abba contient le carré bb. Un carré est une puissance d’ordre 2.
Axel Thue a construit un mot infini sur un alphabet de trois lettres ne comptant aucun carré,
donc les carrés sont évitables sur un alphabet trois lettres. Cette notion de puissance a rapide-
ment été étendue au cas abélien, c’est-à-dire dans lequel deux mots sont équivalents s’ils ont le
même nombre d’occurrences de chaque lettre : ab est donc équivalent à ba. Dans ce contexte,
abba devient alors un carré abélien. Savoir si les puissances abéliennes sont évitables dans un
mot infini est une question qui a généré beaucoup de travaux, mais s’est finalement conclue par
l’affirmative : certains mots infinis sur un alphabet de quatre lettres évitent les carrés abéliens.
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Dans un article récent, Fici, Restivo, Silva et Zamboni ont mis en évidence des motifs
apparaissant inévitablement dans tous les mots ne comptenant pas des puissances de tout ordre :
les antipuissances.

Définition 4. Une antipuissance d’ordre k est, en quelque sorte, l’opposé d’une puissance
d’ordre k : c’est une succession de k blocs de même longueur deux-à-deux distincts.

Par exemple, abba est une 2-antipuissance, tandis que abbaab n’est pas une 3-antipuissance.
Dans leur article introduisant cette définition, Fici et al montrent que tout mot infini contient soit
des antipuissances de tout ordre, soit des puissances de tout ordre. Plus précisément, pour tout
k, ils exhibent une borne sur la longueur d’un mot fini ne contenant ni antipuissance d’ordre k,
ni puissance d’ordre k.

Mes résultats liés à cette notion d’antipuissance sont de deux types : l’un d’entre eux amé-
liore la borne sur la longueur assurant la présence d’antipuissances d’ordre k dans le cadre de
mots points fixes de morphismes reconnaissables tandis que les autres résultats s’attachent à
des généralisations de la notion d’antipuissance au cas abélien.

La notion de reconnaissabilité est essentielle en théorie des substitutions, l’idée étant, pour
un facteur quelconque d’un mot w point fixe d’un morphisme, de "désubstituer" ce facteur,
c’est-à-dire de l’exprimer comme facteur de l’image par le morphisme d’un autre facteur le plus
court possible de w. Je montre que dans le cadre des points fixes apériodiques de morphismes
uniformes, on peut en toute position trouver des k-antipuissances de longueur proportionnelle
à k :

Théorème 3. Si σ est un morphisme primitif et m-uniforme, avec un point fixe apériodique
x, il existe une constante C = C(σ) telle que : ∀y ∈ X(σ), ∀n, k ∈ N, y contient une
k-antipuissance dont la longueur des blocs est au plus Ck commençant en position n.

Enfin, après avoir défini les antipuissances abéliennes comme des antipuissances pour la
relation d’équivalence abélienne, nous avons, avec Gabriele Fici et Manuel Silva, montré les
deux résultats suivants, qui fournissent des exemples de mots connus contenant ou non des
antipuissances abéliennes :

Théorème 4. Le mot de Sierpiǹski ne contient aucune 11–antipuissance, et en particulier il ne
contient aucune 11–antipuissance abélienne.

Théorème 5. Tout mot de pliage contient des antipuissances abéliennes de tout ordre.
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1.1 Preamble and outline
Combinatorics on words is a relatively new branch of mathematics, which dates back to Axel
Thue’s article in 1906 on the avoidability of some patterns in infinite words. Alas, Thue’s
results were more or less forgotten for more than half a century, and apart from some results,
especially those of Marston Morse and Gustave Hedlund, the field was not particularly active.
It is mainly thanks to the work of Marcel-Paul Schützenberger and his colleagues that the topic
started to be active again, partly thanks to their collective book under the fictive name M.
Lothaire, Combinatorics on Words, published in 1983.

Combinatorics on words is the area of mathematics that focuses on the study of sequences
of symbols. It has links with many other branches of mathematics, e.g. algebra, number theory,
probability, symbolic dynamics and, of course, combinatorics. It is also linked to computer sci-
ence, and is sometimes even classified as theoretical computer science rather than mathematics.
One example of the links between computer science and combinatorics on words is automatic
sequences, whose study supervised by Jean-Paul Allouche was my entry point in combinatorics
on words.

This thesis focuses on local and global regularities arising in infinite words. Those ques-
tions are at the core of combinatorics on words; in fact, Axel Thue’s results were studies of
regularities arising, or not, in an infinite word. This manuscript is divided in three mutually
independent chapters. The first chapter deals with a generalization of Lyndon words; it is based
on an article co-written with Luca Zamboni and published in Theoretical Computer Science.
The second chapter considers an analogous of the celebrated Morse-Hedlund theorem in the
case of open and closed complexity functions; it is based on work done jointly with Olga
Parshina and submitted but yet to be published. Finally, the third chapter is a study of the new
notion of antipower, improving some existing bounds for certain class of words and introducing
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a possible generalization of the notion. The main results of this chapter are based on an arti-
cle written jointly with Gabriele Fici and Manuel Silva and published in Advances in Applied
Mathematics.

In the rest of this introduction, I will start by giving some usual definitions, and then I will
discuss the topic of each chapter in more details.

1.2 Definitions and notation
The fundamental definition in this area of mathematics is that of words. Words are strings
of letters taken from an alphabet, a finite or infinite set that will always be denoted A in this
thesis. Examples of alphabets are many; here are some examples of alphabet with some of their
applications to fields outside combinatorics on words:

A = {0, 1} is the alphabet used to study most of computer code,

A = {A,C, T,G} is the alphabet used to study DNA,

A = {a, b, c, . . . , z} is the classical alphabet and can be used to study words,

A = N is an example of infinite alphabet we are using at some point of this thesis.

Amongst other alphabets, we could also consider the set of UTF-8 characters that allows us
to study text.

Remark 1. For A and B two finite alphabets with same cardinality, there are bijections from
one to the other. For this reason, from a combinatorial point of view, A = {0, 1} and A = {a, b}
are the same, and instead of specifying the alphabet, it is enough to specify its cardinality. In
the previous case, we just refer to both as the binary alphabet.

Now let us turn to words: words are finite or infinite strings of symbols taken from A. For
a finite word u, we call the length of u and denote |u| the number of symbols that constitute u.

Example 1.2.1. On the classical roman alphabet, the word four is of length |four| = 4, as is
the word five, while |six| = 3.

Hence, labelling An the set of words of length n over A, we get:

An = {a1 · · · an|∀i ∈ [[1, n]], ai ∈ A}.

We also define the empty word as a word of length 0, denoted ε.
The set of nonempty finite words over A is denoted by A+, and the set of finite words is A∗,

we then have:

A+ =
+∞⋃
n=1

An and A∗ = A+ ∪ {ε}.

We will also consider infinite words in this thesis. Infinite words can be seen as sequences
of elements of A. Their set is denoted AN:

AN = {a1a2 · · · |∀i ∈ N∗, ai ∈ A}.
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In fact, those words are sometimes called right-infinite words since it is also possible to
define bi-infinite words:

AZ = {· · · a−1a0a1 · · · |∀i ∈ Z, ai ∈ A}.

In this thesis, the infinite words we are considering will always be right-infinite words, I will
use either of the denomination without distinction.

For the rest of this thesis, I will try to use a and b for letters, while u and v will refer to
finite words and x and y will be used for infinite words. I will use w and z for words that are
either finite or infinite. As is usually the case, n and m will mostly stand for integers.

One fundamental operation that can be applied to elements of A∗ is the concatenation. For
u = u1 · · ·un and v = v1 · · · vm two elements of A∗, we write uv the concatenation of those
two elements, that is, the word u1 · · ·unv1 · · · vm. This operation can be extended to A∗ × AN

in the same way: for u = u1 · · ·un and w = w1 · · · one has uw = u1 · · ·unw1 · · · .

Example 1.2.2. For u = lock and v = down, we get uv = lockdown. Also, we can see that the
concatenation is not commutative, since vu = downlock 6= uv.

A factor f ∈ A∗ of a finite word u is a word such that there exist p, s ∈ A∗ with u = pfs.
If p = ε we say that f is a prefix of u, and if s = ε we say that f is a suffix of u. Those notions
can be extended to infinite words: for w ∈ AN we say s is a suffix of w if there exists p ∈ A∗
with w = ps; we say that p ∈ A∗ is a prefix of w if for some suffix s of w one has w = ps.
Then, a factor of w is a factor of one of its prefixes. For any given word w, finite or infinite,
we write Fact(w) the set of its factors, and for any integer n, we write Factn(w) the set of its
factor of length n, so

Factn(w) = Fact(w) ∩ An.

If u is a finite word, we say that u is a pure power or simply a power if there exist a
non-empty word v and an integer n with n > 1 such that u = vn. Otherwise, we say that u
is primitive. Two words u and v are said to be conjugates if there exist u1 and v1 such that
u = u1v1 and v = v1u1.

Example 1.2.3. The word papa is a pure power, while dad is a primitive word conjugated with
add.

It is possible to define a distance on the sets A∗ and AN. An usual way to do this is the
following: for w and z words, we define the distance d(w, z) by

d(w, z) =


0 if w = z

2−|w| if w is a prefix of z
2−|z| if z is a prefix of w
2−j where j is the first position where wj 6= zj

.

This allows us to define a topology on the set of words, finite and infinite, and to say that a
sequence of words (un)n∈N ∈ (A+)N is such that un → x for x ∈ AN when for every ε > 0,
there exists N ∈ N with n ≥ N ⇒ d(un, x) < ε. So we can define, for finite words u ∈ A∗
and v ∈ A+ the word uvω = lim

n→∞
uvn.
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For w an infinite word, we say that w is purely periodic if there exists u ∈ A+ such that
w = uω. If there exists u ∈ A+ and v ∈ A+ such that w = uvω we say that w is ultimately
periodic. If w is not ultimately periodic we say that w is aperiodic.

One way to construct infinite words is by using morphisms. For two alphabets A and B, a
morphism σ from A∗ to B∗ is an application such that σ(uv) = σ(u)σ(v) for all u, v ∈ A∗.
If for every letter a in A we have |σ(a)| > 1 and if there exists a letter a′ ∈ A such that a′

is a prefix of σ(a′) it is easy to see that the sequence of words (σn(a′))n∈N admits a limit in
AN denoted by σω(a′). If there exists an integer m such that for every letter a ∈ A one has
|σ(a)| = m we say that σ is an m-uniform morphism.

Example 1.2.4. In his original article, Axel Thue considered the 2-uniform morphism

µ :

{
0 → 01

1 → 10
.

The word t= µω(0) = 01101001100101101001 · · · is called the Prouhet-Thue-Morse word (as
it was used independently by those three mathematicians) and is widely used in combinatorics
on words.

For an infinite word, a property that is interesting from many points of view is recurrence:
a word w ∈ AN is said to be recurrent if each of its factors appears twice (which is the same
as saying that every factor appears infinitely often, or saying that any suffix s of w verifies
Fact(s) = Fact(w)).

For a recurrent or non recurrent infinite word w, it is always possible to define the set of its
recurrent factors RecFact(w) as the set of factors that appear infinitely often. It is easy to see
that on a finite alphabet this set is always nonempty. Using this set, it is easy to characterize
recurrent words:

(w is a recurrent word)⇔ (Fact(w) = RecFact(w)).

A property stronger than recurrence is uniform recurrence: an infinite word w is said to be
uniformly recurrent if for any u ∈ Fact(w), there exists n ∈ N such that for all v ∈ Factn(w)
we have u ∈ Fact(v).

Example 1.2.5. Consider the word 10100101000101001010000 · · · which is the limit of the
sequence of words defined by u0 = 1 and for all n ∈ N, un+1 = un0n+1un. It is not uni-
formly recurrent, but it is recurrent. The word 1000 · · · = 10ω is not recurrent (and hence, not
uniformly recurrent).

Finally, a notion that I will use in this thesis is the notion of abelian equivalence. For any
finite word u we can define, for every letter a ∈ A, the number of occurrences of this letter in
the word u. We will label |u|a this quantity. Then we say that two words u and v are abelian
equivalent and we write u ∼ab v if |u|a = |v|a for every letter a. Many of the definitions
in combinatorics on words have a counterpart in the abelian setting; for example, an abelian
power of order n is concatenation of n consecutive abelian equivalent words.
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1.3 Content of the thesis
In this part, I will introduce the notions used in the next chapters of this thesis and give the
main results of each chapter in this work; I will keep this relatively short since each chapter
starts with its own introduction which redefines the needed notions and introduces the topic
more precisely.

1.3.1 Generalized Lyndon words
This chapter presents some results obtained together with Luca Zamboni and published in The-
oretical Computer Science [PZ19b] on factorizations of infinite words as non-increasing prod-
ucts of some generalization of Lyndon words. The article on which this chapter is based solved
a question asked by Dolce, Restivo and Reutenauer who defined this generalization and proved
the existence of such a factorization in the case of finite words. This chapter also extends
a bit the generalization of Lyndon words, considering Reutenauer et al.’s generalization as a
particular case. The aim of this chapter is to prove the following theorem:

Theorem 1.3.1. Each infinite word x ∈ AN admits precisely one ω-Lyndon factorization.

In combinatorics on words, it is often convenient to order the words we are considering.
The most common way to do so is to first define an order on the alphabet, then define the
lexicographical order on A+ the following way: for u and v in A+, we say u < v when u is
a proper prefix of v or if there exists a word - possibly empty - w and two letters a and b in A
verifying a < b such that wa is a prefix of u and wb is a prefix of v. This order is the order used
to order words in a dictionary for a natural language.

Definition 1.3.2. A word w ∈ A+ ∪A∗ is said to be Lyndon if w is smaller than all of its strict
nonempty suffixes.

Those words have numerous applications (and they were introduced as a tool in algebra).
One of their applications is of particular interest to us: they provide a factorization of A+ and
A∗.

Theorem 1.3.3 (Lyndon). Let w ∈ A+. Then w admits a unique non-increasing factorization
as product of Lyndon words, i.e.

w = w1w2 · · ·wn where w1 ≥ · · · ≥ wn and each wi is Lyndon.

Theorem 1.3.4 (Factorization of infinite words as non-increasing product of Lyndon words
[SMDS94]). Let w ∈ AN. There exists a unique factorization:

w = w1w2 · · ·wns

with ∀i, wi finite Lyndon word, s infinite Lyndon word and w1 ≥ w2 ≥ · · · ≥ wn > s

or

w =
∞∏
i=1

wi with ∀i, wi finite Lyndon word and w1 ≥ w2 ≥ · · · .
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In different articles, Reutenauer [Reu05], then Dolce, Restivo and Reutenauer [DRR18,
DRR19] describe a new set of lexicographical-like orders respective to which they define gen-
eralized Lyndon words. The orders they consider are such that the comparison between two
letters depends on the position those letters occupy in the word. This allows them to define a
broader class of Lyndon words.

In that context, they were able to prove that Theorem 1.3.3 still holds, and asked whether
Theorem 1.3.4 still holds. We answered this question in the affirmative with Luca Zamboni,
and even improved a bit by generalizing further the class of lexicographical-like orders for
which the statement holds.

1.3.2 Open and closed complexity
This chapter of the thesis presents an analogous of the celebrated Morse-Hedlund theorem in
the case of open and closed complexity functions we found together with Olga Parshina.

On a finite alphabet, every word w, finite or infinite, satisfies the following property:

∀n ∈ N, |Factn(w)| < +∞.

This allows us to define, for any given word w, the complexity function of w:

Definition 1.3.5. For a given word w, we denote by pw its complexity function defined by

pw :

{
N → N
n → Card(Factn(w))

.

The Morse-Hedlund theorem then provides a link between aperiodicity and complexity
function for a given word:

Theorem 1.3.6 (Morse-Hedlund[MH38]). An infinite word w is aperiodic if and only if its
complexity function is unbounded. If w is aperiodic, we have, for any integer n, pw(n) ≥ n+1.

This theorem has many variants in other settings in combinatorics on words, we were inter-
ested in trying to prove it in the case of the complexity functions pertaining to a well studied
local regularity notion and its counterpart, open and closed words.

Definition 1.3.7. Given u,w ∈ A+ with |u| < |w|, we say u is a border of w if u is both a
prefix and a suffix of w. We say w ∈ A+ is closed if either w ∈ A or w admits a border u which
occurs precisely twice in w. Otherwise w is said to be open. Thus w ∈ A+ is closed if either
w ∈ A or if its longest border u occurs exactly twice in w, i.e., u has no internal occurrences in
w. The longest border of a closed word is called its frontier.

The notion of closed word has also been intensively studied under the name complete first
return by researchers working in symbolic dynamics.

Like in the classical case, for a word w, we can define its open complexity function Opw
and its closed complexity function Clw that count the number of open, or closed, factor of each
length, respectively.

Then, it is possible to prove an equivalent of Morse and Hedlund’s theorem in the setting of
open and closed complexity functions. That question was looked at by other mathematicians
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since the situation is less clear than in the classical complexity function case. In fact, in the
classical case, the complexity function is increasing on N, which is not the case for the two
complexity functions we defined, and that made the problem harder to solve.

The main result of this chapter is the following theorem:

Theorem 1.3.8. Let x ∈ AN be a right-infinite word over a finite alphabet A. The following
are equivalent:

1. x is aperiodic;

2. lim sup
n→+∞

Clx(n) = +∞;

3. lim inf
n→+∞

Opx(n) = +∞.

1.3.3 Antipowers in infinite words
In this chapter, we discuss the notion of antipower introduced recently by Fici, Restivo, Silva
and Zamboni. Some of the results in this chapter were the subject of a joint article with Gabriele
Fici and Manuel Silva published in Advances in Applied Mathematics [FPS19].

The first regularities that were studied in combinatorics on words were powers; in fact, the
first article in combinatorics on words by Axel Thue in 1906 was about infinite words avoiding
squares on a 3-letters alphabet.

The counterpart of this notion, introduced significantly more recently, is the notion of an-
tipower.

Definition 1.3.9. A word of length kn, for k and n integers, is a (k, n)-antipower, or antipower
of order k and length n, if it is concatenation of k pairwise distinct blocks of length n. Namely,
u = u1 · · ·ukn is a (k, n)-antipower if uin+1 · · ·u(i+1)n 6= ujn+1 · · ·u(j+1)n for every i and j.
Again, we will often write k-antipower, without giving n.

Example 1.3.10. The word abba is a 2-antipower but not a 4-antipower.

The authors of the first paper on antipowers, as Axel Thue in his two papers, were looking
at a type of question that would be describe, in today’s words, as the intersection of Ramsey
theory and combinatorics on words. Ramsey theory is the area of mathematics that looks at
combinatorial structures and try to tell whether some regularities will arise if the combina-
torial structure is large enough. Axel Thue proved that squares (i.e. powers of order 2) are
unavoidable regularities on a binary alphabet but are avoidable on a ternary alphabet.

Fici, Restivo, Silva and Zamboni, on the other hand, proved that it is not possible to avoid
both powers and antipowers on infinite words:

Theorem 1.3.11. Every infinite word contains powers of any order or antipowers of any order.

They also proved a version of this theorem for finite words:

Theorem 1.3.12 (Theorem 14 in [FRSZ18]). For all integers l > 1 and k > 1 there exists N =
N(l, k) such that every word of length N contains a l-power or a k-antipower. Furthermore,
for k > 2, one has k2 − 1 ≤ N(k, k) ≤ k3

(
k
2

)
.
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The results I present in this chapter are of two types: first, I give a better bound than the
one in Theorem 1.3.12 for some class of words, then I study an extension of the definition of
antipowers in the abelian setting.

Recall that an uniform morphism is a morphism of constant length on letters. Using the
results on recognizability of uniform morphisms, mainly some results of Mossé, I was able to
prove the following:

Theorem 1.3.13. If σ is primitive and m-uniform morphism, with an aperiodic fixed point x,
there exists a constant C = C(σ) such that: ∀n, k ∈ N, x contains a k-antipower with block
length at most Ck starting at position n.

In the second part of the chapter, I studied different versions of abelian antipowers.
The first notion of abelian antipower was introduced in a joint work with Gabriele Fici and

Manuel Silva.
We first exhibited a well-studied word, the Cantor or Sierpiǹski word, that does not con-

tain abelian antipowers of arbitrarily large order (although it contains abelian powers of every
order):

Theorem 1.3.14. The Sierpiǹski word s does not contain 11–antipowers, hence it does not
contain abelian 11–antipowers.

Remark 2. This result was improved in Riasat’s thesis [Ria19], who proved that the optimal
bound is 10.

Then, we proved that some class of words, the paperfolding words, known to contain
abelian powers of every order, also contain abelian antipowers of every order:

Theorem 1.3.15. Every paperfolding word f contains abelian m-antipowers for every m ≥ 2.

In order to complete the picture, I also exhibit a word that contain abelian antipowers of
any order but no abelian squares: the Zimin word.

Theorem 1.3.16. The Zimin word contains abelian antipowers of any order and no abelian
square.

Finally, I discuss a possible generalization of powers and antipowers where the focus is
on the set of factors of a word, total-abelian powers and antipowers, for which I proved the
following:

Theorem 1.3.17. On a binary alphabet, every infinite word w contains total-abelian k-powers
for every k in N. Moreover, if the abelian complexity of w is not bounded, then w contains
total-abelian k-antipowers for every k in N.

The initial aim was to prove an analogue of Theorem 1.3.11 in the abelian setting, I hope
this problem will be solved soon!
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Chapter 2

ω-Lyndon words

Contents

2.1 Classical Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Finite Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Infinite Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Generalizations of Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Generalized Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 ω-Lyndon words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Classical Lyndon words

In this section we give a brief introduction to the basic properties of Lyndon words. A funda-
mental result is that every finite and infinite word may be written uniquely as a non-increasing
concatenation of Lyndon words. This section does not contain new results.

2.1.1 Introduction

Lyndon words were first introduced by A. Shirshov [Shi53] under the name regular words in the
study of some Lie algebras and were later independently studied by R. Lyndon [Lyn54], again
as a tool related to generators of free Lie’s algebras. They have been extensively studied since,
having numerous applications in different fields of mathematics. Besides from the previously
quoted link to free Lie algebras, in another application in algebra, D. Radford [Rad79] shows
that the algebra of polynomials on Lyndon words with rational coefficients is a shuffle algebra.
Lyndon words can also be used to construct variants of the Burrows-Wheeler transform, and
have a wide range of applications in combinatorics on words. Of particular interest to us is
the fact that Lyndon words provide a factorization of the free monoid [Lot97, CFL58, Duv83].
The extension of this property to a new class of Lyndon-like words is the main subject of this
chapter.
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2.1.2 Finite Lyndon words
2.1.2.1 Definitions

Throughout this chapter, we will consider an ordered alphabet A. Recall the lexicographical
order on A+ we defined in the introduction: for u and v in A+, we say u < v when u is a
proper prefix of v or if there exists a word - possibly empty - w and two letters a and b in A
verifying a < b such that wa is a prefix of u and wb is a prefix of v. This order is the order of
the dictionary.

Example 2.1.1. If A is the Roman alphabet with its natural order, one has

three < two.

If A = {0, 1} with 0 < 1 one has
101 < 11 < 111.

Remark 3. I will often use the following properties verified by the lexicographical order:

∀u, v, w ∈ A+, u < v ⇔ wu < wv, (2.1)

∀u, v ∈ A+, w, z ∈ A∗, v /∈ uA+, u < v ⇒ uw < vz, (2.2)

Recall that, for n ∈ N, u = u1 · · ·un and v = v1 · · · vn, we say that u and v are conjugates
if there exists i such that ui · · ·unu1 · · ·ui−1 = v. This is an equivalence relation and the
corresponding equivalence classes are called conjugacy classes.

Example 2.1.2. 100 and 001 are conjugates, and {abba, aabb, baab, bbaa} is the conjugacy
class of abba.

Lyndon words were introduced by R. Lyndon and A. Shirshov in the following way:

Definition 2.1.3. A finite word u is said to be Lyndon if for any non-trivial conjugate v of u,
one has u < v.

Remark 4. Since pure powers are self-conjugates, an equivalent definition is that Lyndon
words are the words that are the smallest in their conjugacy class and primitive.

Example 2.1.4. In our previous examples, taking the natural orders 0 < 1 and a < b, 001 and
aabb are Lyndon words. With a < p, there is no Lyndon word in the conjugacy class of papa.

Example 2.1.5. The Lyndon words of length 5 on {0, 1} are:

00001, 00011, 00111, 01111, 00101, 01011.

Remark 5. An equivalent definition of Lyndon words was given in the introduction:

Definition 2.1.6. A word w ∈ A+ is said to be Lyndon if w is smaller than any of its strict
suffixes.

10



Proof. Let w be a word smaller than each of its proper suffixes, and write w = uv with u and
v nonempty. Then w < v < vu hence w is Lyndon. Conversely, let w be a Lyndon word and
write w = uv with u and v nonempty. Since w < vu, either w < v or v is a prefix of w. In
the latter case, w = uv = vz for some nonempty z. Then, since w is Lyndon we have vz < vu
and, applying (2.1), z < u. Then, using (2.2), we get zv < uv, contradicting the fact w is
Lyndon.

Remark 6. Using this definition, it is easy to see that a finite Lyndon word must be unbordered,
as a prefix of a word is always smaller than the word itself.

Remark 7. Sometimes, Lyndon words are defined as words w for which there exists an order-
ing of A relative to which w is smaller than any of its proper suffixes, so ab and ba would both
be Lyndon words, only not respectively to the same order. This is not the convention chosen in
this thesis.

2.1.2.2 Factorization theorem for finite Lyndon

Probably one of the most important result on Lyndon words is the fact that they give a factor-
ization of the free monoid. This theorem is a combinatorial equivalent of the famous Poincaré-
Birkhoff-Witt theorem [Bir37]. It is also important in computer science, as it can be computed
in linear or even logarithmic time (see [Duv83, AC95]), and has various applications (see,
for instance, [CR20]). I will recall here some results and some proofs, as I want to highlight
what doesn’t work in a more general setting. The interested reader can see [Lot97] for more
precision.

Proposition 2.1.7. Let w ∈ A+ with |w| ≥ 2. Then w is Lyndon if and only if there exist u, v
Lyndon words with u < v and w = uv.

Proof. Let u and v be Lyndon with u < v. Let s be a strict suffix of uv. First suppose s is
longer than v, hence s = s′v. Then we have u < s′ and hence uv < s using (2.2). Now, if
s is a suffix of v, we need to distinguish two cases: let us first suppose that s /∈ uA∗. Then,
u < v < s so using (2.2) gives uv < s. Finally, if s = uz, the inequality s < uv leads to z < v
by (2.1), which contradicts the fact that v is Lyndon.

Let w be a Lyndon word with |w| ≥ 2. Let v be the smallest proper suffix of w. It is
Lyndon: by definition, it is strictly smaller than its suffixes. Write w = uv. Since u < w < v
we have u < v. Moreover, u is Lyndon: let s be a proper suffix of u such that s < u. Then, s
is a prefix of w, and v < sv leads to v prefix of sv, then smaller than w, a contradiction.

Example 2.1.8. 00011 and 00101 are both Lyndon, and 00011 < 00101 so using Proposition
2.1.7 we can say that 0001100101 is Lyndon as well.

Theorem 2.1.9 (Lyndon). Let w ∈ A+. Then w admits a unique non-increasing factorization
as product of Lyndon words, i.e.

w = w1w2 · · ·wn where w1 ≥ · · · ≥ wn and each wi is Lyndon.

Proof. To prove the existence, we just consider the following algorithm: at each step, take
the smallest suffix (not necessary proper) of w. Every element is a Lyndon word since, by
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definition, it is smaller than its suffixes. And this process also gives the non-increasing prop-
erty of the factorization: if wi < wi+1, by Proposition 2.1.7 we have wiwi+1 Lyndon hence
wiwi+1 < wi+1, contradicting the definition of wi+1.

This decomposition is unique: suppose w admits two decomposition, w = w1 · · ·wn =
w′1 · · ·w′m. Then w1 = w′1. Indeed, suppose |w1| > |w′1|. Then w1 = w′1w

′
2 · · ·w′iu with u

nonempty prefix (not necessarily strict) of w′i+1. Since w1 is Lyndon, we get w1 < u ≤ w′i+1 ≤
w′1 < w1. By induction, both decomposition are identical.

Example 2.1.10. Here are some examples of factorizations given by this algorithm:
010 = (01)(0), 00 = (0)(0), 01001011 = (01)(001011).

A natural question that arises is whether this result can be extended to the set of infi-
nite words over A. For some words, it just seems to work perfectly fine: take, for instance,
1010101 · · · = (10)ω. We can write (10)ω = (1) · (01) · (01) · · · and it is possible to prove that
this decomposition is unique. Meanwhile, for other words there is no such decomposition: the
word 011111 · · · provides such an example. In order to get the same result for infinite words,
we need the notion of infinite Lyndon words.

2.1.3 Infinite Lyndon words
2.1.3.1 Definitions

In a 1993 paper, R. Siromoney, L. Mathew, V.R. Dare and K.G. Subramanian [SMDS94] intro-
duced the notion of infinite Lyndon words and showed that some properties of Lyndon words
could be extended to this new setting, one of them being the unique factorization property.

It is possible to extend the lexicographic order to A+ ∪ AN the following way: for x and
y infinite words, with x 6= y, we say x < y if x = uaz and y = ubz′ with u ∈ A∗ and
a, b ∈ A, a < b. We say v < x with v ∈ A+ when v ≤ x1 · · ·x|v| and x < v otherwise.

Example 2.1.11.
01ω < 1ω

01 < 01ω < 1

Let us recall this definition we introduced in the introduction:

Definition 2.1.12. An infinite word w ∈ AN is said to be infinite Lyndon (or just Lyndon) if it
is strictly smaller than each of its strict suffixes.

Example 2.1.13. The word 01ω is an infinite Lyndon word, as is the word 010110111 · · · where
there are n 1s between the n-th 0 and the (n+ 1)-th 0.

Remark 8. This definition is the natural extension of Definition 2.1.6 in the case of infinite
words.

Remark 9. An infinite Lyndon word does not admit a prefixal factorization, i.e. a factorisation
where every element is a prefix. Indeed, if w = w1w2 · · · where the wi are prefixes of w and
w is infinite Lyndon, then w < w2w3 · · · and w = w2z gives w < z < w3w4 · · · so z = w3z

′.
Repeating this, we get w = w2w3 · · · < w, a contradiction.

This definition is equivalent to the following one [SMDS94]:
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Proposition 2.1.14. An infinite wordw ∈ AN is Lyndon if and only if it is the limit of a sequence
of Lyndon words, which is if w has infinitely many Lyndon prefixes.

Proof. Suppose that w is not Lyndon. That means w admits a suffix y with y < w. Hence,
there exists an integer n such that y1 · · · yn < w1 · · ·wn. But then, any prefix of w longer than
w1 · · · yn cannot be Lyndon, hence w has finitely many Lyndon prefixes.

Suppose w is Lyndon. Then w admits infinitely many Lyndon prefixes. Indeed, if u is a
prefix of w which is not Lyndon, u admits a border v: let u = u′v with u > v. Then v is a
prefix of w, since w < vz where w = u′vz. We know from Remark 9 that w does not admit a
prefixal factorization, so applying Proposition 3 in [dZ16] we get that w admits infinitely many
unbordered, hence Lyndon, prefixes.

2.1.3.2 Factorization theorem for infinite words

With this new definition, some of the previous results can be extended:

Proposition 2.1.15 ([SMDS94]). Let u ∈ A+ be a finite Lyndon word and let v ∈ AN be an
infinite Lyndon word. Then uv is an infinite Lyndon word if and only if u < v.

Proof. Using Proposition 2.1.7 and Proposition 2.1.14, this is immediate.

Theorem 2.1.16 (Factorization of infinite words as non-increasing product of Lyndon words
[SMDS94]). Let w ∈ AN. There exists a unique factorization:

w = w1w2 · · ·wns

with ∀i, wi finite Lyndon word, s infinite Lyndon word and w1 ≥ w2 ≥ · · · ≥ wn > s

or

w =
∞∏
i=1

wi with ∀i, wi finite Lyndon word and w1 ≥ w2 ≥ · · · .

Proof. Let w ∈ AN. First, we exhibit such a decomposition. Consider the prefixes of w.
If an infinite number of those are finite Lyndon words, w is infinite Lyndon and so we get
a factorization. If the set of Lyndon prefixes of w is finite, let w1 be a Lyndon prefix of w
appearing infinitely often in the finite Lyndon factorization of the prefixes of w. The (infinite)
set of prefixes whose factorization starts with w1 will be denoted P1(w). We also letw = w1w

′
1.

Again, there are two possibilities: either w′1 is an infinite Lyndon word or it admits a finite
number of Lyndon prefixes. In the second case, we can look at the finite factorizations of the
elements of P1(w), and like previously construct a w2 and a set P2(w), infinite subset of the
prefixes of w whose elements admit a finite Lyndon factorization starting with w1w2, and we
can iterate this process. If w′1 is infinite Lyndon, all we need to do is to prove w1 > w′1. If this is
not the case, we can apply Proposition 2.1.15 to get that w already was a infinite Lyndon word,
a contradiction.

Now we prove the uniqueness of such a factorization. Like in the finite case, we consider
two factorizations w = w1w2 · · · = w′1 · · · with w′1 ∈ AN or |w′1| ≥ |w1|, and proving the
equality w1 = w′1 is enough to get, by induction, that both factorizations are the same. Let us
then suppose that w′1 6= w1. Let then u be a Lyndon prefix of w longer than w1 (if w′1 is finite
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we can choose u = w′1; else w has an infinite number of Lyndon prefixes so we just pick one
longer than w1). Write u = w1 · · ·wiz where z is a prefix of wi+1. We have w1 < u < z ≤ w1,
a contradiction.

2.2 Generalizations of Lyndon words
In this section we consider some generalizations of the lexicographic order which in turn give
rise to a generalized notion of Lyndon words. We will show that many of the results in the
previous section extend to this more general setting.

2.2.1 Generalized Lyndon words
2.2.1.1 Definition

In a 2005 article [Reu05] C. Reutenauer introduced a generalization ≺N of the lexicographical
order <. This order was studied again recently by C. Reutenauer, F. Dolce and A. Restivo
[DRR18]. To define this new order, they consider a sequence (<n)n∈N of total orders on A.
This induces a total lexicographic-like order �N on AN defined by x � y if and only if either
x = y or if x = uax′ and y = uby′ for some u ∈ A∗, a, b ∈ A, x′, y′ ∈ AN and a <|u|+1 b. If
x 6= y and x �N y we write x ≺N y. This means that the order between two letters depends on
the position those letters occupy in the word.

Example 2.2.1. Take A = {a, b}, and for any non-negative integer k let a <2k+1 b and b <2k+2

a, then (ab)ω ≺N (aa)ω ≺N (ba)ω.

Remark 10. As the previous example shows, this definition allows orderings that were not
possible with the classical lexicographical order. Meanwhile, taking <n=< for any n gives the
lexicographic order, so this new definition can be seen as a generalization of the lexicographic
order.

This total order on infinite words in turn defines a relation on A∗: for u and v in A+ the
authors defined u �N v when uω �N vω, and ε is chosen to be smaller than any nonempty
word. This relation is not an order, since it is not anti-symmetric: a �N aa and aa �N a yet
a 6= aa. If we decide that powers of the same word are not comparable, we get a partial order.
For that reason, this relation will be referred to as an order, although it isn’t technically one.

The authors then define generalized Lyndon words as the words strictly smaller than their
proper nonempty suffixes with respect to this new lexicographic-like order ≺N:

Definition 2.2.2. A word w ∈ A+ is called generalized Lyndon if wω ≺N v
ω for each proper

suffix v of w.

Example 2.2.3. Taking the alternative orders of Example 2.2.1, we get that aba is a generalized
Lyndon word; this example further shows generalized Lyndon words need not to be unbordered.

Remark 11. Many fundamental properties of usual Lyndon words no longer hold for general-
ized Lyndon words. First of all, every primitive finite word u and every non-periodic infinite
word w is generalized Lyndon relative to some total order�N on AN. Indeed, it suffices to look
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at uω (or w) and define <n such that the smallest element of A is (uω)n (or wn). As a conse-
quence, a finite generalized Lyndon word need not be unbordered. Or an infinite generalized
Lyndon word x may be a product of prefixes of x. Or if u, v ∈ A+ are generalized Lyndon and
uω ≺N v

ω it need not be the case that uv is generalized Lyndon. For example, let A = {a, b}
be ordered by a < b. Consider the total order �N on AN defined as previously by the alternat-
ing order of Example 2.2.1. Then u = abba is a generalized Lyndon word, as is v = b and
uω ≺N v

ω, yet uv is not generalized Lyndon.

2.2.1.2 Factorization theorem

In [Reu05], and then with a simpler and more combinatorial proof in [DRR18], the authors
showed that generalized Lyndon words preserve the factorization property for finite words, i.e.
Theorem 2.1.9:

Theorem 2.2.4. Let (<n)n∈N be sequence of total orders on A and ≺N be the total order they
induce. Let u be a nonempty finite word in A+. Then there exist a unique n and n generalized
Lyndon words w1, · · · , wn, such that:

w1 �N · · · �N wn, and w = w1w2 · · ·wn.

Remark 12. This theorem is significantly more complicated to prove than Theorem 2.1.9, since
the two properties (2.1) and (2.2) are no longer verified. For (2.1) it is easy to see by taking the
alternating order, and for (2.2), for example, with a <4 b and b <5 a we have ab ≺N aba but
ab.(aab)ω ≺N aba.a

ω.

As in the classical case, it is possible to define infinite generalized Lyndon words:

Definition 2.2.5. An infinite word x ∈ AN is called generalized Lyndon if x ≺N y for each
proper suffix y of x.

It is then natural to try to extend Theorem 2.1.16. That question was asked by the authors
in [DRR18]:

Question 2.2.6 (Open Problem 2 in [DRR18]). Prove that each infinite word can be factorized
in a unique way as a non-increasing product of finite and infinite generalized Lyndon words.

2.2.1.3 Comparing infinite words instead of finite words

We saw that the relation Dolce, Restivo and Reutenauer defined is not a total order. Alterna-
tively, a family of total orders (<n)n≥1 on A defines an order ≤N on A+ by u ≤N v if and
only if either u is a prefix of v or if u = wau′ and v = wbv′ for some w ∈ A∗, a, b ∈ A and
u′, v′ ∈ A∗ and a <|w|+1 b. This relation is a total order. It is also possible possible to define
a generalization of Lyndon words respectively to this order, as words strictly smaller tha their
suffixes.

It might be strange to choose to consider a partial infinite order to compare finite words, and
it could seem more simple to take that total finite order to do so. However, the order defined by
infinite words seems to be the good definition to consider to preserve the factorization theorem
on finite Lyndon words. Take, for example the sequence of alternating orders from 2.2.1. It
is then easy to see that aab doesn’t admit a generalized Lyndon non-increasing factorization
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like in 2.1.9 with respect to <N. Indeed, for example aab is not generalized Lyndon since
ab <N aab. Then, the first term of a generalized Lyndon factorization would be a; but a <N ab
and a <N b, so the factorization cannot be non-increasing.

Moreover, this use of an infinite order to compare finite words and study Lyndon-type words
is not unique in the literature.

In [DRR19], Dolce, Restivo and Reutenauer considered a new version <ω of the lexico-
graphical order defined by comparisons on infinite words: for u and v finite words, u ≤ω v
when uω ≤ vω. For infinite words, <ω is the lexicographical order.

This order differs from the classical lexicographical order:

Example 2.2.7. Suppose a < b. Then ab < aba and aba <ω ab.

However, for finite words u and v of same length, the orders coincide:

u < v ⇔ u <ω v.

This induces that Lyndon words, defined as smaller than any of their conjugates, are the same
respectively to both orders. Dolce, Restivo and Reutenauer proved, amongst other results, that
Lyndon words are exactly the words strictly smaller than their proper suffixes relatively to this
infinite order <ω. This justify, in a way, that considering generalized Lyndon with respect to an
infinite order can be seen as a proper generalization of Lyndon words.

2.2.2 ω-Lyndon words
The rest of this chapter is mainly a detailed version of a published article written jointly with
Luca Zamboni [PZ19b].

2.2.2.1 Definition

We address Question 2.2.6 while considering yet another generalization of Lyndon words. We
remarked that their orders preserve an important property of the lexicographical order: as soon
as the order between two words of the same size is fixed, one can add any suffix to those, the
order will not change. More precisely, the following is true:

∀n ∈ N and u, v ∈ An, if u ≺N v then ux ≺N vy for all x, y ∈ AN ∪ A∗. (2.3)

This condition seems to be worth preserving. For example, it would be hard to search a word in
a dictionary not matching this requirement. With this condition, you are sure that all the words
starting with a prefix u are going to be grouped in your dictionary.

For the rest of this chapter, let us fix once and for all a total order � on AN verifying the
lexicographic-like condition (2.3). This is the setting on which we are defining and study-
ing Lyndon-like words in [PZ19b]. This setting, as we said, encompass the orders studied in
[DRR18].

However the two settings are not equivalent. In fact, in the context of the generalised
lexicographic order in [DRR18], if, for example, bb ≺N ba then it would mean that b <2 a
and hence ab ≺N aa. This is no longer true in the setting (2.3) as one may have bb ≺ ba and
aa ≺ ab. To define an order ≺ only satisfying (2.3) is equivalent than defining a sequence
(<u)u∈A∗ of total orders on A like in the setting of [DRR18] where the order between two
letters a and b is given by what appears before them: uav ≺ ubw ⇔ a <u b.

Let us begin by some important remarks:
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Remark 13. The following two properties will be useful in the subsequent proofs; the situation
here works as in the classical case.

1. If x, y ∈ AN and x � y then for each prefix u of x and v of y with |u| = |v| one has
uω � vω with equality if and only if u = v.

2. If uω � vω, and neither u nor v is a prefix of the other, then uω ≺ vω. In particular, if
uω � vω and u and v are primitive, then either u = v or uω ≺ vω.

We begin with the following lemma which is analogous to Lemma 13 in [DRR18]. We omit
the proof as it is identical to that of Lemma 13 in [DRR18].

Lemma 2.2.8. For each u, v ∈ A+ and ? ∈ {=,≺,�} the following are equivalent:

1. uω ? vω;

2. (uv)ω ? vω;

3. uω ? (vu)ω;

4. (uv)ω ? (vu)ω;

We remark that a slightly modified version of the above lemma also applies in case one of
u and v is infinite and the other finite: For example if u ∈ A+ and v ∈ AN then uω ? v if and
only if uv ? v.

We now introduce the definition of ω-Lyndon words. We first give a definition for infinite
words. It will be useful to extend this notion also to finite words, however given that the order
is defined only on infinite words, we shall be required to pass to infinite words by associating
to each finite word w its (periodic) infinite counterpart wω. Following [DRR18]:

Definition 2.2.9. An infinite word x ∈ AN is called ω-Lyndon if x ≺ y for each proper suffix y
of x. A word w ∈ A+ is called ω-Lyndon if wω ≺ vω for each proper suffix v of w. We let Lω

denote the set of all ω-Lyndon words (finite and infinite) relative to � .

Remark 14. We note that A ⊆ Lω. If w ∈ A+ is ω-Lyndon, then w is primitive and similarly
if x ∈ AN is ω-Lyndon, then x is not periodic. It follows from Lemma 2.2.8 that w ∈ A+ is
ω-Lyndon if and only if for all factorizations w = uv with u, v ∈ A+ we have uω ≺ vω (see
Theorem 14 in [DRR18]). This in turn implies that if w ∈ Lω, then for each prefix u of w and
each factor v of w with |u| = |v|, either u = v or uω ≺ vω. In fact, suppose u 6= v and let z
be a suffix of w beginning in v. Then if w ∈ A+ we have that wω ≺ zω and hence uω ≺ vω. If
w ∈ AN, then w ≺ z and hence uω ≺ vω.

As for Lemma 2.2.8, we can extend the factorization theorem for finite words to our setting.
Again, we omit the proof as it is identical to that of Theorem 16 in [DRR18].

Proposition 2.2.10. Each w ∈ A+ admits a unique factorization w = l1l2 · · · lk with li ∈ Lω

and lω1 � lω2 � · · · � lωk .

Now we come to the factorization of infinite words.
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2.2.2.2 Factorization of infinite words

Definition 2.2.11. For x ∈ AN we say x admits an infinite ω-Lyndon factorization if x =∏∞
i=1 li with each li ∈ Lω ∩ A+ and lω1 � lω2 � lω3 � · · · . We say x admits a finite ω-Lyndon

factorization if x = l1l2 . . . lk with li ∈ Lω∩A+, lk ∈ Lω∩AN and lω1 � lω2 � · · · � lωk−1 � lk.

Remark 15. Because of the fact that if u and v are Lyndon in the usual sense and u < v then
uv is Lyndon, it follows that the factorization of a finite word w as a non-increasing product of
Lyndon words is also the shortest factorization of w as a product of Lyndon words. This is no
longer true in general for ω-Lyndon words. For example, relative to the total order� defined in
Remark 11, the word w = ababab is the product of ababa and b, both of which are ω-Lyndon,
yet the ω-Lyndon factorization of w has length three and is given by w = (ab)(ab)(ab).

The following lemma constitutes a generalization of a characterization of infinite Lyndon words
given in Proposition 2.1.14:

Lemma 2.2.12. Let x ∈ AN. Then x /∈ Lω if and only if either x = lω for some l ∈ Lω or only
a finite number of prefixes of x are members of Lω.

Proof. Assume x /∈ Lω and pick a proper suffix y of x with y � x.
If y = x, then x = uω for some primitive word u ∈ A+. As u is primitive, for each

nontrivial factorization u = u1u2 one has u2u1 6= u and hence (u2u1)
ω 6= uω. If u ∈ Lω we

are done. If u /∈ Lω, pick a factorization u = u1u2 with (u2u1)
ω ≺ uω. Then by Remark 14, if

v is a prefix of x with |v| ≥ 2|u| then v /∈ Lω. Hence x has less than 2|u| ω-Lyndon prefixes,
and we are done.

If y ≺ x, pick a prefix v of y and a prefix u of x with |u| = |v| and vω ≺ uω. Then again by
Remark 14 any prefix of x containing v as a factor cannot belong to Lω.

For the converse, we note that if x is periodic then x /∈ Lω. So assume x is not periodic and
only a finite number of prefixes of x belong to Lω. For n ∈ N, let x[n] denote the prefix of x of
length n, and let l(n) denote the length of a longest ω-Lyndon word occurring in the ω-Lyndon
factorization of x[n] (see Proposition 2.2.10). If (l(n))n≥1 is unbounded, then pick n such that

1. l(n) is greater than the length of the longest ω-Lyndon prefix of x

2. l(n) is the length of the last ω-Lyndon word in the ω-Lyndon factorization of x[n].

This is always possible, as the factorization of a finite word is unique, hence if l(n) is not the
length of the last ω-Lyndon word in the ω-Lyndon factorization of x[n], it means a smaller
integer n′ (corresponding to the prefix of x product up to the factor of length l(n) of the fac-
torization of x[n]) already satisfies the conditions. Then x[n] = l1l2 · · · lk with li ∈ Lω and
lω1 � lω2 � · · · � lωk , and lk is not a prefix of x. By iteration of Lemma 2.2.8, (l1l2 · · · lk)ω � lωk
and hence (l1l2 · · · lk)ω � lωk . Writing x = l1l2 · · · lk−1y with y ∈ AN, since lk is a prefix of
y but not of l1l2 · · · lk we have x � y and hence x /∈ Lω. If (l(n))n≥1 is bounded then pick
a finite set F ⊆ Lω such that all ω-Lyndon words occurring in the ω-Lyndon factorization of
x[n] for n ∈ N belong to F. Because of the non increasing order condition in the ω-Lyndon
factorization, there exist l1, l2, . . . , lk in F with lω1 � lω2 � · · · � lωk such that l1l2 · · · lk−1lmk is a
prefix of x for everym ∈ N. Pickm such that lmk is not a prefix of x and write x = l1l2 · · · lk−1y
with y ∈ AN. Then as lmk is a prefix of y but not of l1l2 · · · lmk and (l1l2 · · · lmk )ω � lωk we deduce
that x � y and hence x /∈ Lω.
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Now we can prove that every infinite word admits a Lyndon factorization:

Proposition 2.2.13. Each x ∈ AN admits either an infinite or a finite ω-Lyndon factorization.

Proof. Let x ∈ AN and assume x does not admit an infinite ω-Lyndon factorization. We will
show that x admits a finite ω-Lyndon factorization. The result is immediate in case x ∈ Lω

so we may assume that x /∈ Lω. For n ∈ N, let l(n)i be the i’th ω-Lyndon word occurring in
the ω-Lyndon factorization of x[n], where x[n] is the prefix of length n of x. In other words
x[n] = l

(n)
1 l

(n)
2 · · · l

(n)
k . We may take l(n)i to be the empty word if the ω-Lyndon factorization of

x[n] has fewer than i terms.
By Lemma 2.2.12, the set

L1 = {l(n)1 : n ∈ N}

is finite and hence there exist l1 ∈ Lω and an infinite set A1 ⊆ N such that for each n ∈ A1 the
ω-Lyndon factorization of x[n] begins in l1.

Put
L2 = {l(n)2 : n ∈ A1}.

If L2 is finite, then we may pick l2 ∈ Lω and an infinite subset A2 ⊆ A1 such that for each
n ∈ A2 the ω-Lyndon factorization of x[n] begins in l1l2 and put L3 = {l(n)3 : n ∈ A2}.
Continuing as above, if each Lk is finite then x would admit an infinite ω-Lyndon factorization
contrary to our assumption. And hence, there exists k ≥ 2 and l1, l2, . . . , lk−1 ∈ Lω and an
infinite set Ak−1 ⊆ N such that for each n ∈ Ak−1 the ω-Lyndon factorization of x[n] begins in
l1l2 · · · lk−1 and Lk = {l(n)k : n ∈ Ak−1} infinite.

Define lk ∈ AN by x = l1l2 . . . lk−1lk. We claim lk ∈ Lω and lωk−1 � lk.
Observe that lk 6= lωk−1 for otherwise x = l1 · · · lk−2lωk−1 is an infinite ω-Lyndon factorization

of x. Pick m ∈ N such that lmk−1 is not a prefix of lk and n ∈ Ak−1 such that |lmk−1| < |l
(n)
k |.

Since lωk−1 � (l
(n)
k )ω and lmk−1 is not a prefix of l(n)k , it follows that lωk−1 � lk. It remains to

show that lk ∈ Lω. By Lemma 2.2.12, if lk /∈ Lω then lk = uω for some u ∈ Lω and hence
x = l1l2 · · · lk−1uω is an infinite ω-Lyndon factorization, a contradiction.

We now turn to the question of uniqueness of ω-Lyndon factorizations for infinite words. We
begin by establishing uniqueness for words admitting a finite ω-Lyndon factorization.

Lemma 2.2.14. Let x ∈ AN and u1u2 · · ·uk be a prefix of x such that uω1 � uω2 � · · · � uωk . If
x ∈ Lω then each ui is a prefix of x.

Proof. By iteration of Lemma 2.2.8, for 1 ≤ i ≤ k we have that (u1 · · ·ui)ω � uωi . Let vi
denote the prefix of x of length |ui|. If vi 6= ui then vωi � uωi contradicting that x ∈ Lω.

Lemma 2.2.15. Let x ∈ AN and k ≥ 3. Assume u1u2 · · ·uk is a prefix of x such that uω1 �
uω2 � · · · � uωk . If x ∈ Lω, then either |u1 · · ·uk−2| ≤ |uk| or u1 · · ·uk−2uk is a prefix of x.

Proof. Assume |u1 · · ·uk−2| > |uk|. By Lemma 2.2.14, we have that uk is a prefix of x and
hence a prefix of u1 · · ·uk−2. By Lemma 2.2.8 we have that (u1 · · ·uk−2)ω � uωk−2 � uωk−1 and
hence (u1 · · ·uk−2uk−1)ω � (uk−1u1 · · ·uk−2)ω = (uk−1ukv)ω. Since x ∈ Lω it follows that
uk−1uk is a prefix of x and hence uk is a prefix of uk−1uk. Thus u1 · · ·uk−2uk is a prefix of
x.
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Lemma 2.2.16. Let (ui)i∈N be a sequence in A+ with uω1 � uω2 � · · · . Then
∏∞

i=1 ui /∈ Lω.

Proof. Put x = u1u2 · · · and suppose to the contrary that x ∈ Lω. We will show that |uk| <
|u1| for each k ≥ 3 and hence the sequence (ui)i∈N is ultimately constant, a contradiction. To
see that |uk| < |u1| for each k ≥ 3, suppose to the contrary that |uk| ≥ |u1| for some k ≥ 3. By
iteration of Lemma 2.2.15, there exists 2 ≤ j ≤ k − 1 such that u1 · · ·ujuk is a prefix of x and
|u1 · · ·uj−1| ≤ |uk|. By Lemma 2.2.14 we have that uk is a prefix of x and hence u1 · · ·uj−1
is a prefix of uk. As (u1 · · ·uj−1)ω � uωj we have that (u1 · · ·uj−1uj)ω � (uju1 · · ·uj−1)ω and
hence u1 · · ·uj−1uj 6= uju1 · · ·uj−1. Since u1 · · ·uj−1 is a prefix of uk it follows that the suffix
of x beginning in ujuk is smaller than x contradicting that x ∈ Lω.

Lemma 2.2.17. Let x ∈ AN. If x = v1v2v3 · · · with vω1 � vω2 � · · · then x /∈ Lω.

Proof. Assume to the contrary that x ∈ Lω. Without loss of generality we may assume that
each vi is primitive. We claim (vi)i≥1 is ultimately periodic. In fact, if the sequence (vi)i≥1 is
not ultimately periodic, then by concatenating together the consecutive terms of the sequence
which are equal, we may write x = u1u2 · · · with uω1 � uω2 � · · · in contradiction with
Lemma 2.2.16. As x ∈ Lω and hence not periodic, write x = v1 · · · vkvωk+1 with vω1 � · · · �
vωk � vωk+1 and pick m such that vmk+1 is not a prefix of x. As (v1 · · · vkvmk+1)

ω � vωk+1, it follows
that the suffix vωk+1 ≺ x contradicting that x ∈ Lω.

Lemma 2.2.18. If x admits an infinite ω-Lyndon factorization, then no suffix of x belongs to
Lω. In particular x does not admit a finite ω-Lyndon factorization.

Proof. Suppose x admits an infinite ω-Lyndon factorization x = l1l2l3 · · · . Then any suffix y
of x may be written as y = sili+1li+2 · · · with i ≥ 1 and si a suffix of li. Since sωi � lωi it
follows that sωi � lωi+1 � · · · . By Lemma 2.2.17, it follows that y /∈ Lω.

We can then prove the uniqueness of the ω-Lyndon factorization in the case of finite factor-
ization:

Corollary 2.2.19. If an infinite word x ∈ AN admits a finite ω-Lyndon factorization x =
l1l2 · · · lk, then it is the unique ω-Lyndon factorization of x.

Proof. It follows from Lemma 2.2.18 that x does not admit an infinite ω-Lyndon factorization.
It remains to show that x admits no other finite ω-Lyndon factorization. For this purpose, write
x = ulk with u ∈ A∗ and lk ∈ Lω and observe that if v ∈ A+ is any suffix of u, then (by
iteration of Lemma 2.2.8) lk � vlk. In other words, vlk /∈ Lω and hence lk is necessarily the
first ω-Lyndon suffix of x. Uniqueness now follows from Proposition 2.2.10.

We next prove uniqueness of ω-Lyndon factorizations for those infinite words x not admit-
ting a finite ω-Lyndon factorization. We first consider the case that x is ultimately periodic:

Lemma 2.2.20. Assume x ∈ AN is ultimately periodic. Then x admits a unique ω-Lyndon
factorization.

Proof. By Corollary 2.2.19 we may suppose that x does not admit a finite ω-Lyndon factoriza-
tion. Using Proposition 2.2.13 let x = l1l2 · · · be an infinite ω-Lyndon factorization of x. We
claim the sequence (li)i∈N is ultimately constant.
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As the sequence (li)i∈N is decreasing, it suffices to show that lim infi→∞ |li| < +∞. So
pick a suffix x′ of x and an infinite set I ⊆ N such that li is a prefix of x′ for each i ∈ I. Since
infinitely many li start in the periodic part of x, it is possible to find such x′. Applying lemma
2.2.18, we know that x′ /∈ Lω. Using lemma 2.2.12 it follows that either x′ = lω for some
l ∈ Lω or x′ has only finitely many ω-Lyndon prefixes. In the latter case {|li| : i ∈ I} is clearly
bounded. In the former case pick j < k in I such that x′ =

∏
i≥j li and min{|lj|, |lk|} ≥ 2|l|.

Then w = lj · · · lk−1 = lr for some r ∈ N. Indeed, the contrary would imply that l2 is an
internal factor of l3; but ω-Lyndon words are primitive. That contradicts Proposition 2.2.10.

Having proved that any infinite ω-Lyndon factorization of x is ultimately constant, unique-
ness of the factorization now follows. In fact, suppose x = l′1l

′
2 · · · is another ω-Lyndon fac-

torization with l′i = l′ for all i greater than some k′ and l′ ∈ Lω. Then since l and l′ are
each primitive, it follows that |l| = |l′| whence l = l′ and the two factorizations must ulti-
mately synchronise, i.e., li = l′i for all sufficiently large i. The rest now follows from Proposi-
tion 2.2.10.

Definition 2.2.21. A factor u ∈ A+ of an infinite word x is said to be minimal in x if uω � vω

for all factors v of x with |v| = |u|.

We note that, if u is a minimal factor of x, then so is every prefix of u. The following lemma
will be applied to show that any infinite aperiodic word x admits at most one infinite ω-Lyndon
factorization, and how to construct it.

Lemma 2.2.22. Assume x ∈ AN and u ∈ A+ is a minimal factor of x. Let w ∈ A∗ be
the longest prefix of x preceding the first occurrence of u in x. Assume x admits an infinite
ω-Lyndon factorization x = l1l2l3 · · · with lim supi→∞ |li| = +∞. Then either w = ε or
w = l1 · · · lk for some k ∈ N.

Proof. Put n = |u| and write u = u1u2 · · ·un. Also write x = wux′ with x′ ∈ AN; by
assumption wu contains exactly one occurrence of u. Assume w 6= ε and let k be the least
positive integer such that

∑k
i=1 |li| ≥ |w|. We must show that

∑k
i=1 |li| = |w|. Suppose to

the contrary that
∑k

i=1 |li| > |w|. We first note that u cannot be fully contained inside lk for
otherwise, if v denotes the prefix of lk with |v| = |u|, then as v 6= u and lk ∈ Lω we have
vω ≺ uω which contradicts that u is minimal. Thus we may write lk = zu1 · · ·up for some
z 6= ε and p < n. Let r = min{|li| : i ≥ k + 1} and pick j ≥ k + 1 with |lj| = r. Also pick
j′ > j such that |lj′| ≥ p+ r.

Case 1: n ≥ p+ r
By definition of r it follows that up+1...up+r is a prefix of lk+1. We first claim that

up+1...up+r = u1 · · ·ur = (u1 · · ·up)
r
p (2.4)

where (u1 · · ·up)
r
p denotes the prefix of length r of (u1 · · ·up)ω. In fact, as u is a minimal factor

of x we have that (u1 · · ·ur)ω � (up+1 · · ·up+r)ω. Furthermore since lωk+1 � lωk ≺ (u1 · · ·up)ω

and up+1 · · ·up+r is a prefix of lk+1 it follows that (up+1 · · ·up+r)ω � ((u1 · · ·up)
r
p )ω. Combin-

ing we get (u1 · · ·ur)ω � (up+1 · · ·up+r)ω � ((u1 · · ·up)
r
p )ω from which (2.4) follows.

We also claim that
lj = u1 · · ·ur. (2.5)

Indeed, since u is a minimal factor of x we have (u1 · · ·ur)ω � lωj . On the other hand lωj � lωk+1

and so by taking the prefix of length r of both words we obtain lωj � (up+1 · · ·up+r)ω. So
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combining and using (2.4) we deduce that (u1 · · ·ur)ω � lωj � (u1 · · ·ur)ω from which (2.5)
follows.
Thus we have

(u1 · · ·ur)ω = lωj � lωk ≺ (u1 · · ·up)ω

and hence by Lemma 2.2.8

(u1 · · ·uru1 · · ·up)ω ≺ (u1 · · ·upu1 · · ·ur)ω. (2.6)

Using the fact u1 · · ·upup+1 · · ·up+r is a minimal factor of x together with (2.4) and (2.5) gives

(u1 · · ·upu1 · · ·ur)ω = (u1 · · ·up+r)ω � (lj′ [p+ r])ω � (lωj [p+ r])ω = ((u1 · · ·ur)
p+r
r )ω.

Together with (2.6) gives

(u1 · · ·uru1 · · ·up)ω ≺ (u1 · · ·upu1 · · ·ur)ω � ((u1 · · ·ur)
p+r
r )ω. (2.7)

It follows from (2.7) that u1 · · ·up = (u1 · · ·ur)
p
r and hence

u1 · · ·uru1 · · ·up = (u1 · · ·ur)
p+r
r

which by (2.7) gives ((u1 · · ·ur)
p+r
r )ω ≺ ((u1 · · ·ur)

p+r
r )ω, a contradiction.

Case 2: n < p+ r.
In this case up+1 · · ·un is a prefix of lk+1 and the same arguments used to prove (2.4) shows
that

u1 · · ·un = (u1 · · ·up)
n
p . (2.8)

As lωk = (zu1 · · ·up)ω ≺ (u1 · · ·up)ω, it follows that |lk| = |z| + p < n for otherwise u =
u1 · · ·un would be a prefix of lk which would imply an earlier occurrence of u in x. Thus

zu1 · · ·up = (u1 · · ·up)
|z|+p
p = (u1 · · ·up)au1 · · ·uq (2.9)

for some choice of integers a, q and as lk is primitive we have that 1 ≤ q < p.
Finally, we have z = (u1 · · ·up)a−1u1 · · ·uq and hence

u1 · · ·upu1 · · ·uq = u1 · · ·uqu1 · · ·up (2.10)

from which it follows that lk is not primitive, a contradiction.

Proposition 2.2.23. Let x ∈ AN be an aperiodic infinite word and x = l1l2l3 · · · = l′1l
′
2l
′
3 · · ·

two infinite ω-Lyndon factorizations of x. Then li = l′i for each i ∈ N.

Proof. Suppose to the contrary that li 6= l′i for some i ∈ N. Short of replacing x by some
suffix of x, we may assume that l1 6= l′1. By Lemma 2.2.18 it follows that x /∈ Lω and hence
x contains a minimal factor u which is not a prefix of x. Let w ∈ A+ denote the prefix of x
which precedes the first occurrence of u in x. As x is aperiodic it follows that lim supi→∞ |li| =
lim supi→∞ |l′i| = +∞. By Lemma 2.2.22 it follows that there exist k, k′ ∈ N such that w =
l1 . . . lk = l′1 · · · l′k′ contradicting Proposition 2.2.10.
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2.2.2.3 Conclusion

Putting together the finite and infinite cases, we get the following theorem, which entirely
answers to the question asked in [DRR18]:

Theorem 2.2.24. Each infinite word x ∈ AN admits precisely one ω-Lyndon factorization.

Proof. Existence follows from Proposition 2.2.13. For uniqueness, if x admits a finite ω-
Lyndon factorization, then uniqueness follows from Corollary 2.2.19. So we may suppose that
x admits only infinite ω- Lyndon factorizations. If x is ultimately periodic uniqueness follows
from Lemma 2.2.20 while if x is aperiodic uniqueness follows from Proposition 2.2.23.

As was already stressed, our setting was a generalization of the setting in [DRR18]. In-
terestingly, in [BW20] Amanda Burcroff and Eric Winsor answered the question in [DRR18]
as well, using a different generalization and other tools. In fact, they kept the notion of order
defined by a sequence of total orders <n on A, but unlike in the original setting or in our set-
ting, the alphabet A is not supposed to be finite. Since we achieved our results independently
and approximately at the same time we decided to publish in the same issue of Theoretical
Computer Science.
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Chapter 3

Open and closed complexity

The results of this chapter are the subject of an article written jointly with Olga Parshina,
submitted for publication to the Bulletin of the London Mathematical Society [PP20].
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3.1 Introduction

3.1.1 Morse and Hedlund theorem
A fundamental problem in many areas of mathematics is to describe local constraints that imply
global regularities. An example of this local to global phenomena is found in the study of
periodicity in the framework of symbolic dynamics. The factor complexity function px, first
introduced by G.A. Hedlund and M. Morse in their 1938 seminal paper on symbolic dynamics
[MH38], counts the number of distinct blocks (or factors) of each length occurring in an infinite
word x = x1x2x3 · · · over a finite set A.

Example 3.1.1. p(ab)ω(1) = 2 and the corresponding factors are a and b; p(ab)ω(2) = 2 and
the corresponding factors are ab and ba, while pa(ab)ω(2) = 3 and the corresponding factors are
aa, ab and ba

They proved that each aperiodic infinite word contains at least n+ 1 distinct factors of each
length n, and hence in particular the sequence (px(n))n∈N is unbounded:

Theorem 3.1.2 (Morse-Hedlund [MH38]). An infinite word w is aperiodic if and only if its
complexity function is unbounded. If w is aperiodic, we have, for any integer n, pw(n) ≥ n+1.
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Here I will recall a proof of this theorem, so that we can see in the latter setting what are
the differences in the proofs.

Proof. We first need to prove the following essential lemma:

Lemma 3.1.3. For an aperiodic word w, the complexity function pw(n) is strictly increasing.

Proof. Let w be an infinite word. Every block of length n of w admits at least one right
extension since w is infinite, and two blocks of length n + 1 differing on the n first letters
are different. This ensure that the complexity function is non-decreasing. If we suppose that
there exists an n such that pw(n) = pw(n + 1), w is ultimately periodic. Indeed, pw(n) =
pw(n + 1) implies that every factor u1 · · ·un of length n of w admits a unique right extension
u1 · · ·unun+1, meaning that each time u1 · · ·un appears in w, we know for sure that the next
letter is un+1. But then, this right extension admits a unique right extension u1 · · ·unun+1un+2

as well, since it ends with a factor of length n. Hence, repeating this process, there is at each
step a unique way to extend it to the right. After a certain number of extension, as there is a
finite number of factors of length n, the suffix up · · ·up+n of our word has another occurrence
uk · · ·uk+n previously in our factor. But then, by uniqueness of the right extensions, we have
uk+j = up+j for any j ∈ N. Hence, w is ultimately periodic with period p− k.

Now for an ultimately periodic word w it is really easy to see that the complexity function
is bounded: writing w = uvω the number of blocks of length n is smaller than |u| + |v|, since
there is at most |v| distinct blocks of length n starting in vω.

Morse and Hedlund further showed that an infinite word x ∈ AN has exactly n+ 1 distinct
factors of each length n if and only if x is binary, aperiodic and balanced, i.e., x is a Sturmian
word (see [MH40]). Sturmian words are aperiodic words of lowest factor complexity and
they arise naturally in different areas of mathematics including combinatorics, algebra, number
theory, ergodic theory, dynamical systems and differential equations.

There are numerous variations and extensions of the Morse-Hedlund theorem associated
with other complexity functions defined on infinite words x ∈ AN including Abelian com-
plexity [CH73, RSZ11], which counts the number of distinct Abelian classes of words of each
length occurring in x, or palindrome complexity [ABCD03] counting the number of distinct
palindromes of each length occurring in x, or cyclic complexity [CFSZ17] counting the number
of conjugacy classes of factors of each length in x. As in the case of the Morse and Hedlund
theorem, in most cases these different complexity functions may be used to characterise aperi-
odicity in words.

In this chapter we investigate two new and complementary complexity functions defined on
infinite words, and their relation to aperiodicity.

3.1.2 Open and closed words
Definition 3.1.4. Given u,w ∈ A+ with |u| < |w|, we say u is a border of w if u is both a
prefix and a suffix of w. We say w ∈ A+ is closed if either w ∈ A or w admits a border u which
occurs precisely twice in w. Otherwise w is said to be open. Thus w ∈ A+ is closed if either
w ∈ A or if its longest border u occurs exactly twice in w, i.e., u has no internal occurrences in
w. The longest border of a closed word is called its frontier.

This terminology was first introduced by G. Fici in [Fic11].
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Example 3.1.5. The word w = abaaaab is closed (with frontier ab) while aabab and aabaaa
are both open.

We note that every closed word w ∈ A+ either belongs to A or may be written in the form
w = uv = vu′ for some choice of u, u′, v ∈ A+, and moreover w has no other occurrences of
v other than the two witnessed by the above factorizations. Thus in the language of symbolic
dynamics, a closed factor w ∈ A+ \ A of an infinite word x ∈ AN is called a complete first
return to v in x and the factor u is called a return word or first return to v in x.

Return words constitute a powerful tool in the study of symbolic dynamical systems. For
example, they play an important role in the theory of substitution dynamical systems. Return
words were used by F. Durand [Dur98] and independently by C. Holton and L.Q. Zamboni
in [HZ98] to define so-called derived words and derived substitutions both of which may be
used to characterise infinite words generated by primitive substitutions. An analogous charac-
terisation was later discovered by N. Priebe [Pri00] in the framework of bi-dimensional tilings
using the notion of derived tilings involving Voronoï cells. In [DHS99], Durand et al. derived
a simple algorithm using return words for computing the dimension group of minimal Cantor
systems arising from primitive substitutions. A slightly different notion of return words was
used by S. Ferenczi, C. Mauduit and A. Nogueira [FMN96] to compute the eigenvalues of the
dynamical system associated with a primitive substitution. Return words were an essential tool
used by the authors in [HVZ16] to give a partial answer to a question posed by A. Hof, O. Knill
and B. Simon in [HKS95] on a sufficient combinatorial criterion on the subshift Ω of the poten-
tial of a discrete Schrödinger operator which guarantees purely singular continuous spectrum
on a generic subset of Ω.

There are many other examples of the use of return words in the study of more general
symbolic dynamical systems. In [Vui01], L. Vuillon showed that an infinite binary word x is
Sturmian if and only if each factor of x admits exactly two first returns in x. We observe that a
recurrent word x ∈ AN containing a factor v having only one first return in x is necessarily ulti-
mately periodic, i.e., x = u′uω where u is the unique first return to v in x.Words having exactly
k first returns to each factor for k ≥ 3 have also been extensively studied (see, for example,
[BPS06]) and include the symbolic coding of orbits under a k-interval exchange transforma-
tion [KS67] as well as Arnoux-Rauzy words [AR91] on a k-letter alphabet. Finally, there has
been much recent interest in open and closed words in the framework of combinatorics on
words and we refer the interested reader to the nice survey article [Fic17] by G. Fici.

We now define two new complexity functions, the closed complexity and the open complex-
ity, which will be the main objects studied in this chapter.

3.1.3 Open and closed complexity functions
Definition 3.1.6. For an infinite word x ∈ AN we define the closed complexity function Clx
which associates to each n ∈ AN, the number of closed factors of x of length n. Similarly, we
define the open complexity function Opx which associates to each n ∈ AN, the number of open
factors of x of length n.

Example 3.1.7. Cl(abba)ω(2) = 2 since aa and bb are both closed while Cl(abba)ω(3) = 0.
Op(abba)ω(2) = 2 since ab and ba are open; Op(abba)ω(3) = 4.

Given an infinite word x ∈ AN, we are interested in the asymptotic behaviour of the
complexity functions Clx and Opx and their relationship to periodicity. As every finite word
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w ∈ A+ is either open or closed, one has that px(n) = Opx(n) + Clx(n) for each n ∈ N. Thus
if x is aperiodic, then it follows by the Morse and Hedlund theorem that at least one of the
two sequences (Opx(n))n∈N, (Clx(n))n∈N is unbounded. For instance, in [PZ19a] O. Parshina
and L.Q. Zamboni obtained explicit formulae for the closed and open complexity functions for
Arnoux-Rauzy words on a k-letter alphabet (and hence in particular Sturmian words). They
also showed that lim inf Clx(n) = +∞ when x is an Arnoux-Rauzy word. However, for a
general aperiodic word, the lim inf Clx(n) may be finite, and in fact in [SS16], L. Schaeffer and
J. Shallit proved that for the regular paperfolding word one has that lim inf Clx(n) = 0, which
is somewhat surprising. More generally, they showed that in the case of automatic sequences,
the property of being closed is expressible in first-order logic, which allows them to compute
the closed complexity for various well known infinite words including the Thue-Morse word,
the Rudin-Shapiro word, the ordinary paperfolding word and the period-doubling word (for
definition of those words, see, for instance, [AS03]).

One essential difference between the usual factor complexity on one hand, and the open
and closed complexities on the other, is that the latter complexities are not in general monotone
(e.g. see [PZ19a]). Nevertheless, we were able to prove a refinement of the Morse-Hedlund
theorem that may be stated as follows, and constitutes the main result of this chapter:

Theorem 3.1.8. Let x ∈ AN be a right-infinite word over a finite alphabet A. The following
are equivalent:

1. x is aperiodic;

2. lim sup
n→+∞

Clx(n) = +∞;

3. lim inf
n→+∞

Opx(n) = +∞.

In particular, both complexity functions are unbounded if x is aperiodic. Actually we prove
something slightly more general, for which we need the following definition:

Definition 3.1.9. A subset S of N is syndetic if there exists a positive integer d such that
S ∩ {n, n+ d} 6= ∅ for every n ∈ N.

We prove that condition 2. can be replaced by lim sup
n∈S

Clx(n) = +∞, where S is any

syndetic subset of N. Of course, that conditions 2. and 3. each imply 1. is an immediate con-
sequence of the Morse and Hedlund theorem. Since the limit inferior of the closed complexity
of an aperiodic infinite word may be finite (as in the case of the regular paperfolding word) as
it may be infinite (in the case of Sturmian words), we cannot hope to characterise periodicity
in terms of lim inf Clx(n). Finally, it is necessary to assume the finiteness of the underlying
alphabet, otherwise taking x = 1234567 · · · ∈ NN, we see that x contains no closed factors of
length greater than one.

3.1.4 Topological tools and graphs
We give and recall here some definitions and results unrelated to close and open words that will
be needed in the rest of the chapter.

An operator often used in symbolic dynamics is the shift operator T . That operator has
many uses in combinatorics on words. It is defined on infinite words as follows:
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∀x ∈ AN, x = x0x1x2 · · · , T (x) = x1x2x3 · · ·

For x ∈ AN, we let Ω(x) denote the shift orbit closure of x, i.e. the closure in AN of the set

{T n(x) |n ∈ N}.

The following result (Theorem 1.5.11 in [Lot02]) will be useful in a later proof:

Theorem 3.1.10. For every infinite word x over a finite alphabet, Ω(x) contains at least one
uniformly recurrent element.

For x ∈ AN and n ∈ N, the Rauzy graph of order n of x ∈ AN is the directed graph whose
set of vertices (resp. edges) consists of all factors of x of length n (resp. n + 1). There is a
directed edge from u to v labeled w if u is a prefix of w and v a suffix of w. A path of length
k in a graph is an alternating sequence of vertices and edges v1, e1, v2, e2, v3, . . . , vk, ek, vk+1

which begins and ends with a vertex and where each ei is a directed edge from vi to vi+1. The
distance between two vertices in a Rauzy graph is the length of the shortest path between them.

3.2 Words with finite lim inf(Opx(n))n∈N are ultimately
periodic.

The next two propositions as well as Corollary 3.2.2 also hold in case A is infinite.

Proposition 3.2.1. Let x ∈ AN and N ∈ N. Let w1 and w2 be two factors of x, such that there
is a path of length i from w1 to w2 in the Rauzy graph of order N of x. Suppose w1 and w2 are
closed with frontiers u1 and u2 respectively. Then ||u1| − |u2|| < i.
In particular, if i = 1 the frontiers are of the same length: |u1| = |u2|.

Proof. The situation is as illustrated on the Figure 3.1.

w1 :

w2 :

u1 u1

u2 u2

i i+ |u1| − |u2|

i+ |u2| − |u1| i

Figure 3.1: Factors w1 and w2.

Since w2 is closed, u2 cannot be a factor of u1. Hence i + |u2| − |u1| > 0. Since w1 is
closed, u1 cannot be a factor of u2. Hence i+ |u1| − |u2| > 0. The result follows.

Corollary 3.2.2. Let w1, w2, u1, u2 be as in Proposition 3.2.1. If there exists a path between
w1 and w2 in the Rauzy graph consisting of only closed factors, then |u1| = |u2|. Thus, if there
exists a path between w1 and w2 with n distinct open factors, ||u1| − |u2|| ≤ n.
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Proposition 3.2.3. Let x ∈ AN. For every j > 1, every vertex in the Rauzy graph of x of order
j has at most one closed predecessor and one closed successor.

Proof. Let w be a word of length j−1 and consider bw and cw to be both closed with b, c ∈ A,
b 6= c. Then, labelling u the frontier of bw, and v the frontier of cw, one has |u| 6= |v|, since
u and v are both suffixes of w but do not start with the same letter. Suppose, without loss of
generality, that |u| < |v|. This means u is a proper suffix of v, hence appears in w as a proper
suffix of the first occurrence of v in cw. This leads to at least three occurrences of u in bw,
which is then not closed. Symmetrically, there is at most one letter b′ ∈ A such that wb′ is
closed.

Theorem 3.2.4. Let x be an infinite word over a finite alphabet A. Let k ∈ N be such that
lim inf Opx(n) = k. Then x is ultimately periodic.

In order to prove Theorem 3.2.4, we will start by proving some lemmas, where k, x and A
are defined as in the theorem statement.

Lemma 3.2.5. Suppose that x is aperiodic. Let N > 11k + 2 be such that Opx(N) = k. Then
uN /∈ Fact(x) for any choice of u with |u| < 2k.

Proof. Suppose to the contrary that uN ∈ Fact(x) for some primitive word u ∈ A+ with
|u| ≤ 2k. Since x is aperiodic, up to considering a cyclic rotation of u there exists a ∈ A such
that u

N−1
|u| a is a factor of x with u

N−1
|u| a 6= u

N
|u| . This factor is open: if not, its frontier has length

at least N − 1− |u| > 3|u|+ 1, which implies that u occurs internally in uu contradicting the
fact that u is primitive (see Figure 2).

u
N−1
|u| a =u1u2u3 · · · um−1umu1u2u3 · · · um−1um u1u2u3 · · · um−1um· · · · · · u1 · · ·ui a

a 6= ui+1

w

w

Figure 3.2: The frontier should be longer than w = u
N−1
|u| −1.

Let us consider, for j ≤ k, a factor uj+1 · · ·u|u|u
N−1
|u| −1ab1 · · · bj , which is a successor of

u
N−1
|u| a at distance at most k in the Rauzy graph of order N of x. Again, this factor is open:

otherwise the length of its frontier would be at least N − 1− |u| − j > 3|u|+ 1, and u would
be a factor of uu. Besides, those factors are pairwise distinct, since an equality between two of
them would imply that u is an internal factor of uu. This produces at least k + 1 distinct open
factors of length N , thereby contradicting our initial assumption on N .

Lemma 3.2.6. Let j ∈ N be such that Opx(j) = k. Let u and v be two closed factors of length
j whose frontiers are of length r and p respectively. Then |p− r| ≤ k.
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Proof. Consider the Rauzy graph of x of order j. By Corollary 3.2.2, it is enough to count the
number of distinct open factors on a path between u and v to know the bound on |p− r|. There
can be at most k of them, so |p− r| ≤ k.

Lemma 3.2.7. Suppose x is aperiodic. Let m ∈ N, t = |A|, and N ≥ k(tm +m+ 2) such that
Opx(N) = k. Then the frontier of any closed factor of length N is longer than m.

Proof. Let N be as above. Since x is aperiodic, it contains at least N + 1 different factors of
length N .

By Proposition 3.2.3, there exists a factor such that the shortest path in the Rauzy graph
between it and an open factor is of length N+1−k

k
. By Corollary 3.2.2, all closed words on this

path have frontiers of the same length.
Let us suppose that this common frontier length is smaller than m. There are at most

tm < N+1−k
k

such frontiers, so by the pigeon hole principle two of those factors have the same
frontier with their distance in the Rauzy graph being less than tm+1. Since this frontier cannot
occur internally, the distance between those factors is at least N −m; hence N −m < tm + 1,
contradicting the definition of N .

Proof of Theorem 3.2.4. Let m = (11k + 3)k + 2k. In this case if a word of length at least
m − k overlaps itself with distance less than k, then it contains a power of exponent 11k + 3
with root shorter than k. Let N > k(tm + m + 2) be such that Opx(N) = k. Consider a right
special factor w = w1 · · ·wN of x (which exists since x is aperiodic). By Proposition 3.2.3,
there exists i ≤ k such that wa = wi+1 · · ·wNay1 · · · yi−1 and wb = wi+1 · · ·wNbz1 · · · zi−1
with a 6= b ∈ A are both closed factors of x. See Figure 3.3: at each step before the rightmost
one, either on top, bottom, or both paths, there must be an open factor, and each open factor
can only appear once.

w1w2w3 · · ·wN
w2w3 · · ·wNa

open

w2w3 · · ·wNb

· · · · · ·

closed
· · · · · ·

wi+1wi+2 · · ·wN a y1y2 · · · yi−1
closed

wi+1wi+2 · · ·wN b z1z2 · · · zi−1
closed

Figure 3.3: The sequence of open and closed factors in the Rauzy graph of order N .

Let us denote the frontiers of wa and wb by u and v respectively. For the illustration of the
following reasoning see Figure 3.4. Applying Lemma 3.2.6, we get ||u| − |v|| ≤ k. Since both
u and v are longer than k and a 6= b, they cannot be equal. This implies |u| 6= |v| since wa
and wb have a long common prefix. Suppose, without loss of generality, that |u| < |v|. Lemma
3.2.7 gives m < |v|. Let u′ and v′ be prefixes of u and v such that u = u′ay1 · · · yi−1 and
v = v′bz1 · · · zi−1. Then, |v′| > m − k and u′ is a prefix and a suffix of v′. Hence v′ overlaps
itself with a difference less than k, what contradicts Lemma 3.2.5.
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wi+1 · · ·wN a y1 · · · yi−1 :

wi+1 · · ·wN b z1 · · · zi−1 :

a 6= b

u′ u′ a y1y2 · · · yi−1

v′ v′ b z1z2 · · · zi−1

wi+1wi+2 · · ·wN

u u

vv

≤ k

Figure 3.4: v′ overlaps itself with difference smaller than k.

3.3 Words with bounded closed complexity are ultimately
periodic

The goal of this section is to prove the following theorem, which gives a characterisation of
ultimately periodic words in terms of closed complexity.

Theorem 3.3.1. Let x ∈ AN be such that there exist a positive integer d and a syndetic subset
S ⊆ N with gaps smaller than d on which the closed complexity of x is bounded, i.e. there
exists k ∈ N such that Clx(n) < k for every n ∈ S. Then x is ultimately periodic.

In what follows, x, k and S are defined as in the theorem.
The following lemma states that every recurrent factor is close to being right (or left) spe-

cial.

Lemma 3.3.2. Let x be aperiodic. At least one of the two following assertions holds:

1. ∀u ∈ RecFact(x),∃(p ≤ k, a1, . . . , ap, a, b) ∈ N× Ap+2, a 6= b, such that

aa1 · · · apu ∈ RecFact(x) and ba1 · · · apu ∈ RecFact(x);

2. ∀u ∈ RecFact(x),∃(p ≤ k + d, a1, · · · , ap, a, b) ∈ N× Ap+2, a 6= b, such that

ua1 · · · apa ∈ RecFact(x) and ua1 · · · apb ∈ RecFact(x).

Proof. Let us suppose to the contrary that neither of the above two assertions holds. Let u ∈
RecFact(x) and a1, · · · , ak be such that a1 . . . aku is the only recurrent left extension of u.
Also, let v ∈ RecFact(x) and b1, · · · , bk+d be such that vb1 · · · bk+d is the only recurrent right
extension of v. Up to considering a suffix y of x, we can assume that every occurrence of u
is preceded by a1 · · · ak and every occurrence of v is followed by b1 · · · bk+d. Let us consider
a word w such that uwv ∈ RecFact(x), and a complete first return w′ to this factor in y. We
know that this factor is preceded by a1 · · · ak and is followed by b1 · · · bk+d. The situation is the
following:
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w′ = uwvb1 · · · bk+d · · · a1 · · · akuwv,
x = · · · a1 · · · akw′b1 · · · bk+d · · · .

Let d′ ≤ d be such that |w′|+ k + d′ ∈ S.
Then we can find k closed factors of x of length |w′| + k + d′, contradicting the definition

of S (see Figure 3.5). Indeed, for every i with 0 < i ≤ k, the factor ai · · · akw′b1 · · · bd′+i−1 is
closed, since there is no internal occurrence of uwv in w′.

a1a2 · · · ak uw v b1b2 · · · bd′ bd′+1 · · · bk+d′ · · · a1a2 · · · ak uw v b1b2 · · · bd′ bd′+1 · · · bk+d′

closed

frontier frontier

|w′|+ k + d′ ∈ S

Figure 3.5: k closed factors of x.

Let us show that all these factors are pairwise distinct. By contradiction, suppose that i < i′

are such that ai · · · akw′b1 · · · bd′+i−1 = a′i · · · akw′b1 · · · bd′+i′−1.
In particular, ai · · · akuwvb1 · · · bd′+i = ai · · · ai′−1ai · · · akuwvb1 · · · bd′+i−i′ which extends

uniquely in x to ai · · · ai′−1ai · · · akuwvb1 · · · bd′+i = (ai · · · ai′−1)2ai · · · akuwvb1 · · · bd′+i−i′ ,
and so x is ultimately periodic with period ai · · · ai′−1.

Corollary 3.3.3. Let x and S be defined as in Theorem 3.3.1. If x is uniformly recurrent, then
it is periodic.

Proof. Let us suppose that x is aperiodic (a uniformly recurrent word that is ultimately periodic
is periodic). By Lemma 3.3.2, either every factor is close to being left special or every factor is
close to being right special. Without loss of generality we can assume that we are in the second
case. The idea of the proof is the following: using Lemma 3.3.2, we can produce a factor u of
x such that if there is an overlap uw = vu, then |v| > k + d. Then using the same lemma we
can construct an arbitrary long factor of x that does not contain u, contradicting the uniform
recurrence of x.

Let us begin with considering a recurrent factor u of x. Applying the branching process
from Lemma 3.3.2, we can extend u in a way that if u overlaps itself with uw = vu for some
factors v, w, then |v| > 1: at the first branching point ap, where u1 · · ·una1 · · · ap is a recurrent
extension of u, it is sufficient to take ap+1 6= ap (or a1 6= un if u is right special).

Applying the same process to u(1) = u1 · · ·una1 · · · ap+1 we obtain the factor

u
(1)
1 · · ·u

(1)
n+p+1a

′
1 · · · a′p′ .

Now we chose a′p′+1 6= a′p′−1 (or a′p′+1 6= u
(1)
n+p+p′−1 if p′ ≤ 2) and we set u(2) =

u
(1)
1 · · ·u

(1)
n+p+1a

′
1 · · · a′p′+1. Thus, if there exist factors v, w such that u(2)w = vu(2), then
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|v| > 2. We apply recursively the same reasoning k + d times and get a recurrent factor
u(k+d) that satisfies (u(k+d)w = vu(k+d)) ⇒ (|v| > k + d). For simplicity of notation, we will
denote this factor by u in the rest of the proof. Let us note, that to implement this construction,
we only need the fact that every recurrent factor admits a right special extension, and so this
can be done in any aperiodic word.

Since x is uniformly recurrent, there exists n ∈ N such that every factor of x of length n
contains u. Let us construct a factor contradicting this. We start with u1 · · ·u|u|−(k+d) and go
to the next branching point given by Lemma 3.3.2, that is u1 · · ·u|u|−(k+d)+p. At this point we
choose a letter that differs from u|u|−(k+d)+p+1. This ensures that u does not occur before the
next branching point (see Figure 3.6).

v1v2 v3 · · · · · · · ·vj
b b2 b3 · · · · · · · · · · · · bp′

a a2a3 · · · · ap
p′ − p ≤ k + d

v

u
p′ − p

p′ − p

Figure 3.6: u = v would produce an overlap of u.

This reasoning can be applied to construct our factor recursively: at each branching point,
knowing that u does not appear before we can choose a branch such that u will not occur after
adding of any k + d letters to the right. Indeed, if it was not the case it would mean u appears
in both branches shown in Figure 3.6. This allows us to construct, in at most n steps, a factor
longer than n that does not contain u.

The following lemma states that every periodic word in the subshift of x has a short period.

Lemma 3.3.4. Let u be a primitive word in Fact(x) such that, for every n ∈ N, un ∈ Fact(x).
Then |u| < k.

Proof. Let p < |u| and n > 2 be such that p + n|u| ∈ S. Let us denote the i-th rotation
of u = u1 · · ·u|u| by ri(u) = ui · · ·u|u|u1 · · ·ui−1. Since u is primitive, so is ri(u), hence
each (ri(u))nui · · ·ui+p is closed with frontier (ri(u))n−1ui · · ·ui+p (otherwise if the frontier
occurred inside, then ri(u) would be an internal factor of (ri(u))2, contradicting primitivity of
ri(u)).

All the rotations ri(u) are pairwise distinct, and so are all closed factors (ri(u))nui · · ·ui+p,
i = 1, 2, 3, . . . , |u|. By Theorem 3.3.1, Clx(n) < k and thus |u| < k.

Proof of Theorem 3.3.1. Let x and S be as in the statement of the theorem. Let us suppose
that x is aperiodic and consider the set Px = {u ∈ Fact(x) | ∀n ∈ N, un ∈ Fact(x)}. By
Lemma 3.3.4, Px is finite. According to Lemma 3.3.2, there exists N ∈ N such that we can
produce an infinite word y in the subshift Ω(x) that does not contain uN as a factor for any
u ∈ Px. Moreover, since y ∈ Ω(x), it verifies Lemmas 3.3.2 and 3.3.4, and thus Py = ∅. Let z
be any uniformly recurrent word in Ω(y). By Corollary 3.3.3 the word z is periodic and can be
represented as z = uω for some finite word u. Then u ∈ Py, what contradicts Py = ∅. Hence x
is ultimately periodic.
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3.4 Concluding remarks and open questions
Combining Theorem 3.2.4, Theorem 3.3.1 and the fact that Opx(n)+Clx(n) = px(n) for every
n ∈ N, we obtain the following result:

Theorem 3.4.1. Let x be an infinite word over a finite alphabet A. The following are equivalent:

1. x is aperiodic;

2. ∀S ⊆ N syndetic, lim sup
n∈S

Clx(n) = +∞;

3. lim inf
n→+∞

Opx(n) = +∞.

Since the factor complexity of an aperiodic word is a strictly increasing function, lim inf px(n) =
+∞ is equivalent to px being unbounded. However, it is not always the case for open and
closed complexity functions (ex. see [PZ19a]). Even though the result we obtained in terms
of open complexity is as strong as Morse-Hedlund theorem since it is expressed in terms of
lim inf Opx(n), the characterisation in terms of closed complexity cannot be improved to the
same setting. In fact, it is already known that some aperiodic words can have lim inf Clx(n) <
+∞. For example, L. Schaeffer and J. Shallit showed in [SS16] that lim inf Clx(n) = 0 when
x is the paperfolding word. It is even possible for pure morphic words to have finite limit infe-
rior for the closed complexity: For example, for the celebrated Cantor word c, also sometimes
referred to as the Sierpinski word, one verifies that lim inf Clc(n) = 1, and this value is attained
for n = 7 · 3k + 1, for any k. The proof of this result can be easily obtained with case by case
study, and thus is omitted; however it leads to the following question:

Question 3.4.2. Is it possible to find, for any k ∈ N, an aperiodic pure morphic word x such
that lim inf Clx(n) = k?

Although it is not possible to have the equivalence lim inf Clx(n) bounded⇐⇒ x ultimately
periodic, it might still be possible to obtain something stronger than our theorem: we already
improved the first version of the theorem to the setting of syndetic sets, but it may be possible
to get the same result in the case of piecewise syndetic sets. A set S is piecewise syndetic if it
is the intersection of a syndetic set and a thick set, hence if there are arbitrarily long intervals
where it has bounded gaps.

Question 3.4.3. Is it true that, for any aperiodic word x and any piecewise syndetic set S,
lim sup
n∈S

Clx(n) = +∞?
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Chapter 4

Antipowers in infinite words
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4.1 Introduction

4.1.1 Unavoidable regularities
In combinatorics, an unavoidable regularity is a property P such that every sufficiently large
structure satisfies P . In term of combinatorics on words, the definition would be the following:

Definition 4.1.1. An unavoidable regularity is a property P such that it is not possible to
construct arbitrarily long words not satisfying P .

The study of unavoidable regularities, known as Ramsey theory, has been an important
research field of combinatorics and theoretical computer science for the past century. The aim
of this theory was mainly to study the regular pattern of all-equal elements that arise in any large
enough structure. Amongst other important results, the works of F. Ramsey [Ram30] in 1930
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have multiple applications in different fields of mathematics. One older and very important
result of Ramsey theory is the following, known as Van der Waerden’s theorem [van27]:

Theorem 4.1.2. For every finite colouring c of N, there exist monochromatic arithmetic pro-
gressions of any length, id est ∀I ⊂ N, |I| < +∞ and c : N → I, for every N ∈ N, the
following is verified:

∃(d, p) ∈ N2, c(p) = c(p+ d) = · · · = c(p+Nd).

In terms of combinatorics of words, this means that any infinite word over a finite alphabet
contains arithmetic progressions of any length of constant letter: let A be a finite alphabet, then
any infinite word w over A satisfies the following property:

∀N ∈ N,∃(d, p) ∈ N2, wp = wp+d = · · · = wp+Nd.

Van der Waerden’s theorem for infinite words is a corollary from Van der Waerden’s theo-
rem for finite words [van27]:

Theorem 4.1.3. Let n and k be natural integers. Then, there exists an integerW (r, k) such that,
for every c : N → {1, r} colouring of the integers with r colors, the set {1, 2, · · · ,W (r, k)}
contains a monochromatic arithmetic progression of length k.

Again, this result can be expressed in terms of combinatorics on words: let A be a finite
alphabet with |A| = r, then for every k ∈ N, there exists an integer W (r, k) such that every
word u on A of length at least W (r, k) satisfies the following property:

There exists two integers p and d such that up = up+d = · · · = up+kd.

In fact, in the field of combinatorics on words, the question of unavoidable regularities has
been extensively studied. It is even at the foundation of this branch of mathematics, since the
founding articles from A. Thue [Thu06, Thu12] dealt with the avoidability of powers in infinite
words, already introduced in Introduction. I recall this definition here:

Definition 4.1.4. A word of length kn, for k and n integers, is a (k, n)-power, or power of order
k and length of the blocks n, if it is concatenation of k identical blocks of length n. Namely,
u = u1 · · ·ukn is a (k, n)-power if u1 · · ·un = upn+1 · · ·u(p+1)n for any p. Most of the time, we
don’t precise n, and only talk about k-powers.

Example 4.1.5. ababab is a (3, 2)-power, or more simply put, a cube. abbabb is a square, and
aba is not a power (and does not contain any square).

Remark 16. For k ≥ 3, any (k, n)-power contains a k − 1-power as strict factor, since every
factor of length (k − 1)n is a k − 1-power.

Many questions pertaining to powers have been studied in words since the founding work
of A. Thue. His original question was the following: is it possible, on an alphabet A with n
letters, to construct an infinite word avoiding squares?

On a two-letter alphabet, the answer to this question is no, since every word of length
greater than 3 must contain a square. But A. Thue showed that it is possible to get something
close to that: he proved that the celebrated Prouhet-Thue-Morse word is overlap-free, where
an overlap is a word of the form xuxux with x a letter and u a word.

Recall that a morphism σ over A is a map σ : A∗ → B∗ where B is another alphabet such
that σ(ww′) = σ(w)σ(w′). A substitution σ over A is a morphism where A = B.
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Theorem 4.1.6. The Prouhet-Thue-Morse word

t = 0110100110010110100101100110100110010110011010 · · ·

which is the fixed point of the morphism µ(0) = 01, µ(1) = 10 starting with 0, is overlap-free.

The demonstration of this theorem uses the fact that, given a long enough factor u of t, there
is only one possible slicing of u coinciding with the images of letters by µ in t = µ∞(0). That
property is called recognizability, it will be used latter in this chapter.

Using this result, A. Thue was able to construct a word on a three-letter alphabet that
avoided squares:

Theorem 4.1.7 (Thue, 1906). The word

w = 21020121012021020120210121 · · ·

obtained as the fixed point of the substitution 0 7→ 1, 1 7→ 20, 2 7→ 210, does not contain any
square, that is, a pattern of the form xx.

Proof. The word w is also given by the number of 1s between two consecutive 0s in t. To
see this, we need to compute the images of 0110, 010 and 00 under µ. We have µ(0110) =
01101001 so the image of 2 would be 210, while µ(010) = 011001 so the image of 1 is 20, and
µ(00) = 0101, so the image of 0 would be 1.

Now let us prove that w does not contain squares: suppose that uu is a factor of w with
u = u1 · · ·un a non-empty word. Then 01u101u20 · · · 1un01u101u20 · · · 1un0 is a factor of t, but
it is also an overlap and we know t is overlap-free. So w is square free.

Since Thue’s results, the intersection between Ramsey theory and combinatorics on words
has been studied intensively [WZ18a, WZ18b, PZ15, BPZ15, dLPZ14, dLPZ13, BHPZ13,
BZ13, dZ16, dLZ16].

4.1.2 Antipowers
More recently, a branch of Ramsey theory has developed, based on the work of Erdós, Si-
monovits and Sós, often called anti-Ramsey theory, studying the avoidability of pattern of all-
distinct elements. One such example is the study of rainbows, i.e. subgraphs of an edge-colored
graph whose edges have all different colors - see [FMO10] for a survey. An anti-Ramsey notion
has been introduced recently in combinatorics on words by Fici, Restivo, Silva and Zamboni
[FRSZ18], the notion of antipowers.

Definition 4.1.8. A word of length kn, for k and n integers, is a (k, n)-antipower, or antipower
of order k and length n, if it is concatenation of k pairwise distinct blocks of length n. Namely,
u = u1 · · ·ukn is a (k, n)-antipower if uin+1 · · ·u(i+1)n 6= ujn+1 · · ·u(j+1)n for any i and j.
Again, we will often write k-antipower, without giving n.

This definition is the analogous of the definition of powers when one is looking for diversity
instead of all-equal objects. Since powers have been extensively studied, it seems really natural
to introduce this definition.

Example 4.1.9. abba is a (2, 2)-antipower, but not a (4, 1)-antipower.
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Remark 17. There are a lot of antipowers: let us, for example, consider the words of length 4
on a binary alphabet. Up to a permutation of letters, those are the following eight words:

aaaa, aaab, aaba, aabb, abaa, abab, abba, abbb

and of those six are 2-antipowers:

aaab, aaba, aabb, abaa, abba, abbb.

It then seems that antipowers would be pretty hard to avoid, but it is still possible to con-
struct infinite words that avoid them: take, for example,

aaaaa · · · = aω.

This clearly avoids every possible antipower.
However, in their original article [FRSZ18], Fici et al. were able to prove the following

anti-Ramsey result:

Theorem 4.1.10. Every infinite word contains powers of any order or antipowers of any order.

Remark 18. It is not surprising that if we want to be sure that a word contain antipowers of
any order we suppose it does not contain long powers; as our example showed, long powers are
a place where there are no antipowers.

Like often in Ramsey theory, the result Fici et al. proved admits a stronger but less easy-
to-state formulation. The stronger version of their theorem provides a bound N(l, k), given an
alphabet size and two integers l and k greater than 1, such that every word of length at least
N(l, k) contains a l-power or a k-antipower:

Theorem 4.1.11 (Theorem 14 in [FRSZ18]). For all integers l > 1 and k > 1 there exists N =
N(l, k) such that every word of length N contains a l-power or a k-antipower. Furthermore,
for k > 2, one has k2 − 1 ≤ N(k, k) ≤ k3

(
k
2

)
.

Proof. The proof we will give here is very close from the one in [FRSZ18], but for simplicity
we don’t give the best possible bound. What we will be interested in is the difficulty to extend
this proof to other settings, which will be possible to discuss with this formulation.

Let w be an infinite word avoiding k-antipowers. Consider its prefix uM,1uM,2 · · ·uM,k

where |uM,i| = M with M a (big) integer we will determine later. Since w does not contain
k-antipowers, we can find i and j such that uM,i = uM,j .

Now consider the prefix ofw of length (M+1)k: uM+1,1uM+1,2 · · ·uM+1,k where |uM+1,i| =
M + 1. Again, w avoids k-antipowers, hence we can find i′, j′ such that uM+1,i′ = uM+1,j′ .
There are less than k2 − 1 couple (i, j) with 1 ≤ i < j ≤ k, so iterating this process, in less
than k2 step, we will have a couple i, j such that uM+p,i = uM+p,j and uM+q,i = uM+q,j .

If M is taken to be large enough with respect to k, this will create a long factor overlapping
itself, and hence containing a power (this type of argument has already been used in our chapter
on open and closed complexity). See the graph below for a graphic explanation:
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uM+p,i

u

uM+p,j

u

uM+q,i

u
uM+q,j

u

(q − p)i (q − p)i

(q − p)(j − i)

Figure 4.1: w contains a large power.

The difference between the starting index of uM+p,i and uM+q,i is

(M + q)i− (M + p)i = (q − p)i

and the difference between the starting point of uM+p,j and uM+q,j is

(M + q)j − (M + p)j = (q − p)j.

Hence, labeling u the prefix of uM+q,i which is a suffix of uM+p,i, we have that u overlaps
itself with difference (q − p)(j − i), and that leads to the construction of a long power: |u| =
M + p − (q − p)(j − i) ≥ M − kk2 = M − k3 so for M > Rk3 + k3 we have that u starts
with a R-power at least.

These results attracted a lot of interest ([Gae18, Bur18, Ria19, BFP18, Def17, FPS19,
Pos19, Gar19, FRS20, KRR+19, Nar17]) that studied mainly four different type of questions.
Like often in Ramsey theory, one of the subject of interest was to improve the bounds. The first
contribution I will present dealt about this. Another topic investigated was the possible gener-
alizations of antipowers to more general settings. The main subject of this thesis was initially
related to this question. Finally, some articles studied antipowers in some well known words,
and some tried to find efficient algorithms to compute them.

4.2 Improving the bounds for uniform morphic words
This section contains new results which are the subject to an article on arXiv: [Pos19].

We will first start with results pending to the bound N(k, l) of Theorem 4.1.11. There has
been a lot of results on this field since Fici et al. published their article (see [FRS20, Nar17,
Gae18, Gar19, Pos19, Bur18, Def17]).

In one of those contributions, A. Berger and C. Defant [BD20] studied the block length of
antipowers arising in morphic words. The main result in this part answers a question they left
open.

4.2.1 Introduction
We begin by recalling some basic notions needed to describe the problem.

Definition 4.2.1. A uniform morphism σ is a morphism of constant length over letters: ∀ a, b ∈
A, |σ(a)| = |σ(b)|. If |σ(a)| = m then we say σ is a m-uniform morphism.
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Remark 19. In most articles pertaining to recognizability the term substitution is favored to talk
about morphisms from A to A. In [BD20] the term morphism is used instead of substitution.
We indifferently use both.

Definition 4.2.2. Let A = {a1, · · · , ar}. A morphism σ over A is said to be primitive if:

∃n, ∀i, ∀j, aj occurs in σn(ai).

For a morphism σ, x ∈ AN is called a fixed point if x = σ(x). Recall from the previous
chapter that the shift orbit closure Ω(x) is the closure under the natural topology on AN of the
orbit of x under the shift operator τ : a1a2 · · · → a2a3 · · · . If σ is primitive, it is easy to see
that Ω(x) = Ω(y) for any x and y fixed points of σ. Hence we can define Ω(σ) = Ω(x) in this
case.

Remark 20. For a word x, having Ω(x) = Ω(y) for every y ∈ Ω(x) is equivalent to

Up to changing the definitions slightly, Theorem 5 in [BD20] can be formulated the fol-
lowing way:

Theorem 4.2.3. If w is aperiodic, fixed point of a primitive binary uniform morphism, then
there is a constant C = C(w) such that ∀n, k ∈ N, w contains a k-antipower with blocks of
length at most Ck beginning at its nth position.

This is a very big improvement on the bound given by Fici et al., which is k3
(
k
2

)
.

Berger and Defant asked to what extent are these results generalisable to a broader class
of morphic words, and in particular if it was still true without the binary condition. Using the
notion of recognisability first introduced by B. Mossé in [Mos96], we answer that question by
showing that their result extends to fixed points of uniform primitive morphisms on arbitrary
finite alphabets:

Theorem 4.2.4. If σ is a primitive m-uniform morphism over a finite alphabet A, with an
aperiodic fixed point x, there exists a constant C = C(σ) such that: ∀y ∈ Ω(σ), ∀n, k ∈ N, y
contains a k-antipower with block length at most Ck starting at position n.

This result was discovered independently by S. Garg [Gar19]. The proof he used is totally
different.

4.2.2 Recognizability
Definition 4.2.5. A m-uniform primitive morphism σ is said to be recognizable if ∃N ∈ N
such that ∀y ∈ Ω(σ),∀w ∈ A+, σ(y)[α,α+|w|−1] = σ(y)[β,β+|w|−1] = w with |w| ≥ N and
α ≡ 0 (mod m) then β ≡ 0 (mod m). N is refered to as recognizability constant of σ in this
chapter.

This notion is fundamental in the theory of primitive substitutions. In fact, as I already
mentioned, it was used by Axel Thue on his proof of the overlap-freeness of the Prouhet-Thue-
Morse word t. Indeed, take any factor of length 3 of t. It will contain 0 as a factor. Hence, any
factor of length at least 18 = 4 · 3 + 3 + 3 contain the image under µ2 of a factor of length 3, so
it contains µ2(0) = 0110. But, whenever you see 11, there is only one possibility: the first 1 is
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the end of the image under µ of a 0 and the second 1 is the image under µ of a 1. This means,
as soon as the factor you are considering is of length at least 18, you can be sure that if you are
considering two occurences of it, their distance will be a multiple of 2 since the slicing of their
11 must be the same.

It is always easy, given a substitution, to substitute, i.e. to apply it to any word; but it is far
less obvious to desubstitute, which is, given a word u and a morphism σ, to find the shortest
v such that u is a factor of σ(v). In fact, it might even be possible that v is not unique. The
substitution theory provides us with cases where we can tell for sure that it is possible to find
a unique v. The notion of recognizability introduced on Definition 4.2.5 can be extended to
non-uniform morphisms, with this idea of being able to desubstitute for factors long enough.

It is important to note that not every morphism is recognizable; for example, the morphism
φ on {a, b} defined by φ(a) = aba and φ(b) = ba is not recognizable.

Remark 21. Let σ be am-uniform primitive recognizable morphism andN given by Definition
4.2.5. Then ∀y ∈ Ω(σ),∀w ∈ A+, σ(y)[α,α+|w|−1] = σ(y)[β,β+|w|−1] = w with |w| ≥ N + m
gives α ≡ β (mod m).

Proof. Denote h = β − α and w′ = σ(y)[md α
m
e,α+|w|−1]. Then |w′| ≥ N and

w′ = σ(y)[h+md α
m
e,h+α+|w|−1].

By definition, this implies h ≡ 0 (mod m) hence α ≡ β (mod m).

Remark 22. If r = |A| = 2, an aperiodic wordw that is a fixed point of am-uniform morphism
σ is uniformly recurrent if and only if σ is primitive.

Proof. Without loss of generality, let us fix A = {0, 1} with w = σ∞(0).
Let us first suppose σ is primitive. It is easy to see that the n in Definition 4.2.2 is 2 or 1.

Let then x be a factor of w. There exists k such that x ∈ Fact(σk(0)). Every factor of w of
length at least 2mk+2 contains, for some a ∈ A, σk+2(a), so it contains σk(0) hence x, and so
w is uniformly recurrent.

Let us now suppose σ is not primitive. Since σ is m-uniform, w has to be eventually
periodic. Indeed, if σ(0) = 0m, then w = 0∞. If not and σ(1) = 1m, then w contains arbitrary
long runs of consecutive 1 (1∞ ∈ Ω(w)), hence arbitrary long factors do not contain the factor
0. The only option left is σ(0) = 1m and σ(1) = 0m. But this leads to no fixed point (σ(0)
must start with a 0).

We will now give some well-known results on substitutions and recognizability that we will
need later:

Theorem 4.2.6 (Corollary 3.2 in [Mos96]). Let σ be a primitive m-uniform substitution and
let x be aperiodic such that σ(x) = x. Then σ is recognizable.

We will also use the following proposition from [HZ99] (actually what is proved is some-
what stronger, but we only need this formulation):

Proposition 4.2.7. If σ is a m-uniform morphism, and x is aperiodic with x = σ(x) and
x0 = a, then ∃N1 ∈ N such that l ≥ N1 implies that each occurrence σl(a) in x is the image
under σ of an occurrence of σl−1(a) in x.
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4.2.3 Main Part
The goal of this part is to prove Therorem 4.2.4.

We will first give a lemma that is easily deduced from Proposition 4.2.7:

Lemma 4.2.8. Let σ be a m-uniform morphism, and x aperiodic with x = σ(x) and x0 = a.
LetN1 ∈ N be given by Proposition 4.2.7. Then for every r, l ∈ N, each occurrence σl+N1+r(a)
in x is the image under σl of an occurrence of σN1+r(a) in x.

Proof. By induction on l. Base case is just the result of Proposition 4.2.7. Let l ∈ N be
fixed. Suppose the result holds for l and let x[α,α+ml+1+N1+r−1] = σl+1+N1+r(a). Then by
the recurrence hypothesis, α = mlα′ and x[α′,α′+m1+N1+r−1] = σ1+N1+r(a). But now we can
apply Proposition 4.2.7: α′ = mα′′ and x[α′′,α′′+mN1+r−1] = σN1+r(a). So x[α,α+ml+1+N1+r−1] =

σl+1+N1+r(a) is the image under σl+1 of an occurrence of σN1+r(a) in x.

We can now prove the following lemma:

Lemma 4.2.9. If σ is a primitive m-uniform morphism, and x is aperiodic with x = σ(x),
∃N ′ ∈ N such that ∀i ∈ N, σi is recognizable with a recognizability constant less or equal to
miN ′.

Proof. Let then σ be an aperiodic m-uniform morphism, and x = σ(x) with x0 = a. Let N1

be given by Proposition 4.2.7, and let y ∈ Ω(σ).
By Theorem 4.2.6, σ is recognizable. Let N be a recognizability constant of σ and let

r ∈ N such that mN1+r ≥ N + m. The prefix of x of length mN1+r is p = σN1+r(a). Since σ
is primitive and uniformly recurrent, ∃M ∈ N such that every factor of x, hence of y, of length
at least M contains p. I then claim that N ′ = 2M has the required property.

Indeed, let w with |w| ≥ N ′mi be fixed. We show the following:

σi(y)[α,α+|w|−1] = σi(y)[β,β+|w|−1] = w ⇒ β ≡ α (mod mi) (1).

Let α, β be as in (1) and h = β − α. So:

σi(y)[α,α+|w|−1] = σi(y)[α+h,α+h+|w|−1] = w.

By y ∈ Ω(σ) we get an α′ with

x[α′,α′+|w|−1] = x[α′+h,α′+h+|w|−1] = w. (2)

Since |w| ≥ N ′mi = 2Mmi, there exists γ ≥ 0, w′ ∈ Fact(w) with
w′ = x[γmi,(γ+M)mi−1] = x[γmi+h,(γ+M)mi+h−1]. Let z = x[γ,γ+M−1] so w′ = σi(z).
Since |z| = M, ∃γ′ with γ ≤ γ′ < γ′ +mN1+r − 1 ≤ γ +M − 1 such that:

x[γ′,γ′+mN1+r−1] = σN1+r(a).

Applying σi to x gives x[γ′mi,(γ′+mN1+r)mi−1] = σN1+r+i(a), and by (2),

x[γ′mi,(γ′+mN1+r)mi−1] = x[γ′mi+h,(γ′+mN1+r)mi+h−1] = σN1+r+i(a).

Using Lemma 4.2.8, this implies h ≡ 0 (mod mi): x[γ′mi+h,(γ′+mN1+r)mi+h−1] is the σi image
of x[δ,δ+mN1+r] = σN1+r(a), hence

γ′mi + h = δmi and so h ≡ 0 (mod mi).

44



Proof of theorem 4.2.4. Let σ be aperiodic, primitive andm-uniform and letC(σ) = (N ′+1)m
where N ′ is the constant given by Lemma 4.2.9. Let then k, n ∈ N and y ∈ Ω(σ) be fixed.

Let i ∈ N be such that mi−1 ≤ k < mi. Then consider the k consecutive blocks of length
N ′mi+1 starting at position n: the block number s is then y[n+s(N ′mi+1),n+(s+1)(N ′mi+1)−1]. We
have kC(σ) ≥ (N ′ + 1)mi ≥ N ′mi + 1. Moreover, using Lemma 4.2.9, we get that two of
these blocks, say blocks s and t, are equal implies the difference between their starting indices
is 0 modulo mi:

y[n+s(N ′mi+1),n+(s+1)(N ′mi+1)−1] = y[n+t(N ′mi+1),n+(t+1)(N ′mi+1)−1] (4.1)

⇒ n+ s(N ′mi + 1) ≡ n+ t(N ′mi + 1) (mod mi) (4.2)

⇒ s ≡ t (mod mi). (4.3)

But since k is smaller than mi this implies s = t, which completes the proof.

4.2.4 Conclusion
Using the theory of recognizability, we have been able to improve Berger and Defant’s result to
the class of aperiodic fixed points of primitive and m-uniform morphisms. The same result was
obtained in [Gar19] without the use of the known theorems on recognizability. The two follow-

ing examples show that the conditions aperiodic and primitive are tight. Let σ :

{
0→ 01
1→ 01

.

Since (01)∞, which is not aperiodic, does only contain two factors of each length, it cannot

contain k-antipowers for k greater than 2. Let then σ :

{
0→ 010
1→ 111

. This substitution is not

primitive, and give rise to the celebrated Cantor word c = σ∞(0). Since c contains arbitrary
long runs of consecutive 1, it is clear that Theorem 4.2.4 doesn’t apply here.

On the other hand, this result might be extendable to the class of recognizable substitutions,
alas, I was not successful in finding an equivalent to Lemma 4.2.9; this seems to be the key to
extend this result.

One non-trivial part of this result is that we are sure to find antipowers of any order at every
position in w, aperiodic fixed point of a primitive uniform morphism. This result is not trivial,
since some words containing antipowers of order k don’t have prefixes that are k-antipowers:

Theorem 4.2.10. Let k be a positive integer, k > 4. On every alphabet with at least two letters,
there exist (recurrent) words w containing k-antipowers such that, for every k, w doesn’t start
with a k-antipower of any length.

Proof. On k letters, it is easy to see that this is true even for k > 2: take the word aabc · · · kaω.
This word contains a k-antipower, abc · · · k but never starts with a k-antipower as, calling i the
length of the blocks, any k-tuple starting at the beginning would contain at least two blocks ai.
This result can be extended to two-letter alphabet if k > 3: consider the word

0k
2

0k0k−110k−212 · · · 01k−11k0ω = 0k
2

(
k∏
i=0

0k−i1i)0ω.

It contains a k-antipower of block of length k but no k-antipower starting at the beginning of
the word.
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In fact, it is possible to improve this result further for k > 4, by taking a word that is
recurrent: consider the sequence of words defined by u0 = u and for each n, un+1 = un0kn+1un
and take their limit

w = u0k1u0k2u0k1u0k3u0k1u0k2u0k3 · · ·

where u = 0k
2
0k0k−110k−212 · · · 01k−11k and ki is greater than k times what is preceding in

the word.
This word is clearly recurrent since after a long enough run of 0s we put a copy of what

was before. Moreover, it contains a k-antipower since u contains one. But it contains no k-
antipower starting at the beginning of the word. Indeed, suppose v1 · · · vk is such an antipower.
Since u starts with ok2 we have |v1| > k2

2
. Let j be minimal such that v1 ends before the start of

the first run of 0 of length kj . If v1 ends after the run of 0 of length kj−1, then v3 = v4 = 0|v1|.
If v2 6= 0|v1| then v4 = v5 = 0|v1|. Finally, if v2 = 0|v1| and v3 6= 0|v1| we have v5 = 0|v1| and in
no case this is an antipower.

To make it clearer, this is what the situation looks like, with a = u0k1u · · · 0kj−2u:

ω = a0kj−1a0kj · · ·

The first case corresponds to v1 = a0kj−1∗, the second to v1 = a0 · · · 0 and v2 = 0 · · · 0∗
and v3 = ∗−1a0 · · · 0, the last case to v1 = a0 · · · 0 and v2 = 0 · · · 0 and v3 = 0 · · · 0∗ and
v4 = ∗−1a0 · · · 0.

4.3 Abelian powers and antipowers
In this part I will present the notion of abelian-antipowers. This is a new direction which merits
to be explored.

4.3.1 Abelian powers in infinite words
Many of the classical definitions in combinatorics on words (e.g., period, power, factor com-
plexity, etc.) have a counterpart in the abelian setting, though they may not enjoy the same prop-
erties. One important definition in abelian combinatorics on words is that of Parikh vectors.

Definition 4.3.1. The Parikh vector P (w) of a word w over a finite ordered alphabet
A = {a1, a2, . . . , a|A|} is the vector whose i-th component is equal to the number of occurrences
of the letter ai in w, 1 ≤ i ≤ |A|.

Example 4.3.2. The Parikh vector of w = abbca over A = {a, b, c} is P (w) = (2, 2, 1).

This notion is at the basis of the abelian combinatorics on words, where two words are
considered equivalent if and only if they have the same Parikh vector:

Definition 4.3.3. For u ad v finite words, we say u is abelian equivalent to v, and write
u ∼ab v, if P (u) = P (v).

The first question asked (and answered) in abelian combinatorics on words were about the
avoidability of abelian powers in long or infinite words (see, for example, [Dek79, Ker92]).
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Definition 4.3.4. A word w = u1u2 · · ·un where for all i, |u1| = |ui| is said to be an abelian
n-power if for all i we have ui ∼ab u1.

Example 4.3.5. abba = ab · ba is an abelian 2-power.

Remark 23. It is easy to see that a k-power is an abelian k-power; however as the previous
example show, the converse is not true. In fact, there are significantly more abelian powers
than powers, and the question of avoidability of abelian powers remained open for a long time
before Evdokimov, Pleasants, Justin, Dekking and Keranen solved it [Evd68, Ple70, Jus72,
Dek79, Ker92].

The classical notion of factor complexity (the function that counts the number of distinct
factors of length n of a word, for every n) can be generalized by considering the abelian factor
complexity abw : N → N (or abelian complexity for short), that is the function that counts the
number of distinct Parikh vectors of factors of length n, for every n.

Remark 24. Let w be an infinite word, u and v be factors of w with |u| = |v| = n and a a
letter. Then, with |u|a the number of a in u:

abw(n) ≥ ||u|a − |v|a|.

Proof. This comes from the fact that when you shift a factor of size n in w this factor’s number
of a will move by at most 1. If we suppose, without loss of generality, that u appears before v
in w, we get the result by shifting from u to v, with every different number of as leading to a
new Parikh vector.

Morse and Hedlund [MH38] proved, as we discussed largely in the previous chapter, that
an infinite word is aperiodic if and only if its factor complexity is unbounded. This charac-
terization does not hold in the case of the abelian complexity, as there exist aperiodic words
with bounded abelian complexity. For example, the Prouhet-Thue-Morse word has abelian
complexity bounded by 3, yet it is aperiodic.

Still, knowing the abelian complexity of a word gives informations on the word: using Van
der Waerden’s theorem, Richomme et al. [RSZ11] proved that if an infinite word has bounded
abelian complexity, then it contains abelian powers of every order:

Theorem 4.3.6. [RSZ11] Let A be a finite alphabet {a0, · · · , an}, let M be an integer and
let w be a word with abelian complexity lower than M . Then, for every positive integer k, w
contains a k abelian power.

Proof. Consider the colouring c0 : A→ {0, 1} defined by

c0 : ai →

{
1 if i = 0

0 otherwise.
.

Consider the finite colouring of the integers s0 : N→ [[0,M ]] defined by

s0(n) ≡
n∑
j=1

c0(wj) (mod M + 1).
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By Van der Waerden theorem, for every integer C0(k), there exists an arithmetic progression
{wp, wp+d, · · · , wp+rd} of length at least C0(k) which is monochromatic. We then have, for
every factor u = wi+1 · · ·wj of w,

|u|a0 ≡ s(j)− s(i) (mod M + 1).

In particular, labelling ui = wp+(d−1)i+1 · · ·wp+di, we have that

∀i ∈ [[1, r]] |ui| = |u1| and |ui|a0 ≡ |u1|a0 (mod M + 1).

But since the abelian complexity is at most M this gives, thanks to Remark 24,

∀i ∈ [[1, r]] |ui|a0 = |u1|a0 .

Let us take C0(k) = W (C1(k), 2) for an integer C1(k) that we will define.
Now we do the same with a new colouring c1 : A→ {0, 1} defined by

c1 : ai →

{
1 if i = 1

0 otherwise.
.

Then, as previously, let s1 be defined with respect to c1 as s0 for c0 (hence it is now counting
the number of a1):

s1(n) ≡
n∑
j=1

c1(wj) (mod M + 1).

By Van den Waerden, we can find a monochromatic arithmetic progression of length C1(k) in
{p, p + d, · · · , p + rd}. Label this progression {p′, p′ + d′, · · · , p′ + C1(k)d′}. For the same
reasons we get C1(k)− 1 consecutive factors which now have same number of a1 and a0:

|wp′+id′+1 · · ·wp′+(i+1)d′|a1 = s1(p
′ + (i+ 1)d′)− s1(p′ + id′ + 1)

= s1(p
′ + d′)− s1(p′ + 1)

and

|wp′+id′+1 · · ·wp′+(i+1)d′ |a0 =
d′

d
|u1|a0 .

Taking C1(k) = W (C2(k), 2) and iterating this, we finally get, with Cn(k) = k + 1, k consec-
utive factors of w with the same number of each letter, hence the same Parikh vector. This is
an abelian k-power.

However, this is not a characterization of words with bounded abelian complexity. Indeed,
Štěpán Holub [Hol13] proved that all paperfolding words contain abelian powers of every order,
and paperfolding words have unbounded abelian complexity (a property that by the way follows
from the main result of section 4.3.4). The class of paperfolding words therefore constitutes an
interesting example, as they are uniformly recurrent (every factor appears infinitely often and
with bounded gaps) aperiodic words with linear factor complexity.
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4.3.2 Abelian antipowers
Like for powers, it seems natural to extend the notion of an antipower to the abelian setting.

Definition 4.3.7. An abelian antipower of order k, or simply an abelian k-antipower, is a con-
catenation of k consecutive words of the same length having pairwise distinct Parikh vectors.

Example 4.3.8. The word

aabaaabbbabb = aab · aaa · bbb · abb

is an abelian 4–antipower, while the word

abba = ab · ba

is a 2-antipower but not an abelian 2-antipower.

Notice that an abelian k-antipower is a k-antipower but, as the previous example show,
the converse does not necessarily hold (which is dual to the fact that a k–power is an abelian
k–power but the converse does not necessarily hold).

So the situation is the following: for any integer k, there are less abelian k-antipowers, but
more abelian k-powers.

It is possible then that an analogue of Theorem 4.1.11 may still hold in the case of abelian
antipowers. Unfortunately, the proof of Theorem 4.1.11 does not generalize to the abelian
setting: recall that we used the fact that a factor u was overlapping itself, which implied that
it contained a long power. In the case of the abelian setting, we would only have uM+p,i ∼ab
uM+p,j , and that doesn’t allow us to construct the previous factor u: in fact, it is not even
sure that the suffixes of uM+p,i and uM+p,j would have the same Parikh vectors. Anyway, the
examples of infinite words I considered all seemed to satisfy an abelian version of Theorem
4.1.11, so we tried to answer the following question:

Problem 1. Does every infinite word contain abelian powers of every order or abelian antipow-
ers of every order?

Clearly, if a word has bounded abelian complexity, then it cannot contain abelian antipow-
ers of every order. However, a word can avoid large abelian antipowers even if its abelian
complexity is unbounded. Indeed, in [FRSZ18], an example is shown of an aperiodic recur-
rent word avoiding 6-antipowers (and therefore avoiding abelian 6-antipowers), and from the
construction it can easily be verified that the abelian complexity of this word is unbounded.

A similar situation can be illustrated with the well-known Sierpiński word.

4.3.3 Sierpiński Word
This result was presented in a published article written jointly with Gabriele Fici and Manuel
Silva [FPS19].
Recall that the Sierpiński word (also known as Cantor word) s is the fixed point starting with a
of the substitution

σ : a→ aba

b→ bbb
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so that the word s begins as follows:

ababbbababbbbbbbbbababbbabab27a · · ·

Therefore, s can be obtained as the limit, for n → ∞, of the sequence of words (sn)n≥0
defined by: s0 = a, sn+1 = snb

3nsn for n ≥ 1. Notice that for every n one has |sn| = 3n.
We will show that the abelian complexity of s is unbounded, but nonetheless the following

property is verified:

Theorem 4.3.9. The Sierpiński word s does not contain 11–antipowers, hence it does not con-
tain abelian 11–antipowers.

Remark 25. As mentionned in the introduction, this bound was latter improved to 10 by Riasat
[Ria19].

Blanchet-Sadri, Fox and Rampersad [BSFR14] characterized the asymptotic behavior of
the abelian complexity of a morphic word. In the following proposition, we give the precise
bounds of the abelian complexity of the Sierpiński word.

Proposition 4.3.10. The abelian complexity abs of the Sierpiński word verifies abs(n) = Θ(nlog3 2).

Proof. The Sierpiński word s is prefix normal with respect to the letter a (see [FL11, BFL+17]
for the definition of prefix normal word), that is, for each length n, no factor of s of length n
contains more occurrences of the letter a than the prefix of length n. Since s contains arbitrarily
long blocks of bs, the number of distinct Parikh vectors of factors of s of a given length n is
given by 1 plus the number of as in the prefix of length n. It is easy to see that the values of n
for which the proportion of a’s is maximal in a prefix of length n are of the form n = 3k, while
those for which the proportion of a’s is minimal are of the form n = 2 · 3k, and in both cases
the prefix of length n contains 2k as. With a standard algebraic manipulation, this gives

nlog3 2

2log3 2
≤ abs(n) ≤ nlog3 2.

Proof of Theorem 4.3.9. Suppose that s contains an 11–antipower u = u1u2 · · ·u11, of
length 11m. Let us then consider the first occurrence of u in s. Let n be the smallest integer
such that u occurs in sn+1b

3n+1 but not in snb3
n .

Let us first suppose that no ui is equal to bm for some i. Then u1 · · ·u10 is a factor of
sn+1 = snb

3nsn, so 10m < 3n+1 hence m < 3n−1. Then, by minimality of n, there are only
two possible cases: either u1 starts before the block b3n , or u1 starts in the block b3n and ends
in sn.

In the first case, by minimality of n, u ends after the block b3n , and since no ui equals bm,
we get 2m > 3n, which is in contradiction with m < 3n−1.

If u1 starts in the block b3n and ends in sn, u2 · · ·u10 is a factor of sn = sn−1b
3n−1

sn−1 and
so 9m < 3n hence m < 3n−2. By minimality of n, u11 ends after the block b3n−1 . Again, since
no ui equals bm, we get 2m > 3n−1, which is in contradiction with m < 3n−2.

Let us then suppose that u11 = bm, so that u1 · · ·u9 is a factor of sn+1. The same reasoning
as before holds, since (9m < 3n+1) ⇒ (m < 3n−1) and (8m < 3n) ⇒ (2m < 3n−1).
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If u1 = bm, u2 · · ·u10 is a factor of sn with no ui = bm and we can again apply the same
reasoning.

Finally, suppose that ui = bm with i 6= 1 and i 6= 11. Hence, u1 · · ·u10 is a factor of
sn+1 = snb

3nsn, and 10m < 3n+1. If u1 starts before the block b3
n (and u ends after by

minimality of n), we get 3m > 3n since otherwise u would contain two blocks bm, and this
contradicts 10m < 3n+1. If u1 does not start before the block b3n , then by minimality of n it
starts in this block, so u2 · · ·u10 is a factor of sn = sn−1b

3n−1
sn−1 which ends after the block

b3
n−1 , again by minimality of n. This shows that 9m < 3n, and at the same time 3m > 3n−1,

which produces a contradiction.

4.3.4 Paperfolding Words
These results were presented in a published article written jointly with Gabriele Fici and
Manuel Silva [FPS19].
An infinite word can contain both abelian powers of every order and abelian antipowers of
every order. This is the case, for example, of any word with full factor complexity. How-
ever, finding a class of uniformly recurrent words with linear factor complexity satisfying this
property seems a more difficult task. Indeed, most of the well-known examples (Thue-Morse,
Sturmian words, etc.) have bounded abelian complexity, hence they cannot contain abelian an-
tipowers of every order — whereas, by the aforementioned result of Richomme et al. [RSZ11],
they contain abelian powers of every order. Building upon the framework that Štěpán Holub
developed to prove that all paperfolding words contain abelian powers of every order [Hol13],
we prove in this section that all paperfolding words contain also abelian antipowers of every
order.

In what follows, we recall the combinatorial framework for dealing with paperfolding words
introduced in [Hol13], although we use the alphabet {0, 1} instead of {1,−1}.

A paperfolding word is the sequence of ridges and valleys obtained by unfolding a sheet
of paper which has been folded infinitely many times. At each step, one can fold the paper
in two different ways, thus generating uncountably many sequences. It is known that all the
paperfolding words are uniformly recurrent and have the same factor complexity c(n), and that
c(n) = 4n for n ≥ 7 [All92]. Madill and Rampersad [MR13] studied the abelian complex-
ity of the regular paperfolding word and proved that it is a 2-regular sequence. The regular
paperfolding word

p = 00100110001101100010011100110110 · · ·
is the paperfolding word obtained by folding at each step in the same way. It can be defined as
a Toeplitz word (see [CK97] for a definition of Toeplitz words) as follows: Consider the infinite
periodic word γ = (0?1?)ω, defined over the alphabet {0, 1} ∪ {?}. Then define p0 = γ and,
for every n > 0, pn as the word obtained from pn−1 by replacing the symbols ? with the letters
of γ. So,

p0 = 0?1?0?1?0?1?0?1?0?1?0?1?0?1? · · · ,
p1 = 001?011?001?011?001?011?001? · · · ,
p2 = 0010011?0011011?0010011?0011 · · · ,
p3 = 001001100011011?001001110011 · · · ,

etc. Thus, p = limn→∞ pn, and hence p does not contain occurrences of the symbol ?.
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More generally, one can define a paperfolding word f by considering the two infinite pe-
riodic words γ = (0?1?)ω and γ̄ = (1?0?)ω. Then, let b = b0b1 · · · be an infinite word over
{−1, 1}, called the sequence of instructions. Define (γn)n≥0 where, for every n, γn = γ if
bn = 1 or γn = γ̄ if bn = −1. The paperfolding word f associated with b is the limit of the
sequence of words fn defined by f0 = γ0 and, for every n > 0, fn is obtained from fn−1 by
replacing the symbols ? with the letters of γn.

Recall that every positive integer i can be uniquely written as i = 2k(2j + 1), where k
is called the order of i (a.k.a. the 2-adic valuation of i), and (2j + 1) is called the odd part
of i. One can verify that the previous definition of f is equivalent to the following: for every
i = 1, 2, . . . define wi = (−1)jbk, where i = 2k(2j + 1). Then fi = 0 if wi = 1 and fi = 1 if
wi = −1. This is equivalent to

fi = 1 iff i ≡ 2k(2 + bk) mod 2k+2.

Remark 26. The regular paperfolding word corresponds to the sequence of instructions b =
1ω.

Definition 4.3.11. Let f be a paperfolding word. An occurrence of a letter in f at position i is
said to be of order k if the letter at position i is ? in fk−1 and different from ? in fk. We consider
the letters occurring in f0 as of order 0.

Hence, in a paperfolding word f associated with the sequence b = b0b1 · · · , the 1’s of order
0 appear at positions 2 + b0 + 4t, t ≥ 0, the 1’s of order 1 appear at positions 2(2 + b1 + 4t),
t ≥ 0, and, in general, the 1’s of order k appear at positions 2k(2 + bk + 4t), t ≥ 0.

Let f = f1f2 · · · be a paperfolding word associated with the sequence b = b0b1 · · · . A
factor of f of length n starting at position ` + 1, denoted by f[` + 1, . . . , ` + n], contains a
number of 1’s that is given by the sum, for all k ≥ 0, of the 1’s of order k in the interval
[` + 1, ` + n]. For each k, since the 1’s of order k are at distance 2k+2 one from another, the
number of occurrences of 1’s of order k in f[`+ 1, . . . , `+ n] is given by⌊

n− `
2k+2

⌋
+ εk,bk(`, n),

where εk,bk(`, n) ∈ {0, 1} depends on the sequence b (in fact, bk determines the positions of
the occurrences of the 1’s of order k in f). We set

∆(`, n) =
∑
k≥0

εk,bk(`, n)

the number of “extra” 1’s in f[`+ 1, . . . , `+ n].
For example, in the prefix p[1, 14] of length 14 of the regular paperfolding word, we know

that there are at least 3 = b14
4
c 1’s of order 0, 1 = b14

8
c of order 1 and 0 = b14

16
c of order 2. In

the interval [1, 14] there are three 1’s of order 0 (at positions 3, 7 and 11), two 1’s of order 1 (at
positions 6 and 14), and one 1 of order 2 (at position 12), so we have in p[1, 14] no extra 1 of
order 0, i.e., ε0,1(0, 14) = 0, one extra 1 of order 1, i.e., ε1,1(0, 14) = 1 and one extra 1 of order
2, i.e., ε2,1(0, 14) = 1, so that ∆(0, 14) = 2.

We set

Ek,bk(`, d,m) = (εk,bk(`, `+ d), . . . , εk,bk(`+ (m− 1)d, `+md))
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and

∆(`, d,m) =
∑
k≥0

Ek,bk(`, d,m) = (∆(`, `+ d), . . . ,∆(`+ (m− 1)d, `+md)) .

The factor of f of length dm starting at position ` + 1 is an abelian m-power if and only if
the components of the vector ∆(`, d,m) are all equal, while it is an abelian m-antipower if and
only if the components of the vector ∆(`, d,m) are pairwise distinct.

The next result (Lemma 4 of [Hol13]) will be the fundamental ingredient for the construc-
tion of abelian antipowers in paperfolding words.

Lemma 4.3.12 (Additivity Lemma). Let `, `′ ≥ 0 and m, d, d′ ≥ 1 be integers with `′ and d′

both even. Let r be such that 2r > `+md, and for each k ≥ 0 the following implication holds:
if Ek,1(`′, d′,m) 6= Ek,−1(`′, d′,m) then bk = bk+r.

Then
∆(`, d,m) + ∆(`′, d′,m) = ∆(`+ 2r`′, d+ 2rd′,m).

Using the Additivity Lemma, Holub [Hol13] proved that all paperfolding words contain
abelian powers of every order. We will use the Additivity Lemma to prove that all paperfolding
words contain abelian antipowers of every order. We start with the regular paperfolding word,
then we extend the argument to all paperfolding words.

4.3.4.1 Regular paperfolding word

Let
Φ : {0, 1}2 → {x, y, z}

00 7→ x
01 7→ y
10 7→ y
11 7→ z

be the morphism that identifies words of length 2 over the alphabet {0, 1} that are abelian
equivalent. We have the following lemma:

Lemma 4.3.13. Let n ≥ 3 be an integer. Let p = p[`+ 1, . . . , `+ 2n] = u1v1 · · ·u2n−1v2n−1 be
a factor of p of length 2n. Then, no q < 2n−1 exists such that

Φ(p) = Φ(u1v1) · · ·Φ(u2n−1v2n−1) = Φ(uq+1vq+1) · · ·Φ(u2n−1v2n−1)Φ(u1v1) · · ·Φ(uqvq).
(4.4)

Proof. First, notice that if q′ is the smallest solution of (4.4), then q′|2n−1. Indeed, writing
wi = Φ(uivi), we have

w1 · · ·w2n−1 = w1 · · ·wq′wq′+1 · · ·w2n−1

= wq′+1 · · ·w2n−1w1 · · ·wq′ ,

and since two words commute if and only if they are powers of the same word, there exists a
word z and positive integers s and t such that

w1 · · ·wq′ = zs and wq′+1 · · ·w2n−1 = zt.

53



This gives |z| · (s+ t) = 2n−1 and |z| · s = q′. By the minimality of q′, we have that s = 1 and
so |z| = q′ divides 2n−1. Thus, q′ = 2j for some integer j < n.

By the Toeplitz construction of p, we immediately have that

u1v1 · · ·u2n−1v2n−1 = av1av2av3a · · · av2n−1

or
u1v1 · · ·u2n−1v2n−1 = u1au2au3au4a · · ·u2n−1a

with a ∈ {0, 1} and a = 1− a.
Suppose q′ 6= 1 and q′ 6= 2n−1. Since q′ is even, we have that Φ(uivi) = Φ(ui+q′vi+q′)

implies uivi = ui+q′vi+q′ . But this cannot be the case, since two consecutive letters of order j
occur in p at distance 2j+1. Since j ≤ n − 2, we have 2j+2 ≤ 2n, so the factor p contains at
least two consecutive letters of order j. Suppose that the first of such letters is ui; then ui+q′ is
at distance 2q′ = 2j+1, so ui+q′ 6= ui, against the hypothesis that q′ is a solution of (4.4).

Thus, we must have q′ = 1 or q′ = 2n−1. Since n ≥ 3, p[` + 1, . . . , ` + 2n] contains two
consecutive letters of order 1. Let us first suppose that vi is a 1 of order 1, ui is a 1 of order 0 and
vi+2 is a 0 of order 1. Then, Φ(uivi) = Φ(11) 6= Φ(10) = Φ(ui+2vi+2). The other cases would
give 10ui+1vi+111 with vi a 0 of order 1 and vi+2 a 1 of order 1, 00ui+1vi+101 and 00ui+1vi+101
respectively in the case ui is a 0 of order 0. Similary, we get 10ui+1vi+100 and 00ui+1vi+110 if
ui is a 1 of order 1 and ui+2 a 0 of order 1 or vice versa, and vi a 0 of order 0. The cases with
vi a 1 of order 0 are symetric. Every case leads to Φ(uivi) 6= Φ(ui+2vi+2). This implies q′ 6= 1
and so q′ = 2n−1. By minimality of q′, the only solution of (4.4) is q = 2n−1.

Theorem 4.3.14. The regular paperfolding word contains abelianm-antipowers for everym ≥
2.

Proof. The proof is mainly based on the Additivity Lemma. Let m ≥ 2 be fixed. To prove the
result it is sufficient to find a vector ∆(s, d,m) having pairwise distinct components. Let k be
an integer such that 2k ≥ m. Consider the first factor of length 2k+2− 1 containing a 1 of order
k in the middle; our factor is then of the form

w1w′

with |w| = |w′| = 2k+1 − 1. Since for every positive integers i, k′, s, we have

pi of order k′ ⇒ pi+2k′+s of order k′

and
pi of order k′ ⇒ pi+2k′+2 = pi 6= pi+2k′+1

we get:
pi of order k′ ⇒ pi+2k′+2+s = pi 6= pi+2k′+1 (4.5)

then, up to applying a translation, we can suppose w = w′. In fact, since |w1| = 2k+1, the
equality is true for every letter of order smaller than k by (4.5). Now, take the smallest order
r > k of a letter 0 in w or w′. It is the only letter of this order in our factor since two letters
of order r are distant of 2r+1 > |w1w′|. If we consider the factor translated by 2r+1, by (4.5)
the letters of order smaller than r are the same and the letter we considered becomes a 1. Since
the length of w1w′ is 2k+2 − 1 and the distance between two letters of order higher than k is
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at least 2k+1, the factor w1w′ contains exactly two letters of order higher than k. Hence, in at
most 2 steps we get w1w with every letter of order greater than k being a 1. Writing ` + 1 the
starting position of an occurrence in p of the factor w1w, we set `′ = ` if ` is even or `′ = `+ 1
otherwise. Consider the vectors

∆(`′, 2, 2k),∆(`′ + 2, 2, 2k),∆(`′ + 4, 2, 2k),∆(`′ + 6, 2, 2k), . . . ,∆(`′ + 2k+1 − 2, 2, 2k).

We claim that these vectors are pairwise distinct. By contradiction, if ∆(`′ + 2p, 2, 2k) =
∆(`′ + 2q, 2, 2k) for some p, q with p ≤ q, then we have that

Φ(p`′+2p+1 · · · p`′+2p+2k+1) = Φ(p`′+2q+1 · · · p`′+2q+2k+1). (4.6)

Since the factor we are considering is w1w, we have

p`′+2p+1 · · · p`′+2q = p`′+2p+1+2k+1 · · · p`′+2q+2k+1

and so

Φ(p`′+2q+1 · · · p`′+2q+2k+1) = Φ(p`′+2q+1 · · · p`′+2p+2k+1p`′+2p+1 · · · p`′+2q)

but this and (4.6) contradicts Lemma 4.3.13.
Finally, as the vectors are different, we use the Additivity Lemma to obtain a vector whose

components are pairwise distinct: applying n times the Additivity Lemma on ∆(`′ + 2p, 2, 2k)
one can obtain n∆(`′ + 2p, 2, 2k). It then suffices to take a sequence of integers α0, . . . , α2k−1
increasing enough to have

Σ2k−1
i=0 αi∆(s′ + 2i, 2, 2k),

a vector whose components are pairwise distinct. Indeed, labelling aj the j-th component of
this vector and xi,j the j-th component of ∆(s′ + 2i, 2, 2k), we have

aj = aj′ ⇔ Σ2k−1
i=0 αixi,j = Σ2k−1

i=0 αixi,j′ ⇔ Σ2k−1
i=0 αi(xi,j − xi,j′) = 0.

By “increasing enough”, we precisely mean αr > Σr−1
i=0αi sup

0≤q,q′≤2k−1
(xi,q − xi,q′), so that by

decreasing induction we have that for every i, with 0 ≤ i ≤ 2k − 1, one has xi,j = xi,j′ . In
particular, this gives ∆(`′+ 2j, 2, 2k) = ∆(`′+ 2j′, 2, 2k), which implies j = j′. Hence, all the
components are pairwise distinct and the proof is complete.

4.3.4.2 All paperfolding words

To generalize the result above to all paperfolding words, one has to take care of the condition
bi = bi+r in the Additivity Lemma.

Lemma 4.3.13 can be modified so that the translation is not by 2 but by 2u, for any u > 1.
Let

φ : {0, 1}2u → N
a1 · · · a2u 7→ |{i | ai = 1}|

be the morphism that identifies words of length 2u over {0, 1} that are abelian equivalent. Then
we have the following lemma, analogous to Lemma 4.3.13:
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Lemma 4.3.15. Let n ≥ u + 3 be an integer and let f be a paperfolding word. Every factor
f = f [`+ 1, `+ 2n+u−1] = a1,1a1,2 · · · a2n−1,2u−1a2n−1,2u of f of length 2n+u−1 satisfies the
following property: If q is such that

φ(f) = φ(a1,1 · · · a1,2u) · · ·φ(a2n−1,1 · · · a2n−1,2u) =

φ(aq+1,1 · · · aq+1,2u) · · ·φ(a2n−1,1 · · · a2n−1,2u)φ(a1,1 · · · a1,2u) · · ·φ(aq,1 · · · aq,2u),

then q = 2n−1.

Proof. The proof of Lemma 4.3.13 mainly applies here; we only need to change the part where
we use the Toeplitz construction to justify j = n − 1. Here, in each 2u-tuple one can find one
letter of order u− 1 and one letter of higher order. Using (4.5), we then see that φ(ai,1 · · · ai,2u)
is totally determined by the letter of order u − 1 and the letter of higher order in ai,1 · · · ai,2u .
Applying again (4.5) to the letter of order u − 1, we can apply exactly the same reasoning as
in the proof of Lemma 4.3.13 (in a sense, our new φ is the previous one modulo the letters of
order smaller than u− 1).

Now, we can prove the main theorem:

Theorem 4.3.16. Every paperfolding word f contains abelian m-antipowers for every m ≥ 2.

Proof. Let k be an integer such that 2k ≥ m. As before, we will prove that f contains abelian
2k-antipowers, hence it will contain abelian m-antipowers. Since the alphabet {0, 1} is finite,
there must exist a factor bu−1 · · · bu+k+4 of b that occurs infinitely often. As before, let us start
with the first block of length 2u+k+2 − 1 containing a 1 of order u+ k in the middle; our block
is then

w1w′

with |w| = |w′| = 2u+k+1 − 1. As before, in at most two steps, we can have w = w′, and the
maximum order of a letter appearing in this factor is u + k + 4. Again, writing ` the starting
position of an occurrence of this factor, we set `′ = ` if ` is even or `′ = ` + 1 otherwise.
Consider the vectors

∆(`′, 2u, 2k),∆(`′ + 2u, 2u, 2k),∆(`′ + 2u+1, 2u, 2k), . . . ,∆(`′ + 2u+k+1 − 2u, 2u, 2k).

Here again, these vectors are pairwise distinct: if ∆(`′ + 2up, 2u, 2k) = ∆(`′ + 2uq, 2u, 2k), we
have that

φ(p`′+2up+1 · · · p`′+2u(p+2k)) = φ(p`′+2uq+1 · · · p`′+2u(q+2k))

and this contradicts Lemma 4.3.15 because, here again, w = w′ and so

p`′+2up+1 · · · p`′+2uq = p`′+2u(p+2k)+1 · · · p`′+2u(q+2k).

Moreover, εi,−1(`′ + 2up, 2u, 2k) 6= εi,1(`
′ + 2up, 2u, 2k) ⇒ u − 1 ≤ i ≤ u + k + 4, using

(4.5) and the fact that no letter of order higher than u + k + 4 appears in the factor w1w. So,
choosing r such that 2r > `′ + 2u+k+1 − 2u + 2u+k and bu−1 · · · bu+k+4 = br+u−1 · · · br+u+k+4,
we can apply the Additivity Lemma and, as for the regular paperfolding word, construct an
abelian 2k-antipower that occurs as a factor in f.

Remark 27. From Theorem 4.3.16 it follows immediately that every paperfolding word has
unbounded abelian complexity.
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Remark 28. In [CRSZ11] Cassaigne et al. prove that a word with bounded abelian complexity
contains abelian powers of any order. In fact, to apply the proof to a word w they used one only
needs the following:

∃N, ∀m,∃v ∈ Fact(w), |v| = m and cab(v) ≤ N.

Since every paperfolding word is uniformly reccurrent, using the above remark and the fact
paper folding words contain abelian powers of any order we see that this condition is not nec-
essary.

4.3.5 Zimin word
This section contains new results.

The Zimin word is a famous word (also kown as sesquipower) defined on an infinite al-
phabet, it is another example where Problem 1 is verified again. For more information about
this word, one can consult [Lot02].

Definition 4.3.17. The Zimin word z can be defined by a Toeplitz process, like paper-folding
words. It is the limit of the following process:

z0 = ???????????????????????????? · · · ,
z1 = 1?1?1?1?1?1?1?1?1?1?1?1?1?1? · · · ,
z2 = 121?121?121?121?121?121?121? · · · ,
z3 = 1213121?1213121?1213121?1213 · · · ,
z4 = 121312141213121?121312141213 · · · ,

At n-step, replace every other ? by n (starting with z0 =?ω). One then have z = lim
n→+∞

zn.

Remark 29. Alternatively, z can be defined as the fixed point starting with 0 of the morphism
φ : i→ 1 · (i+ 1).

We will show that this word avoids abelian squares but contains abelian antipowers of any
order.

4.3.5.1 Zimin word avoids abelian squares

Theorem 4.3.18. The Zimin word z does not contain abelian squares.

Proof. Suppose u1u2 is an abelian square with m = |u1| = |u2| minimal. Its is easy to see
that m 6= 1. But if m > 1, we have |u1u2|1 = m since every other letter is a 1. But we have
|u1|1 = |u2|1 hence m is even.

Hence, up to shifting u1u2 to the right, we can suppose u1 starts with a 1. Now, we can
look at φ−1(u1u2). It is easy to check that φ−1(u1u2) is also an abelian square of length strictly
smaller than m which is contradictory with our minimality hypothesis.
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4.3.5.2 Zimin word contains abelian antipowers of every order

Theorem 4.3.19. The Zimin word z contains abelian k-antipowers for every k in N.

Proof. By induction. The result is clearly true for k = 1, 2, 3. Suppose the result is true for
some k ∈ N; let us show that this implies z contains abelian (k + 1)-antipowers. Let us write
u1 · · ·uk with |u1| = m an abelian k-antipower. First of all, if P (uk+1) /∈ {P (ui)|1 ≤ i ≤ k}
we have an abelian (k+ 1)-antipower. If not, let j ∈ [[1, k]] be such that P (uk+1) = P (uj). Let
us write n the greatest letter appearing in u1 · · ·uk. We then know that ∀i, i′ ∈ [[1, k]],∃p ≤ n
such that |ui|p 6= |ui′|p. Moreover, if i 6= j, there exists a p ≤ n such that |ui|p 6= |uk+1|p.

Now, consider, for a positive integer r that will defined latter, φr(u1 · · ·uk+1), which is a
factor of z. We have |φr(ui)| = 2rm and φ(ui) starts with 2r − 1 letters of order smaller or
equal to r + 1(*). Moreover,

∀p ∈ [[1, n]], |φr(ui)|r+p = |ui|p. (4.7)

It is easy to see that φr(u1 · · ·uk) is an abelian k-antipower. Indeed, let i, i′, p be such that
|ui|p 6= |ui′|p. Then

|φr(ui)|r+p 6= |φr(ui′)|r+p. (4.8)

The idea is then to take blocks u′1 · · ·u′k+1 just a bit bigger than 2rm so that we keep the
same amount of letters of order r + 1, · · · , r + p but we insure that P (u′j) 6= P (u′k+1). Let us
then suppose that

2r − 1 > k + 2k and r > k. (4.9)

For example we can take r = k + 2. Then consider u′1 · · ·u′k+1 the factor starting 2k − j letter
after the beginning of φr(u1 · · ·uk+1), with |u′i| = 2rm + 1 (so the first letter of u′j is k). It is
then easy to check that

∀p ∈ [[1, k + 1]], |φr(ui)|r+p = |u′i|r+p. (4.10)

thanks to (4.9) and (*). I then claim that u′1 · · ·u′k+1 is an abelian (k + 1)-antipower. Indeed,
since (4.8) and (4.10), u′1 · · ·u′k is an abelian k-antipower, and ∀i 6= j, P (u′k+1) 6= P (u′i). It
remains to prove P (u′k+1) 6= P (u′j). But

|u′k+1|k = |u′j|k − 1 = 2r−km.

Indeed, since the letter k has periodicity 2k, the 2rm last letters of these two factors contain
exactly 2r−km occurences of the letter k. The first letter of u′j is then a k, and since 2k -
(2rm + 1)(k + 1 − j) the first letter of u′k+1 is not a k. So u′1 · · ·u′k+1 is an abelian (k + 1)-
antipower, and z contains abelian k-antipowers for every positive integer k.

4.3.6 Another possible generalizations of antipowers
Finally, I would like to present some idea we investigated in our efforts to generalize Theorem
4.1.11. Instead of looking at the abelian setting, which seems to be difficult to solve, we looked
at a new version of powers, only based on the set of Parikh vectors of a word. The idea
is to loosen the condition on the proximity of the factors giving those Parikh vectors, as the
abelian setting loosens the condition on the position of the letters in a word for two words to be
equivalent.
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Definition 4.3.20. Let w be a word, k a natural integer, u1, u2, · · · , uk be finite factors of w,
Pi their Parikh vectors. We say that (u1, u2, · · · , uk) is a total-abelian k-power if Pi = iP1 for
every i. We say that (u1, u2, · · · , uk) is a total-abelian k-antipower if:

• Pi 6= Pj for every (i, j);

• |ui| = |u1| for all i;

• there exist v2, · · · , vk factors of w such that: ∀i P (vi) =
i∑

m=1

Pm.

Remark 30. This condition is less strong than the one of abelian powers or antipowers. In
fact, an abelian (anti)power is a total-abelian (anti)power. This allows us to say that if Theorem
4.1.11 is true in the abelian setting, it has to be true in this total-abelian setting, or in other
words, Problem 1 should be easier to answer in this total-abelian setting.

In this context, we were able to find an answer to Problem 1 for the binary alphabet:

Theorem 4.3.21. On a binary alphabet A = {0, 1}, every infinite word w contains total-
abelian k-powers for every k in N. Moreover, if the abelian complexity of w is not bounded,
then w contains total-abelian k-antipowers for every k in N.

Proof. There are two different possibilities: firstly, if the abelian complexity of w is bounded,
then w contains k-abelian powers for every k, hence total-abelian k-powers. The remaining
case is then: w has unbounded abelian complexity. We will then use the following lemma:

Lemma 4.3.22. Let w be a word whose abelian complexity is not bounded. Then, for every n
in N, w contains two adjacent factors of same size whose number of 0 differs of at least n.

Proof. Since the abelian complexity is unbounded, it is always possible, for every n, to find two
non overlapping factors of same size whose number of 0 differs from at least 2n+ 1. Labeling
them u and v, let us write w = auz1z2vb with 0 ≤ |z1| − |z2| ≤ 1. If |z1| − |z2| = 1, translate
the beginning and the end point of v of one. We then have ||u|1−|v|1| ≥ 2n. Then, consider the
factor uz1 and the factor z2v. Either ||uz1|1 − |z2v|1| ≥ n and the announced result is proved
for n, or ||uz1|1 − |z2v|1| < n which implies |z1|1 − |z2|1 > n and the result is still proved for
n.

Let then n be a fixed natural integer, and let us prove that w contains total-abelian n-powers
and antipowers. Applying the lemma, it is possible to find u and v two consecutive factors of
same size with ||u|1 − |v|1| ≥ (2n+ 1)n!. Let us denote p := b |u|

n!
c. Taking if necessary u and

v shorter we can suppose

|u| = pn! and ||u|1 − |v|1| > 2nn! (4.11)

Without loss of generality we can assume |u|1 < |v|1. For r ∈ N we can define mr = r|uv|1
|uv| the

mean number of 1 in a factor of length r of uv. Since |v|1 − |u|1 > 2nn!, there exist at least
one pair (u′, v′) of factor of length p respectively of u and v such that

mp − |u′|1 ≥ n and |v′|1 −mp ≥ n.
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Indeed, on one hand one has

|u|1 + |v|1 = |uv|1 = 2n!mp. (4.12)

On the other hand, cutting u and v in n blocks of size p, one gets, if no such u′ exists,

|u|1 > n!(mp − n)

and then
|u|1 + |v|1 > 2n!(mp − n) + 2nn! = 2n!mp

by (4.11) which contradicts (4.12). Similarily, if no such v′ exists one gets

|v|1 < n!(mp + n)

and then
|u|1 + |v|1 < 2n!(mp + n)− 2nn! = 2n!mp.

With T the shift operator, for any factor x of w,

||x|1 − |T (x)|1| ≤ 1, (4.13)

so there exist z1, · · · , zn factors of uv of length p such that mp − |zi|1 = i. Those n factors
provide a total-abelian n-antipower: their Parikh vectors are different, so let us prove that it is
possible to find factors z′1, z

′
2, · · · , z′n with |z′i| = ip and imp− |z′i|1 = i(i+1)

2
. Using (4.13), it is

enough to show that for any i it is possible to find a factor u′i with |u′i| = ip and imp−|u′i|1 ≥ in
and a factor v′i with |v′i| = ip and imp − |v′i|1 ≤ 0 .

For v′i, it suffices to cut uv in 2n!
i

blocks of length ip, since the total number of 1 is 2n!mp at
least one of the blocks contains at least imp times 1. For u′i, we can apply the same reasonning
than previously: if no such u′i exists then by cutting u into blocks of length ip we get

|u|1 >
n!

i
(imp − in) = n!(mp − n)

and then
|uv|1 > 2n!(mp − n) + 2nn! = 2n!mp.

Moreover, using the same u′i and v′i, and (4.13), it is easy to construct vectors z′′1 , · · · , z′′n
with |z′′i | = ip and |z′′i |1 = imp, and this is, by definition, a total-abelian n-power.

4.3.7 Conclusion
While we have not been able to answer Problem 1, for every example we studied, we found the
analogy of Theorem 4.1.11 to be verified in the abelian setting. I am very curious about this
question, and I will try to use the coming months to keep on trying to solve it.
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