Correction exo 1 question 10 feuille 4

Démonstration. Soit λ une valeur propre de u_{10} . Puisque $\lambda \in \mathbb{R}$, on va distinguer 3 cas:

- 1. $\lambda = 0$: Soit $f \in \mathscr{C}^{\infty}_{2\pi}(\mathbb{R}, \mathbb{R})$ telle que $u_{10}(f) = 0$. Ceci nous apprend que f' est constante. Puisque f est 2π -périodique, on a nécessairement f' = 0. Il est alors aisé de vérifier que toute fonction constante f est 2π -périodique et vérifie $u_{10}(f) = 0$.
 - Finalement, $0 \in \operatorname{Sp}(u_{10})$ et on a $E_0 = \{f : x \to c | c \in \mathbb{R}\}.$
- 2. $\lambda > 0$: Soit $f \in \mathscr{C}^{\infty}_{2\pi}(\mathbb{R}, \mathbb{R})$ telle que $u_{10}(f) = \lambda f$. Le cours sur les équations différentielles nous apprend alors: $\exists A, B \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = A \exp(\sqrt{\lambda}x) + B \exp(-\sqrt{\lambda}x)$. Une étude de la limite de f en $+\infty$ nous apprend que f n'est pas bornée si $A \neq 0$. De même, si $B \neq 0$, l'étude de lim f en $-\infty$ nous apporte f non bornée. Ces deux cas sont exclus, car f est 2π -périodique et donc bornée sur \mathbb{R} . On retire donc f = 0 et donc λ n'est pas valeur propre de u_{10} .
- 3. $\lambda < 0$: Soit $f \in \mathscr{C}^{\infty}_{2\pi}(\mathbb{R}, \mathbb{R})$ telle que $u_{10}(f) = \lambda f$. Le cours sur les équations différentielles nous apprend alors : $\exists A, B \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = A\cos(\sqrt{-\lambda}x + B)$. Cette fonction est $\frac{2\pi}{\sqrt{-\lambda}}$ -périodique, puisqu'on la veut aussi 2π -périodique il faut nécessairement que 2π soit un multiple de $\frac{2\pi}{\sqrt{-\lambda}}$, c'est-à-dire qu'il existe $n \in \mathbb{N}^* | 2\pi = n \frac{2\pi}{\sqrt{-\lambda}}$, ce qui équivaut à $n = \sqrt{-\lambda}$. Enfin, on vérifie facilement que, s'il existe $n \in \mathbb{N}$ tel que $n = \sqrt{-\lambda}$, on a bien, avec $f: x \to A\cos(\sqrt{-\lambda}x + B)$ pour $A, B \in \mathbb{R}$, $u_{10}(f) = \lambda f$ et $f \in \mathscr{C}^{\infty}_{2\pi}(\mathbb{R}, \mathbb{R})$.

Finalement, $\operatorname{Sp}(u_{10}) = \{-n^2 | n \in \mathbb{N}\}$. De plus, pour $n \in \mathbb{N}$, $E_{-n^2} = \{f : x \to A\cos(nx+B) | A, B \in \mathbb{R}\}$.