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k-COLORING

Figure: Instance of
3-COLORING

Figure: Solution of the
instance

c :VG 7→ [k] such that ∀(u,v) ∈EG , c(u) ̸= c(v)
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H-COLORING

0

12

3

4

Example of a C5-COLORING

f :VG →VH
∀(u,v) ∈EG ,(f (u), f (v)) ∈EH
f is an Homomorphism

k-COLORING = Kk -COLORING
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NP-complete problems

NP-complete problem

No poly algo unless P=NP

How to solve in practice ?
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FPT algorithm

Parameter: λ : {Instances} 7→N

Algo FPT parameterized by λ on instance x

Complexity: F (λ(x))×∥x∥O(1)

F huge function (F :λ 7→λλ
λ...

)

∥x∥λ(x) not allowed
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Clique-width

Figure: 3-expression of a graph

•i : vertex labelled by i

G1⊕G2: disjointed union

ρj→i (G ): relabel the j
with i

ηi ,j(G ): construct an edge
between every i and j

cw(G ) number of labels

k-COLORING in time
(2k −2)cw(G)×|VG |2
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Exemple of a contraction sequence

Figure: A contraction sequence of a graph

Fundamental Property:
(S1,S2) is a black edge =⇒ ∀(u,v) ∈ S1×S2,(u,v) ∈EG
(S1,S2) is not an edge =⇒ ∀(u,v) ∈ S1×S2,(u,v) ∉EG
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(Component) twin-width

Figure: Contraction sequence of a graph

tww(G ): Maximal red-degree [BKTW20]a

ctww(G ): Max red-component size [BKRT22]b

aBonnet, Kim, Thomassé, Watrigant
bBonnet, Kim, Reinald, Thomassé

k-COLORING in time
(2k −1)ctww(G)×|VG |2

No FPT algo for 3-COLOR
param by tww(G ):

3-COLOR is NP-hard on
planar graphs

tww is bounded on planar
graphs
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Functional Equivalence

Bounded Cliquewidth ⇐⇒ Bounded Component twin-width
FPT for Cliquewidth ⇐⇒ FPT for Component twin-width

Proof: [BKRT22]1

Using boolean-width (func equiv to cliquewidth)

ctww(G )≤ 2boolw(G)+1 ≤ 2cw(G)+1

AND

cw(G )≤ 2boolw(G) and boolw(G )≤ 2ctww(G)

so
cw(G )≤ 22ctww(G)

1Bonnet, Kim, Reinald, Thomassé
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First contribution: Improved bound

I will prove

cw(G )≤ ctww(G )+1

Take a contraction sequence of G of ctww k

Build a (k +1)-expression of G
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Exemple of a contraction sequence

Figure: A contraction sequence of a
graph

For C = {S1, . . . ,Sp} red-component
Build ϕC a (k +1)-expression of
G [S1⊎·· ·⊎Sp] with ∀i , label(Si )= i

Same red-component = Same
formula
Same set = Same label
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Exemple of invariant

S1

S2

S3 S4

S5

S6

S7

S8

ϕ1 :=G [S1⊎S2]

ϕ2 :=G [S3⊎S4⊎S5⊎S7]

ϕ3 :=G [S6]

ϕ4 :=G [S8]
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Goal

S1

S2

S3 S4

S5

S6

S0 = S7⊎S8
ϕ :=
G [S0⊎S1⊎S2⊎S3⊎S4⊎S5⊎S6]
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Using ⊕

S1

S2

S3 S4

S5

S6

S7

S8

ϕ1 :=G [S1⊎S2]

ϕ2 :=G [S3⊎S4⊎S5⊎S7]

ϕ3 :=G [S6]

ϕ4 :=G [S8]

ϕ1⊕ϕ2⊕ϕ3⊕ϕ4
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Adding edges

S1

S2

S3 S4

S5

S6

S7

S8

ϕ1 :=G [S1⊎S2]

ϕ2 :=G [S3⊎S4⊎S5⊎S7]

ϕ3 :=G [S6]

ϕ4 :=G [S8]

G [S1⊎S2⊎S3⊎S4⊎S5⊎S6⊎S7⊎S8] :=
η•,•η•,•η•,•η•,•η•,•η•,•
(ϕ1⊕ϕ2⊕ϕ3⊕ϕ4)
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Relabelling the bags that will be contracted

S1

S2

S3 S4

S5

S6

S7

S8

ϕ1 :=G [S1⊎S2]

ϕ2 :=G [S3⊎S4⊎S5⊎S7]

ϕ3 :=G [S6]

ϕ4 :=G [S8]

G [S1⊎S2⊎S3⊎S4⊎S5⊎S6⊎S7⊎S8] :=
ρ•→•
η•,•η•,•η•,•η•,•η•,•η•,•
(ϕ1⊕ϕ2⊕ϕ3⊕ϕ4)
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Goal reached !

S1

S2

S3 S4

S5

S6

S0 = S7⊎S8
ϕ :=
G [S0⊎S1⊎S2⊎S3⊎S4⊎S5⊎S6]
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Base case

Contraction sequence of ctww=3

We will use 4 labels: •, •, •, •: proves cw≤ 4

a

b

c

d

e

f

g

a

b

c

d

e

f

g

ϕa = •
ϕb = •
ϕc = •
ϕd = •
ϕe = •
ϕf = •
ϕg = •

Red-component are singletons {a}, {b}, . . .
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Contracting e and f

a

b

c

d

e

f

g

a

b

c

d

e

f

g

ϕa = •
ϕb = •
ϕc = •
ϕd = •
ϕe = •
ϕf = •
ϕg = •

a

b

c

d

ef
g

a

b

c

d

e

f

g

ϕadef =

ρ•7→•
η•,•η•,•η•,•
(ϕa⊕ϕd ⊕
ϕe ⊕ϕf )
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Contracting a and d

a

b

c

d

ef
g

a

b

c

d

e

f

g ϕadef

ϕg = •

ad

b

c

ef
g

a

b

c

d

e

f

g

ϕadef g =
ρ•7→•
η•,•η•,•
(ϕadef ⊕ϕg )
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Contracting b and ef

ad

b

c

ef
g

a

b

c

d

e

f

g ϕadef g

ϕb

ad

c

bef
g

a

b

c

d

e

f

g

ϕadbef g =
ρ•7→•
η•,•η•,•
(ϕadef g ⊕ϕb)
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Contracting ad and g

ad

c

bef
g

a

b

c

d

e

f

g ϕadbef g

c bef adg

a

b

c

d

e

f

g
ϕadgbef =
ρ•7→•
ϕadbef g
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Contracting c and bef

c bef adg

a

b

c

d

e

f

g ϕadgbef

ϕc

bcef adg

a

b

c

d

e

f

g

ϕadgbcef =
ρ•7→•
η•,•
(ϕadgbef ⊕
ϕc)
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Consequence

Red-component of size p, we need p+1 colors
(p colors as a result, 1 temporary color)

Contraction of comp.width k =⇒ (k +1)-expression

cw(G)≤ ctww(G)+1

Tight for cographs (cw= 2, ctww= 1)

No bound possible with linearcliquewidth (cliquewidth and
linearcliquewidth are not functionnaly equivalent)
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Functional equivalence

We already know:

ctww(G )≤ 2boolw(G)+1 and boolw(G )≤ cw(G )
so

ctww(G )≤ 2cw(G)+1
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Second contribution: Improved bound on component
twin-width

I will prove

ctww(G )≤ 2cw(G )−1 and ctww(G )≤ linearcw(G )

Take a (linear) k-expression

Build a contraction sequence of G , where every red-component has
size ≤ 2k −1 (resp. ≤ k).
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k-expression

η•,•

⊕

ρ•→•:

η•,•

⊕

η•,•

⊕

• •

• • • •

ρ•→•:

η•,•

⊕

η•,•

⊕

• • •

•

Figure: k-expression tree structure

Severe abuse of notation: ⊕ must
be binary
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Intuition: contract same colors in ⊕

η•,•

⊕

ρ•→•:

η•,•

⊕

η•,•

⊕

a b

⊕

c ⊕
d ⊕

e f

ρ•→•:

η•,•

⊕

η•,•

⊕

g ⊕
h i

j

Build larger and larger "parks"
following the k-expressions.

Contract similar colors:
Parks size ≤ 2k
No red-edges crossing parks

a

b

c

d

e

f
g

h

i
j

Initial parks are single vertices
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Free contraction of twins

η•,•

⊕
ρ•→•:

η•,•

⊕
η•,•

⊕
a b

⊕
c ⊕

d ⊕
e f

ρ•→•:

η•,•

⊕
η•,•

⊕
g ⊕

h i

j

Here, d , e and f (as well as h and i)
are introduced together with the

same labels: they are twins

⊕

e f
becomes ef

a

b

c

d

e

f
g

h

i
j
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Contracting similar colors in a park

η•,•

⊕

ρ•→•:

η•,•

⊕

η•,•

⊕

a b

⊕

c def

ρ•→•:

η•,•

⊕

η•,•

⊕

g hi

j

Merge the parks of a and b,
of c and def and of g and
hi .
Collapse the k-expression
No 2 different colors in the
same park: no contraction.

a

b

c def
g hi

j
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Joining different colors in a park

η•,•

⊕

ρ•→•:

η•,•

⊕

ab cdef

ρ•→•:

η•,•

⊕

ghi j
Merge the parks of {a,b} and
{c ,def } and of {g ,hi } and {j}.
b and c are both blue in the
same park: contract them.

a

b

c def
g hi

j
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Main argument: no red-edge crossing parks

η•,•

⊕

ρ•→•:

abcdef

ρ•→•:

ghi j

b and c will have eternally the
same label

b and c have exactly the same
neighbors in {g ,h, i , j}: no
red-edge crossing parks

b and c have been contracted.

a

bc def g hi

j

a will become blue: contract a
and bc

j will become green: contract j
and g
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Renaming in a park: no red-edge crossing parks

η•,•

⊕

abcdef ghi j

g and j will have eternally the
same label

g and j have exactly the same
neighbors in {a,b,c ,d ,e, f }

a and bc have been contracted.

abc def gj hi

Next step: merge parks.
One park left: Ends.

Finish the contraction sequence
randomly
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Largest possible red-component

η•,•

⊕

123 1′2′3′

k labels on both side.
Red-comp of size k on both side.

Peak: Red-comp of size 2k −1
Then, contract by color until k
vertices left in the park
Then, procede to the next ⊕

2

1 3 2′ 1′

3′

2

1 3 2′ 1′

3′

2

3 2′

11′

3′
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Case of a linear k-expression

Linear k-expression: G1⊕G2 is
used =⇒ G2 has one vertex

η•,•

⊕

123 2′

k labels on one side.
1 vertex (so 1 label) on the
otherside

Peak: Red-comp of size k

2

1 3 2′

2

1 3 2′

22′

1 3
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Consequence

We have a contraction sequence were every red-comp has size
≤ 2k −1 (resp. k) until we are left with a single park.

Any park has size ≤ 2k (resp. ≤ k+1). Next contraction: size 2k−1
(resp. k): no red-comp of size > 2k −1 (resp. > k) can emerge.

(Linear) k-expression =⇒ contraction sequence with every
red-comp having size ≤ 2k −1 (resp. k)

ctww(G)≤ 2cw(G)−1 and ctww(G)≤ linearcw(G)

tww(G )≤ 2cw(G )−2

Tight ?
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#BINARY-CSP FPT by component twin-width

I will present in general term the associated algorithm

It will solve #k-COLORING, but still works for #H-COLORING
and even #BINARY-CSP (with edge-labels)

Complexity: (2k −1)ctww(G)+1×|VG |2

Very similar to [BKRT22]2

2Bonnet, Kim, Reinald, Thomassé
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Solving #k-COLORING FPT by component twin-width

S1

S2

S3 S4

S5

S6

S7

S8

Gk+1

For all C1,C2 subsets of colors we
know

|COLC1,C2
S1,S2

| =
|{f :G [S1⊎S2]→

col
C1⊎C2

f (S1)=C1, f (S2)=C2}|

|COLC3,C4,C5,C7
S3,S4,S5,S7

|
|COLC8

S8
|

|COLC6
S6

|



42

Parameterized complexity First bound Second bound DP FPT Algorithms Approximations

Base Case

No red-edges: red-components are singletons {u} for u ∈VG :

|COLC{u}| =
{

1 if C is a singleton
0 otherwise
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Dealing with a contraction

S1

S2

S3 S4

S5

S6

S0 = S7⊎S8

Gk

Let (C0, . . . ,C6) subsets of colors

We have |COLC1,C2
S1,S2

|, |COLC8
S8

|
|COLC6

S6
| and |COLC3,C4,C5,C7

S3,S4,S5,S7
|,

We need to compute |COLC0,...,C6
S0,...,S6

|

Problem: No S0 in the term above.

Solution: Partition by image of S7
and S8

COLC0,...,C6
S0,...,S6

= ⊎
C7∪C8=C0

COLC1,...,C7,C8
S1,...,S7,S8
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Dealing with a contraction

S1

S2

S3 S4

S5

S6

S0 = S7⊎S8

Gk

Let (C0, . . . ,C6) subsets of colors

We have |COLC1,C2
S1,S2

|, |COLC8
S8

|
|COLC6

S6
| and |COLC3,C4,C5,C7

S3,S4,S5,S7
|,

We need to compute |COLC0,...,C6
S0,...,S6

|

Problem: No S0 in the term above.

Solution: Partition by image of S7
and S8

COLC0,...,C6
S0,...,S6

= ⊎
C7∪C8=C0

COLC1,...,C7,C8
S1,...,S7,S8
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Non feasibility: Empty cases

S1

S2

S3 S4

S5

S6

S0 = S7⊎S8

Gk

3-COLORING:
C1 = {•,•}, C3 = {•,•,•}
Then: COLC1,...,C8

S1,...,S8
=;

Proof:
By contradiction f ∈COLC1,...,C8

S1,...,S8
∃(s1,s3) ∈ S1×S3
f (s1)= • , f (s3)= •
Then (s1,s3) ∈EG (because
(S1,S3) is a black edge)
But f (s1)= f (s3) !
f is not a valid 3-coloring
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Feasibility: Combining the partial colorings

Otherwise, taking f1 ∈COLC1,C2
S1,S2

, f2 ∈COLC8
S8

f3 ∈COLC6
S6

and f4 =COLC3,C4,C5,C7
S3,S4,S5,S7

.

Joinning f1, f2, f3, f4 into f1 ⋊⋉ f2 ⋊⋉ f3 ⋊⋉ f4 ∈COLC1,...,C8
S1,...,S8

.

Figure: Joining 2 partial colorings

COLC1,...,C7,C8
S1,...,S7,S8

=COLC1,C2
S1,S2

⋊⋉COLC8
S8

⋊⋉COLC6
S6

⋊⋉COLC3,C4,C5,C7
S3,S4,S5,S7
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Third contribution: Dynamic Programming algorithm

COLC0,...,C6
S0,...,S6

= ⊎
C7∪C8 =C0

feasible

COLC1,C2
S1,S2

⋊⋉COLC8
S8

⋊⋉COLC6
S6

⋊⋉COLC3,C4,C5,C7
S3,S4,S5,S7

Taking the cardinal:
|COLC0,...,C6

S0,...,S6
| = ∑

C7∪C8 =C0
feasible

|COLC1,C2
S1,S2

| · |COLC8
S8

| · |COLC6
S6

| · |COLC3,C4,C5,C7
S3,S4,S5,S7

|

To solve #BINARY-CSP, return:

∑
C⊆[k]

|COLCVG
|
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Third contribution: Dynamic Programming algorithm

COLC0,...,C6
S0,...,S6

= ⊎
C7∪C8 =C0

feasible

COLC1,C2
S1,S2

⋊⋉COLC8
S8

⋊⋉COLC6
S6

⋊⋉COLC3,C4,C5,C7
S3,S4,S5,S7

Taking the cardinal:
|COLC0,...,C6

S0,...,S6
| = ∑

C7∪C8 =C0
feasible

|COLC1,C2
S1,S2

| · |COLC8
S8

| · |COLC6
S6

| · |COLC3,C4,C5,C7
S3,S4,S5,S7

|

To solve #BINARY-CSP, return:

∑
C⊆[k]

|COLCVG
|
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H-COLORING with (oriented) edge-labelled graphs

1

2
3

4

B

CD

E

A

Rule: White 7→ White, Yellow or Purple
Blue 7→ White or Purple
Pink 7→ Purple

PINK={(A,A),(A,B),(B ,A),
(C ,B),(C ,C),(E ,D)}

BINARY-CSP translation:
PINK(x2,x1) ∧ BLUE(x1,x2) ∧ WHITE(x3,x3) . . .

We can express BINARY-CSP({WHITE,BLUE,PINK})
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Component twin-width applied to BINARY-CSP

1

2
3

4

1

23

4

label(1,2)= label(1,3)=: label(1,23) and
label(2,1)= label(3,1)=: label(23,1)

label(4,2) ̸= label(4,3): (4,23) is a red-edge (unoriented)

Fundamental Property: label(1,23)=blue =⇒
label(1,2)= label(1,3)=blue

Component-twin width: Size of the largest red-component
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What about twin-width ?

Algo for 3-COLOR in time
f (tww(G ))×|VG |O(1) ?

Planar graphs: tww≤ 7

3-COLOR is NP-complete on planar graphs: P=NP
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Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G )

Algorithm in time (ctww(H)+2)|VG |

Beats many best known upper bounds:
#Ck -COLORING in time O∗(5|VG |) instead of O∗(6|VG |)
#H-COLORING (H any cograph) in time O∗(3|VG |) instead of
O∗(5|VG |)

Previous bounds (min(linearcw(H)+2,2cw(H)+1))|VG | [Wah11]3.

We know ctww(H)+2≤min(2cw(H)+1, linearcw(H)+2).

Claim: We can solve weighted, list... variants

3Wahlström
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Approximating component twin-width

cw(G)≤ ctww(G)+1≤ 2cw(G)

Approx cw(G ) with ratio λ =⇒ Approx ctww(G ) with ratio 2λ

Positive results for cw =⇒ Positive restults for ctww
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Exponential approximation

Algo 1: [HO08]4

Input: G ,k
Output: A (23k −1)-expression of G , or a witness that cw(G )> k

Algo 2:
Input: A q-expression of a graph G
Output: A (2q−1)-contraction sequence of G

Algo 1 (k = p+1) then algo 2 (q = 23p+3−1)
Input: G ,p
Output: A (23p+4−3)-contraction sequence or a witness that
cw(G )> p+1 =⇒ ctww(G )> p
Complexity: FPT in p

4Hliněný, Oum
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Improvement: Comparing with rank-width

rw(G )≤ cw(G )≤ ctww(G )+1
(tight for graphs with no edges, is that all ?)

ctww(G )≤ 2rw(G)+1 (unsure, proof for booleanwidth also works for
rankwidth ?)
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Improved exponential approximation ?

Algo 1 [Oum05]
Input: G ,r
Output: A (3r −1)-rank decomposition or a witness that rw(G )> r

Algo 2
Input: A q-rank decomposition of a graph G
Output: A 2q+1-contraction sequence of G

Algo 1 (r = p+1) then Algo 2 (q = 3p+2)
Input: G ,p
Output: A 23p+3-contraction sequence or a witness that
rw(G )> p+1 =⇒ ctww(G )> p
Complexity: FPT in p
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Linear approximations

1
2ctww(G )+1≤ cw(G )≤ ctww(G )+1

Approx ctww(G ) with ratio λ =⇒ Approx cw(G ) with ratio 2λ

Negative results for cw =⇒ Negative results for ctww
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Non-approximation of cliquewidth

0≤ ε< 1
NO ALGO: (unless P=NP) [FRRS09]5

Input: G , k
Ouput: A witness that cw(G )≤ k +|VG |ε or of that cw(G )> k .

Complexity: P

Does not exclude a 2-approx...
Unless ∃ε< 1,∀G ,cw(G )≤ |VG |ϵ ?

5Fellows, Rosamond, Rotics, Szeider
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The End

Thank you for your attention !

Questions ?
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