Linear bounds between Cliquewidth and Component twin-width and approximations

Ambroise Baril, Miguel Couceiro, Victor Lagerkvist
Université de Lorraine, CNRS, LORIA \& Linköpings Universitet
November 2022

Contents

First bound

Second bound

DP FPT Algorithms

Approximations

k-COLORING

Figure: Instance of 3-COLORING

Figure: Solution of the instance

$$
c: V_{G} \mapsto[k] \text { such that } \forall(u, v) \in E_{G}, c(u) \neq c(v)
$$

H-COLORING

Example of a C_{5}-COLORING
$f: V_{G} \rightarrow V_{H}$
$\forall(u, v) \in E_{G},(f(u), f(v)) \in E_{H}$
f is an Homomorphism
k-COLORING $=k_{k}$-COLORING

NP-complete problems

NP-complete problem

No poly algo unless $\mathrm{P}=\mathrm{NP}$

How to solve in practice ?

FPT algorithm

Parameter: $\lambda:\{$ Instances $\} \mapsto \mathbb{N}$

Algo FPT parameterized by λ on instance x
Complexity: $F(\lambda(x)) \times\|x\|^{O(1)}$
F huge function $\left(F: \lambda \mapsto \lambda^{\lambda^{\lambda \cdots}}\right)$

$$
\|x\|^{\lambda(x)} \text { not allowed }
$$

Clique-width

Figure: 3-expression of a graph
${ }^{\bullet} i$: vertex labelled by i
$G_{1} \oplus G_{2}$: disjointed union
$\rho_{j \rightarrow i}(G)$: relabel the j with i
$\eta_{i, j}(G)$: construct an edge between every i and j
$\mathrm{cw}(G)$ number of labels
k-COLORING in time
$\left(2^{k}-2\right)^{\mathrm{cw}(G)} \times\left|V_{G}\right|^{2}$

Exemple of a contraction sequence

Figure: A contraction sequence of a graph

Fundamental Property:
$\left(S_{1}, S_{2}\right)$ is a black edge $\Longrightarrow \forall(u, v) \in S_{1} \times S_{2},(u, v) \in E_{G}$ $\left(S_{1}, S_{2}\right)$ is not an edge $\Longrightarrow \forall(u, v) \in S_{1} \times S_{2},(u, v) \notin E_{G}$

(Component) twin-width

Figure: Contraction sequence of a graph
k-COLORING in time $\left(2^{k}-1\right)^{\text {ctww }(G)} \times\left|V_{G}\right|^{2}$

No FPT algo for 3-COLOR param by tww (G) :

3-COLOR is NP-hard on planar graphs
$\operatorname{tww}(G)$: Maximal red-degree [BKTW20] ${ }^{a}$ $\operatorname{ctww}(G):$ Max red-component size [BKRT22] ${ }^{b}$
tww is bounded on planar graphs

Functional Equivalence

Bounded Cliquewidth \Longleftrightarrow Bounded Component twin-width FPT for Cliquewidth \Longleftrightarrow FPT for Component twin-width

Proof: [BKRT22] ${ }^{1}$

Using boolean-width (func equiv to cliquewidth)

$$
\operatorname{ctww}(G) \leq 2^{\operatorname{boolw}(G)+1} \leq 2^{\mathrm{cw}(G)+1}
$$

AND

$$
\begin{gathered}
\operatorname{cw}(G) \leq 2^{\operatorname{boolw}(G)} \text { and boolw }(G) \leq 2^{\operatorname{ctww}(G)} \\
\text { so } \\
\operatorname{cw}(G) \leq 2^{2^{\operatorname{ctww}(G)}}
\end{gathered}
$$

${ }^{1}$ Bonnet, Kim, Reinald, Thomassé

Contents

Parameterized complexity

First bound

Second bound

DP FPT Algorithms

Approximations

First contribution: Improved bound

$$
\begin{gathered}
\text { I will prove } \\
\mathrm{cw}(G) \leq \operatorname{ctww}(G)+1
\end{gathered}
$$

Take a contraction sequence of G of ctww k

Build a $(k+1)$-expression of G

Exemple of a contraction sequence

For $C=\left\{S_{1}, \ldots, S_{p}\right\}$ red-component Build φ_{C} a $(k+1)$-expression of $G\left[S_{1} \uplus \cdots \uplus S_{p}\right]$ with $\forall i$, label $\left(S_{i}\right)=i$

Same red-component $=$ Same formula
Same set $=$ Same label
Figure: A contraction sequence of a graph

Exemple of invariant

Goal

$\varphi:=$
$G\left[S_{0} \uplus S_{1} \uplus S_{2} \uplus S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{6}\right]$

Using \oplus

$$
\begin{aligned}
& \varphi_{1}:=G\left[S_{1} \uplus S_{2}\right] \\
& \varphi_{2}:=G\left[S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{7}\right] \\
& \varphi_{3}:=G\left[S_{6}\right] \\
& \varphi_{4}:=G\left[S_{8}\right]
\end{aligned}
$$

$\varphi_{1} \oplus \varphi_{2} \oplus \varphi_{3} \oplus \varphi_{4}$

Adding edges

$\varphi_{1}:=G\left[S_{1} \uplus S_{2}\right]$
$\varphi_{2}:=G\left[S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{7}\right]$
$\varphi_{3}:=G\left[S_{6}\right]$
$\varphi_{4}:=G\left[S_{8}\right]$
$G\left[S_{1} \uplus S_{2} \uplus S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{6} \uplus S_{7} \uplus S_{8}\right]:=$
$\eta_{\mathrm{o},,} \eta_{\mathrm{e},} \eta_{\mathrm{o},} \eta_{\mathrm{o}, \mathrm{e}} \eta_{\mathrm{e},} \eta_{\mathrm{o},}$
$\left(\varphi_{1} \oplus \varphi_{2} \oplus \varphi_{3} \oplus \varphi_{4}\right)$

Relabelling the bags that will be contracted

$$
\begin{aligned}
& \varphi_{1}:=G\left[S_{1} \uplus S_{2}\right] \\
& \varphi_{2}:=G\left[S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{7}\right] \\
& \varphi_{3}:=G\left[S_{6}\right] \\
& \varphi_{4}:=G\left[S_{8}\right] \\
& \\
& \\
& G\left[S_{1} \uplus S_{2} \uplus S_{3} \uplus S_{4} \uplus S_{5} \uplus S_{6} \uplus S_{7} \uplus S_{8}\right]:= \\
& \rho_{\bullet \rightarrow} \rightarrow \\
& \eta_{\bullet,,} \eta_{\bullet,} \eta_{\bullet,,} \eta_{\bullet, \stackrel{ }{ } \eta_{\bullet,} \eta_{\bullet, \stackrel{ }{ }}}^{\left(\varphi_{1} \oplus \varphi_{2} \oplus \varphi_{3} \oplus \varphi_{4}\right)}
\end{aligned}
$$

Goal reached!

Base case

Contraction sequence of $c t w w=3$

We will use 4 labels: •, •• $\cdot, ~ \bullet:$ proves $c w \leq 4$

Red-component are singletons $\{a\},\{b\}, \ldots$

$$
\begin{aligned}
& \varphi_{a}= \\
& \varphi_{b}= \\
& \varphi_{c}= \\
& \varphi_{d}= \\
& \varphi_{e}= \\
& \varphi_{f}= \\
& \varphi_{g}=
\end{aligned}
$$

Contracting e and f

$\varphi_{a d e f}=$
$\rho_{\bullet \mapsto}$
$\eta_{\bullet, \stackrel{ }{ } \eta_{\bullet, \stackrel{ }{\prime}} \eta_{\bullet,}}^{\left(\varphi_{a} \oplus \varphi_{d} \oplus\right.}$
$\left.\varphi_{e} \oplus \varphi_{f}\right)$

Contracting a and d

$\varphi_{\text {adef }}$
$\varphi=。$

$\varphi_{\text {adefg }}=$
$\rho_{\text {o• }}$
$\eta_{\circ, \bullet} \eta_{\circ,-}$
$\left(\varphi_{\text {adef }} \oplus \varphi_{g}\right)$

Contracting b and ef

$\varphi_{\text {ad ef } g}$
φ_{b}

$\varphi_{\text {adbef } g}=$
$\rho_{\bullet \mapsto}$
$\eta_{\bullet, \bullet} \eta_{\bullet, \circ}$
$\left(\varphi_{\text {adefg }} \oplus \varphi_{b}\right)$

Contracting ad and g

φ ad bef g

$\varphi_{\text {adg bef }}=$ $\rho \mapsto$
$\varphi_{\text {ad bef } g}$

Contracting c and bef

$\varphi_{\text {adg bef }}$
φ_{C}

$$
\text { bcef }-\mathrm{-} \mathrm{-} \mathrm{-} \text { adg }
$$

$\varphi_{\text {adgbcef }}=$ $\rho \stackrel{ }{ } \rightarrow$
$\eta_{\mathrm{o}, \text { 。 }}$
$\left(\varphi_{\text {adg bef }} \oplus\right.$
φ_{C})

Consequence

Red-component of size p, we need $p+1$ colors (p colors as a result, 1 temporary color)

Contraction of comp.width $k \Longrightarrow(k+1)$-expression

$$
\mathrm{cw}(\mathrm{G}) \leq \operatorname{ctww}(\mathrm{G})+1
$$

Tight for cographs $(c w=2, c t w w=1)$
No bound possible with linearcliquewidth (cliquewidth and linearcliquewidth are not functionnaly equivalent)

Contents

Parameterized complexity

First bound

Second bound

DP FPT Algorithms

Approximations

Functional equivalence

We already know:

$$
\begin{gathered}
\operatorname{ctww}(G) \leq 2^{\operatorname{boolw}(G)+1} \text { and boolw }(G) \leq \operatorname{cw}(G) \\
\text { so } \\
\operatorname{ctww}(G) \leq 2^{\operatorname{cw}(G)+1}
\end{gathered}
$$

$$
\begin{gathered}
\text { I will prove } \\
\operatorname{ctww}(G) \leq 2 \operatorname{cw}(G)-1 \text { and } \operatorname{ctww}(G) \leq \operatorname{linearcw}(G)
\end{gathered}
$$

Take a (linear) k-expression

Build a contraction sequence of G, where every red-component has size $\leq 2 k-1$ (resp. $\leq k$).

k-expression

Figure: k-expression tree structure

Severe abuse of notation: \oplus must be binary

Intuition: contract same colors in \oplus

Build larger and larger "parks" following the k-expressions.

Contract similar colors:

- Parks size $\leq 2 k$
- No red-edges crossing parks

Initial parks are single vertices

Free contraction of twins

Here, d, e and f (as well as h and i) are introduced together with the same labels: they are twins

becomes

Contracting similar colors in a park

- Merge the parks of a and b, of c and def and of g and hi.
- Collapse the k-expression
- No 2 different colors in the same park: no contraction.

Joining different colors in a park

- Merge the parks of $\{a, b\}$ and $\{c, d e f\}$ and of $\{g, h i\}$ and $\{j\}$.
- b and c are both blue in the same park: contract them.

Main argument: no red-edge crossing parks

b and c will have eternally the same label
b and c have exactly the same neighbors in $\{g, h, i, j\}$: no red-edge crossing parks
b and c have been contracted.

a will become blue: contract a and $b c$
j will become green: contract j and g

Renaming in a park: no red-edge crossing parks

g and j will have eternally the same label
g and j have exactly the same neighbors in $\{a, b, c, d, e, f\}$
a and $b c$ have been contracted.

Next step: merge parks.
One park left: Ends.
Finish the contraction sequence randomly

Largest possible red-component

k labels on both side.
Red-comp of size k on both side.

Peak: Red-comp of size $2 k-1$ Then, contract by color until k vertices left in the park Then, procede to the next \oplus

Case of a linear k-expression

Linear k-expression: $G_{1} \oplus G_{2}$ is used $\Longrightarrow G_{2}$ has one vertex

k labels on one side.
1 vertex (so 1 label) on the otherside

Peak: Red-comp of size k

Consequence

We have a contraction sequence were every red-comp has size $\leq 2 k-1$ (resp. k) until we are left with a single park.

Consequence

We have a contraction sequence were every red-comp has size $\leq 2 k-1$ (resp. k) until we are left with a single park.

Any park has size $\leq 2 k$ (resp. $\leq k+1$). Next contraction: size $2 k-1$ (resp. k): no red-comp of size $>2 k-1$ (resp. $>k$) can emerge.

Consequence

We have a contraction sequence were every red-comp has size $\leq 2 k-1$ (resp. k) until we are left with a single park.

Any park has size $\leq 2 k$ (resp. $\leq k+1$). Next contraction: size $2 k-1$ (resp. k): no red-comp of size $>2 k-1$ (resp. $>k$) can emerge.
(Linear) k-expression \Longrightarrow contraction sequence with every red-comp having size $\leq 2 k-1$ (resp. k)

$$
\operatorname{ctww}(G) \leq 2 \operatorname{cw}(G)-1 \text { and } \operatorname{ctww}(G) \leq \operatorname{linearcw}(G)
$$

Consequence

We have a contraction sequence were every red-comp has size $\leq 2 k-1$ (resp. k) until we are left with a single park.

Any park has size $\leq 2 k$ (resp. $\leq k+1$). Next contraction: size $2 k-1$ (resp. k): no red-comp of size $>2 k-1$ (resp. $>k$) can emerge.
(Linear) k-expression \Longrightarrow contraction sequence with every red-comp having size $\leq 2 k-1$ (resp. k)

$$
\operatorname{ctww}(G) \leq 2 \operatorname{cw}(G)-1 \text { and } \operatorname{ctww}(G) \leq \operatorname{linearcw}(G)
$$

$$
\operatorname{tww}(G) \leq 2 \operatorname{cw}(G)-2
$$

Consequence

We have a contraction sequence were every red-comp has size $\leq 2 k-1$ (resp. k) until we are left with a single park.

Any park has size $\leq 2 k$ (resp. $\leq k+1$). Next contraction: size $2 k-1$ (resp. k): no red-comp of size $>2 k-1$ (resp. $>k$) can emerge.
(Linear) k-expression \Longrightarrow contraction sequence with every red-comp having size $\leq 2 k-1$ (resp. k)

```
ctww(G) \leq2cw(G)-1 and ctww(G) \leqlinearcw(G)
```

$$
\operatorname{tww}(G) \leq 2 \operatorname{cw}(G)-2
$$

Tight?

Contents

Parameterized complexity

First bound

Second bound

DP FPT Algorithms

Approximations

I will present in general term the associated algorithm

${ }^{2}$ Bonnet, Kim, Reinald, Thomassé

I will present in general term the associated algorithm
It will solve \#k-COLORING, but still works for \#H-COLORING and even \#BINARY-CSP (with edge-labels)

[^0]
\#BINARY-CSP FPT by component twin-width

I will present in general term the associated algorithm
It will solve \#k-COLORING, but still works for \#H-COLORING and even \#BINARY-CSP (with edge-labels)

Complexity: $\left(2^{k}-1\right)^{c t w w(G)+1} \times\left|V_{G}\right|^{2}$
Very similar to [BKRT22] ${ }^{2}$
${ }^{2}$ Bonnet, Kim, Reinald, Thomassé

Solving \#k-COLORING FPT by component twin-width

For all C_{1}, C_{2} subsets of colors we know
$\left|\operatorname{COL}_{S_{1}, S_{2}}^{c_{1}, C_{2}}\right|=$
$\mid\left\{f: G\left[S_{1} \uplus S_{2}\right] \rightarrow{ }_{c o l} C_{1} \uplus C_{2}\right.$
$\left.f\left(S_{1}\right)=C_{1}, f\left(S_{2}\right)=C_{2}\right\} \mid$
$\mid \operatorname{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{c_{3}, C_{4}, C_{5}, C_{7}}$
$\left|\mathrm{COL}_{S_{8}}^{\mathrm{C}_{8}}\right|$
$\left|\operatorname{COL}_{S_{6}}^{C_{6}}\right|$

$$
G_{k+1}
$$

Base Case

No red-edges: red-components are singletons $\{u\}$ for $u \in V_{G}$:

$$
\left|C O L_{\{u\}}^{C}\right|=\left\{\begin{array}{lc}
1 & \text { if } C \text { is a singleton } \\
0 & \text { otherwise }
\end{array}\right.
$$

Dealing with a contraction

Let $\left(C_{0}, \ldots, C_{6}\right)$ subsets of colors We have $\left|\operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}}\right|,\left|C O L_{S_{8}}^{C_{8}}\right|$ $\left|C O L L_{S_{6}}^{C_{6}}\right|$ and $\mid \mathrm{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5},}$ We need to compute $\left|C O L_{S_{0}, \ldots, S_{6}}^{C_{0}, \ldots, C_{6}}\right|$

Problem: No S_{0} in the term above.

Dealing with a contraction

Let $\left(C_{0}, \ldots, C_{6}\right)$ subsets of colors
We have $\left|\operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}}\right|,\left|C O L_{S_{8}}^{C_{8}}\right|$
$\left|C O L L_{S_{6}}^{C_{6}}\right|$ and $\mid \mathrm{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5},}$
We need to compute $\left|C O L_{S_{0}, \ldots, S_{6}}^{C_{0}, \ldots, C_{6}}\right|$
Problem: No S_{0} in the term above.
Solution: Partition by image of S_{7} and S_{8}
$\operatorname{COL}_{S_{0}, \ldots, S_{6}}^{C_{0}, \ldots, C_{6}}={ }_{C_{7} \cup C_{8}=C_{0}}^{\uplus} \operatorname{COL}_{S_{1}, \ldots, S_{7}, S_{8}}^{C_{1}, \ldots C_{7}, C_{8}}$
G_{k}

Non feasibility: Empty cases

3-COLORING:
$C_{1}=\{0,0\}, C_{3}=\{0,0, \cdot\}$
Then: $\operatorname{COL}_{S_{1}, \ldots, S_{8}}^{\mathcal{C}_{1}, \ldots C_{8}}=\varnothing$

Proof:

By contradiction $f \in \operatorname{COL}_{S_{1}, \ldots, S_{8}}^{C_{1}, \ldots, C_{8}}$
$\exists\left(s_{1}, s_{3}\right) \in S_{1} \times S_{3}$
$f\left(s_{1}\right)=\cdot, f\left(s_{3}\right)=0$
Then $\left(s_{1}, s_{3}\right) \in E_{G}$ (because
(S_{1}, S_{3}) is a black edge)
But $f\left(s_{1}\right)=f\left(s_{3}\right)$!
f is not a valid 3-coloring

Feasibility: Combining the partial colorings

Otherwise, taking $f_{1} \in \operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}}, f_{2} \in C O L_{S_{8}}^{C_{8}}$

$$
f_{3} \in C O L_{S_{6}}^{C_{6}} \text { and } f_{4}=C O L L_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5}, C_{7}} .
$$

Joinning $f_{1}, f_{2}, f_{3}, f_{4}$ into $f_{1} \not f_{2} * f_{3} * f_{4} \in C O L_{S_{1}, \ldots, S_{8}}^{C_{1}, \ldots,,_{8}}$.

Figure 1: Partial color- Figure 2: Partial color- Figure 3: Partial color$\operatorname{ing} f_{1} \quad \operatorname{ing} f_{2} \quad$ ing $f_{1} \bowtie f_{2}$

Figure: Joining 2 partial colorings

Third contribution: Dynamic Programming algorithm

$$
\operatorname{COL}_{\substack{S_{0}, \ldots, S_{6}}}^{C_{0}, \ldots, C_{6}}=\underset{\substack{C_{7} \cup \\ \text { feasible }}}{\stackrel{\leftrightarrow}{C_{8}}=C_{0}} \operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}} \times \operatorname{COL}_{S_{8}}^{C_{8}} \times \operatorname{COL}_{S_{6}}^{C_{6}} \times \operatorname{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5}, C_{7}}
$$

$$
\begin{aligned}
& \operatorname{COL}_{S_{0}, \ldots, S_{6}}^{C_{0}, \ldots, C_{6}}=C_{7} \cup \stackrel{\uplus}{C_{8}}=C_{0} . \operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}} \times \operatorname{COL}_{S_{8}}^{C_{8}} \times \operatorname{COL}_{S_{6}}^{C_{6}} \times \operatorname{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5}, C_{7}} \\
& \text { feasible } \\
& \text { Taking the cardinal: }
\end{aligned}
$$

Third contribution: Dynamic Programming algorithm

$$
\begin{aligned}
& \operatorname{COL}_{S_{0}, \ldots, S_{6}}^{C_{0}, \ldots, C_{6}}=C_{7} \cup \stackrel{\uplus}{C_{8}}=C_{0} \operatorname{COL}_{S_{1}, S_{2}}^{C_{1}, C_{2}} \times \operatorname{COL}_{S_{8}}^{C_{8}} \times \operatorname{COL}_{S_{6}}^{C_{6}} \times \operatorname{COL}_{S_{3}, S_{4}, S_{5}, S_{7}}^{C_{3}, C_{4}, C_{5}, C_{7}} \\
& \text { feasible } \\
& \text { Taking the cardinal: }
\end{aligned}
$$

To solve \#BINARY-CSP, return:

$$
\sum_{C \subseteq[k]}\left|C O L_{V_{G}}^{C}\right|
$$

H-COLORING with (oriented) edge-labelled graphs

Rule: White \mapsto White, Yellow or Purple Blue \mapsto White or Purple Pink \mapsto Purple
$\operatorname{PINK}=\{(A, A),(A, B),(B, A)$, $(C, B),(C, C),(E, D)\}$

BINARY-CSP translation: $\operatorname{PINK}\left(x_{2}, x_{1}\right) \wedge \operatorname{BLUE}\left(x_{1}, x_{2}\right) \wedge \operatorname{WHITE}\left(x_{3}, x_{3}\right) \ldots$

We can express BINARY-CSP(\{WHITE,BLUE,PINK\})

Component twin-width applied to BINARY-CSP

$$
\begin{gathered}
\operatorname{label}(1,2)=\operatorname{label}(1,3)=: \operatorname{label}(1,23) \text { and } \\
\operatorname{label}(2,1)=\operatorname{label}(3,1)=: \operatorname{label}(23,1)
\end{gathered}
$$

label $(4,2) \neq$ label $(4,3):(4,23)$ is a red-edge (unoriented)
Fundamental Property: label $(1,23)=$ blue \Longrightarrow
label $(1,2)=$ label $(1,3)=$ blue
Component-twin width: Size of the largest red-component

Algo for 3 -COLOR in time $f(\operatorname{tww}(G)) \times\left|V_{G}\right|^{O(1)}$?

Planar graphs: \quad www ≤ 7

3-COLOR is NP-complete on planar graphs: $\mathrm{P}=\mathrm{NP}$

Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G)

Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G)

Algorithm in time $(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|}$

Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G)
Algorithm in time $(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|}$
Beats many best known upper bounds:

- \# C_{k}-COLORING in time $O^{*}\left(5^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(6^{\left|V_{G}\right|}\right)$
- \#H-COLORING (H any cograph) in time $O^{*}\left(3^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(5^{\left|V_{G}\right|}\right)$
Previous bounds $(\min (\operatorname{linearcw}(H)+2,2 c w(H)+1))^{\left|V_{G}\right|}[W a h 11]^{3}$.

[^1]
Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G)
Algorithm in time $(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|}$
Beats many best known upper bounds:

- \# C_{k}-COLORING in time $O^{*}\left(5^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(6^{\left|V_{G}\right|}\right)$
- \#H-COLORING (H any cograph) in time $O^{*}\left(3^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(5^{\left|V_{G}\right|}\right)$
Previous bounds $(\min (\operatorname{linearcw}(H)+2,2 \mathrm{cw}(\mathrm{H})+1))^{\left|V_{G}\right|}[\mathrm{Wah} 11]^{3}$.
We know $\operatorname{ctww}(H)+2 \leq \min (2 c w(H)+1$, linearcw $(H)+2)$.

Fine-grained algorithm

If we have an optimal contraction sequence for H (instead of G)
Algorithm in time $(\operatorname{ctww}(H)+2)^{\left|V_{G}\right|}$
Beats many best known upper bounds:

- \# C_{k}-COLORING in time $O^{*}\left(5^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(6^{\left|V_{G}\right|}\right)$
- \#H-COLORING (H any cograph) in time $O^{*}\left(3^{\left|V_{G}\right|}\right)$ instead of $O^{*}\left(5^{\left|V_{G}\right|}\right)$
Previous bounds $(\min (\operatorname{linearcw}(H)+2,2 \mathrm{cw}(\mathrm{H})+1))^{\left|V_{G}\right|}[\mathrm{Wah} 11]^{3}$.
We know $\operatorname{ctww}(H)+2 \leq \min (2 \operatorname{cw}(H)+1$, linearcw $(H)+2)$.
Claim: We can solve weighted, list... variants

[^2]
Contents

Parameterized complexity

First bound

Second bound

DP FPT Algorithms

Approximations

Approximating component twin-width

$$
\mathrm{cw}(\mathrm{G}) \leq \operatorname{ctww}(\mathrm{G})+1 \leq 2 \mathrm{cw}(\mathrm{G})
$$

Approx $\operatorname{cw}(G)$ with ratio $\lambda \Longrightarrow \operatorname{Approx} \operatorname{ctww}(G)$ with ratio 2λ
Positive results for $\mathrm{cw} \Longrightarrow$ Positive restults for ctww

Exponential approximation

Algo 1: $[\mathrm{HOO}]^{4}$
Input: G, k
Output: A $\left(2^{3 k}-1\right)$-expression of G, or a witness that $\mathrm{cw}(G)>k$

Algo 2:
Input: A q-expression of a graph G
Output: A $(2 q-1)$-contraction sequence of G

Algo $1(k=p+1)$ then algo $2\left(q=2^{3 p+3}-1\right)$
Input: G, p
Output: A $\left(2^{3 p+4}-3\right)$-contraction sequence or a witness that $\mathrm{cw}(G)>p+1 \Rightarrow \operatorname{ctww}(G)>p$
Complexity: FPT in p

Improvement: Comparing with rank-width

$$
\begin{aligned}
& \qquad \operatorname{rw}(G) \leq \mathrm{cw}(G) \leq \operatorname{ctww}(G)+1 \\
& \text { (tight for graphs with no edges, is that all ?) }
\end{aligned}
$$

$\operatorname{ctww}(G) \leq 2^{\operatorname{rw}(G)+1}$ (unsure, proof for booleanwidth also works for rankwidth ?)

Improved exponential approximation ?

Algo 1 [Oum05]
Input: G,r
Output: A $(3 r-1)$-rank decomposition or a witness that $r w(G)>r$

Algo 2
Input: A q-rank decomposition of a graph G
Output: A 2^{q+1}-contraction sequence of G

Algo $1(r=p+1)$ then Algo $2(q=3 p+2)$
Input: G, p
Output: A $2^{3 p+3}$-contraction sequence or a witness that $\operatorname{rw}(G)>p+1 \Longrightarrow \operatorname{ctww}(G)>p$
Complexity: FPT in p

$$
\frac{1}{2} \operatorname{ctww}(G)+1 \leq \operatorname{cw}(G) \leq \operatorname{ctww}(G)+1
$$

Approx $\operatorname{ctww}(G)$ with ratio $\lambda \Rightarrow \operatorname{Approx} \mathrm{cw}(G)$ with ratio 2λ
Negative results for $\mathrm{cw} \Rightarrow$ Negative results for ctww

Non-approximation of cliquewidth

$0 \leq \varepsilon<1$
 NO ALGO: (unless $\mathrm{P}=\mathrm{NP}$) [FRRS09] ${ }^{5}$
 Input: G, k

Ouput: A witness that $\mathrm{cw}(G) \leq k+\left|V_{G}\right|^{\varepsilon}$ or of that $\mathrm{cw}(G)>k$. Complexity: P

Does not exclude a 2-approx...
Unless $\exists \varepsilon<1, \forall G, \mathrm{cw}(G) \leq\left|V_{G}\right|^{\epsilon}$?

[^3]
References

Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé, Twin-width vi: the lens of contraction sequences, SODA-2022, SIAM, 2022, pp. 1036-1056.

Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant, Twin-width I: tractable FO model checking, FOCS-2020, IEEE, 2020.

Michael R Fellows, Frances A Rosamond, Udi Rotics, and Stefan Szeider, Clique-width is np-complete, SIAM Journal on Discrete Mathematics 23 (2009), no. 2, 909-939.

Petr Hliněnỳ and Sang-il Oum, Finding branch-decompositions and rank-decompositions, SIAM Journal on Computing 38 (2008), no. 3, 1012-1032.

Sang-il Oum, Approximating rank-width and clique-width quickly, Graph-Theoretic Concepts in Computer Science, Springer, 2005, pp. 49-58.

Magnus Wahlström, New plain-exponential time classes for graph homomorphism, Theory of Computing Systems 49 (2011), no. 2, 273-282.

Thank you for your attention!
Questions?

[^0]: ${ }^{2}$ Bonnet, Kim, Reinald, Thomassé

[^1]: ${ }^{3}$ Wahlström

[^2]: ${ }^{3}$ Wahlström

[^3]: ${ }^{5}$ Fellows, Rosamond, Rotics, Szeider

