WQO-BQO What is up? Lyon 21–23 Vietoris and scattered hyperspaces

Robert Bonnet Université de Savoie Mont Blanc

Some references

- [S] Skula : On a reflective subcategory of the category of all topological spaces, Trans. Amer. Math. Soc. **142** (1969) pp. 37–41
- [DW] A. Dow and S. Watson : Skula spaces, Comment. Math. Univ. Carolinae, **31** :1, (1990), pp. 27–31.
- [BR] R. Bonnet and M. Rubin : On well-generated Boolean algebras, Ann. Pure Appl. Logic 105 (2000), pp. 1–50
- [ABKR] U. Abraham, R. Bonnet, W. Kubiś and M. Rubin : On poset Boolean algebras, Order 20, (2003), 265–290.
- [ABK] U. Abraham, R. Bonnet, W. Kubiś : Poset algebras over well quasi-ordered posets, Algebra Universalis 58(3) (2008) pp. 263–286.
- BBK] T. Banack, R. Bonnet and W. Kubiś : *Vietoris hyperspaces of scattered Priestley spaces*, Israel J. Math., **246** (2023), pp. 37–81

Definition 1.

For a topological space X, we say that a family $\mathscr{U} := \{U_x : x \in X\}$ is a clopen selector if each U_x is a closed and open (clopen) subset of X and if \mathscr{U} satisfies :

- (1) If $x \neq y$ then $x \notin U_y$ or $y \notin U_x$ (Hausdorff Separation Axiom),
- (2) $x \in U_x$ for every $x \in X$,
- (3) if $y \in U_x$ then $U_y \subseteq U_x$ (Transitivity / Absorption).

A Skula space X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

Note that, given \mathscr{U} , $y \leq^{\mathscr{U}} x$ whenever $y \in U_x$ is a partial order on X, and thus $U_x = \{y \in U_x : y \leq x\}.$

Skula spaces were introduced (independently of Skula [4-S]) by Bonnet and Rubin [3-MR] in the algebraic way as "well-generated Boolean algebras".

Definition 1.

For a topological space X, we say that a family $\mathscr{U} := \{U_x : x \in X\}$ is a clopen selector if each U_x is a closed and open (clopen) subset of X and if \mathscr{U} satisfies :

- (1) If $x \neq y$ then $x \notin U_y$ or $y \notin U_x$ (Hausdorff Separation Axiom),
- (2) $x \in U_x$ for every $x \in X$,
- (3) if $y \in U_x$ then $U_y \subseteq U_x$ (Transitivity / Absorption).

A Skula space X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

Note that, given \mathscr{U} , $y \leq^{\mathscr{U}} x$ whenever $y \in U_x$ is a partial order on X, and thus $U_x = \{y \in U_x : y \leq x\}.$

Skula spaces were introduced (independently of Skula [4-S]) by Bonnet and Rubin [3-MR] in the algebraic way as "well-generated Boolean algebras".

Basic examples :

1. Successor ordinals, and 2. Countable compact and scattered spaces. Main Example : Final subsets of a WQO

A poset P is a Well-Quasi-Ordering (WQO) if P is well-founded with no infinite antichain (FAC).

Let *P* be a WQO. Denote by FS(P) the set of all finite final subsets of *P*. So \emptyset , $P \in FS(P)$. Moreover

- FS(P) ordered by \supseteq is well-founded.
- FS(P) is endowed with the pointwise topology : a basic clopen set is { $z \in FS(P)$: $\sigma \subseteq z$ and $\tau \cap z = \emptyset$ } where $\sigma, \tau \subseteq P$ are finite.

Theorem 1.

Let P be a WQO. Then $\langle \mathrm{FS}(\mathsf{P}), \supseteq
angle$ is Skula, i.e. it has a clopen selector.

Proof. For $F \in FS(P)$ let σ_F be the finite subset of P such that F is the final subset of P generated by σ_F , i.e. $F = \bigcup_{t \in \sigma_F} \uparrow t$. So F is clopen in and

 $U_F := \{ G \in FS(P) : G \supseteq F \} = \{ G \in FS(P) : \sigma_F \subseteq G \}$ is clopen in FS(P). So $\{U_F : F \in FS(P)\}$ is a clopen selector.

Basic examples :

1. Successor ordinals, and 2. Countable compact and scattered spaces. Main Example : Final subsets of a WQO

A poset P is a Well-Quasi-Ordering (WQO) if P is well-founded with no infinite antichain (FAC).

Let *P* be a WQO. Denote by FS(P) the set of all finite final subsets of *P*. So \emptyset , $P \in FS(P)$. Moreover

- FS(P) ordered by \supseteq is well-founded.
- FS(P) is endowed with the pointwise topology : a basic clopen set is { $z \in FS(P)$: $\sigma \subseteq z$ and $\tau \cap z = \emptyset$ } where $\sigma, \tau \subseteq P$ are finite.

Theorem 1.

Let P be a WQO. Then $(FS(P), \supseteq)$ is Skula, i.e. it has a clopen selector.

Proof. For $F \in FS(P)$ let σ_F be the finite subset of P such that F is the final subset of P generated by σ_F , i.e. $F = \bigcup_{t \in \sigma_F} \uparrow t$. So F is clopen in and

 $U_F := \{ G \in FS(P) \colon G \supseteq F \} = \{ G \in FS(P) \colon \sigma_F \subseteq G \}$ is clopen in FS(P). So $\{U_F \colon F \in FS(P)\}$ is a clopen selector.

- \mathscr{U} defines the topology on the compact space X.
- $\langle \mathscr{U}, \subseteq \rangle$ is well-founded and

If U_x is minimal in \mathscr{U} then $U_x = \{x\}$..

Proof Let $(U_{x_n})_{n\in\omega}$ be s strictly decreasing sequence of members of \mathscr{U} . Let $F = \bigcap_n U_{x_n}$. For $y \in F$, $U_y \subseteq F$ and thus $F = \bigcup_{y \in F} U_y$ is open. Then $U_{x_n} \setminus F \neq \emptyset$, but $\bigcap_n U_{x_n} \setminus F = \emptyset$: a contradiction.

• X is a (topologically) scattered space : every nonempty closed set F has an isolated point (for the induced topology)

• Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z and thus, K is clopen.

So in some sense ${\mathscr U}$ is an "almost-meet-semilattice".

Denote by D(Y) the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^{\alpha}(X) = D(\bigcap_{\beta < \alpha} D^{\beta}(X))$.

イロト イヨト イヨト イヨト

- \mathscr{U} defines the topology on the compact space X.
- ⟨𝔄, ⊆⟩ is well-founded and
 If U_x is minimal in 𝔄 then U_x = {x}..

Proof Let $(U_{x_n})_{n\in\omega}$ be s strictly decreasing sequence of members of \mathscr{U} . Let $F = \bigcap_n U_{x_n}$. For $y \in F$, $U_y \subseteq F$ and thus $F = \bigcup_{y \in F} U_y$ is open. Then $U_{x_n} \setminus F \neq \emptyset$, but $\bigcap_n U_{x_n} \setminus F = \emptyset$: a contradiction.

• X is a (topologically) scattered space : every nonempty closed set F has an isolated point (for the induced topology)

• Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z and thus, K is clopen.

So in some sense \mathscr{U} is an "almost-meet-semilattice".

Denote by D(Y) the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^{\alpha}(X) = D(\bigcap_{\beta < \alpha} D^{\beta}(X))$.

イロト イポト イヨト イヨト

- \mathscr{U} defines the topology on the compact space X.
- ⟨𝔄, ⊆⟩ is well-founded and
 If U_x is minimal in 𝔄 then U_x = {x}..

Proof Let $(U_{x_n})_{n \in \omega}$ be s strictly decreasing sequence of members of \mathscr{U} . Let $F = \bigcap_n U_{x_n}$. For $y \in F$, $U_y \subseteq F$ and thus $F = \bigcup_{y \in F} U_y$ is open. Then $U_{x_n} \setminus F \neq \emptyset$, but $\bigcap_n U_{x_n} \setminus F = \emptyset$: a contradiction.

• X is a (topologically) scattered space : every nonempty closed set F has an isolated point (for the induced topology)

• Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z and thus, K is clopen.

So in some sense ${\mathscr U}$ is an "almost-meet-semilattice".

Denote by D(Y) the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^{\alpha}(X) = D(\bigcap_{\beta < \alpha} D^{\beta}(X))$.

- \mathscr{U} defines the topology on the compact space X.
- ⟨𝔄, ⊆⟩ is well-founded and
 If U_x is minimal in 𝔄 then U_x = {x}..

Proof Let $(U_{x_n})_{n\in\omega}$ be s strictly decreasing sequence of members of \mathscr{U} . Let $F = \bigcap_n U_{x_n}$. For $y \in F$, $U_y \subseteq F$ and thus $F = \bigcup_{y \in F} U_y$ is open. Then $U_{x_n} \setminus F \neq \emptyset$, but $\bigcap_n U_{x_n} \setminus F = \emptyset$: a contradiction.

• X is a (topologically) scattered space : every nonempty closed set F has an isolated point (for the induced topology)

• Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z and thus, K is clopen.

So in some sense ${\mathscr U}$ is an "almost-meet-semilattice".

Denote by D(Y) the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^{\alpha}(X) = D(\bigcap_{\beta < \alpha} D^{\beta}(X))$.

- \mathscr{U} defines the topology on the compact space X.
- ⟨𝔄, ⊆⟩ is well-founded and
 If U_x is minimal in 𝔄 then U_x = {x}..

Proof Let $(U_{x_n})_{n\in\omega}$ be s strictly decreasing sequence of members of \mathscr{U} . Let $F = \bigcap_n U_{x_n}$. For $y \in F$, $U_y \subseteq F$ and thus $F = \bigcup_{y \in F} U_y$ is open. Then $U_{x_n} \setminus F \neq \emptyset$, but $\bigcap_n U_{x_n} \setminus F = \emptyset$: a contradiction.

• X is a (topologically) scattered space : every nonempty closed set F has an isolated point (for the induced topology)

• Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z and thus, K is clopen.

So in some sense \mathscr{U} is an "almost-meet-semilattice".

Denote by D(Y) the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^{\alpha}(X) = D(\bigcap_{\beta < \alpha} D^{\beta}(X))$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Let 𝒞 be a clopen selector of a Skula space X. Then

 𝒜 is well-founded. Therefore ⟨X, ⊆ ⟩ has a (well-founded) rank : rkwFX(x) = sup{rkwFX(y): y < x}.

 So rkwFX(x) = 0 if and only if x is minimal, i.e. U_x = {x}. Moreover rkwF(X) = sup_{x∈X} rkwFX(x).

 By compactness rkwF(X) = sup_x rkwFX(x) is the last (ordered) derivative is nonempty and finite.

(2) X is compact and scattered. Therefore X has a (Cantor-Bendixson) height :

 $\operatorname{ht}_{\operatorname{CB}_X}(x) = \gamma \text{ iff } x \in D^{\gamma}(X) \setminus D^{\gamma+1}(X).$

So $ht_{CB_X}(x) = 0$ if and only if x is isolated.

By compactness $ht_{CB}(X) = \sup_{x} ht_{CB}(x)$ is the last (topological) derivative Endpt(X) is nonempty and finite.

Let \mathscr{U} be a clopen selector. If $x \in X$ then $\operatorname{ht}_{\operatorname{CB}_X}(x) \leq \operatorname{rk}_{\operatorname{WF}_X}(x)$.

イロト イボト イヨト イヨト

Let \mathscr{U} be a clopen selector of a Skula space X. Then

(1) \mathscr{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank : $\operatorname{rkw}_{\mathsf{F}X}(x) = \sup\{\operatorname{rkw}_{\mathsf{F}X}(y): y < x\}.$

So $\operatorname{rkw}_{F_X}(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\operatorname{rkw}(X) := \sup_{x \in X} \operatorname{rkw}(x)$. By compactness $\operatorname{rkw}(X) = \sup_x \operatorname{rkw}(x)$ is the last (ordered) derivative is nonempty and finite.

(2) X is compact and scattered. Therefore X has a (Cantor-Bendixson) height :

htc_{BX}(x) = γ iff $x \in D^{\gamma}(X) \setminus D^{\gamma+1}(X)$.

So $ht_{CB_X}(x) = 0$ if and only if x is isolated. By compactness $ht_{CB}(X) = \sup_x ht_{CB_X}(x)$ is the last (topological derivative Endpt(X) is nonempty and finite.

Let \mathscr{U} be a clopen selector. If $x \in X$ then $\operatorname{ht}_{\operatorname{CB}_X}(x) \leq \operatorname{rk}_{\operatorname{WF}_X}(x)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathscr{U} be a clopen selector of a Skula space X. Then

(1) \mathscr{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank : $\operatorname{rkwF}_X(x) = \sup \{\operatorname{rkwF}_X(y) : y < x\}.$

So $\operatorname{rkw}_{F_X}(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\operatorname{rkw}(X) := \sup_{x \in X} \operatorname{rkw}(x)$. By compactness $\operatorname{rkw}(X) = \sup_x \operatorname{rkw}(x)$ is the last (ordered) derivative is nonempty and finite.

(2) X is compact and scattered. Therefore X has a (Cantor-Bendixson) height :

$$\operatorname{ht}_{\operatorname{CB}_X}(x) = \gamma \text{ iff } x \in D^{\gamma}(X) \setminus D^{\gamma+1}(X).$$

So $ht_{CB_X}(x) = 0$ if and only if x is isolated. By compactness $ht_{CB}(X) = \sup_x ht_{CB_X}(x)$ is the last (topological) derivative Endpt(X) is nonempty and finite.

Let $\mathscr U$ be a clopen selector. If $x \in X$ then $\operatorname{ht}_{\operatorname{CB} X}(x) \leq \operatorname{rkw}_{\mathsf{F} X}(x)$.

(日)

Let \mathscr{U} be a clopen selector of a Skula space X. Then

(1) \mathscr{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank : $\operatorname{rkwF}_X(x) = \sup \{\operatorname{rkwF}_X(y) : y < x\}.$

So $\operatorname{rkw}_{F_X}(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\operatorname{rkw}(X) := \sup_{x \in X} \operatorname{rkw}(x)$. By compactness $\operatorname{rkw}(X) = \sup_x \operatorname{rkw}(x)$ is the last (ordered) derivative is nonempty and finite.

(2) X is compact and scattered. Therefore X has a (Cantor-Bendixson) height :

$$\operatorname{ht}_{\operatorname{CB}_X}(x) = \gamma \text{ iff } x \in D^{\gamma}(X) \setminus D^{\gamma+1}(X).$$

So $ht_{CB_X}(x) = 0$ if and only if x is isolated. By compactness $ht_{CB}(X) = \sup_x ht_{CB_X}(x)$ is the last (topological) derivative Endpt(X) is nonempty and finite.

Let \mathscr{U} be a clopen selector. If $x \in X$ then $\operatorname{ht}_{\operatorname{CB}_X}(x) \leq \operatorname{rk}_{\operatorname{WF}_X}(x)$.

イロト 不得 トイヨト イヨト 二日

Hyperspace H(X) of a Skula space X.

We define the Vietoris hyperspace H(X) over a Skula space X as follows :

- *H*(*X*) is the set of all nonempty closed initial subsets of ⟨*X*, ≤⟩. Therefore *U* ⊆ *H*(*X*).
- For $F, G \in H(X)$, we set $F \leq G$ if and only if $F \subseteq G$.
- The topology on H(X) is the topology generated by the sets
 U⁺ := {K ∈ H(X): K ⊆ U}

declared to be clopen where U is any clopen initial subset in X.

So $V^- := \{K \in H(X) : K \cap V \neq \emptyset\}$ is clopen in H(X) if V is clopen final in X.

Theorem 2.

Let X be a Skula space. Then H(X) is a Skula space.

Main order property $(A, B \in H(X))$:

• H(X) is a continuous join-semillattice where $A \lor B := A \cup B$.

イロト イボト イヨト イヨト

Hyperspace H(X) of a Skula space X.

We define the Vietoris hyperspace H(X) over a Skula space X as follows :

- *H*(*X*) is the set of all nonempty closed initial subsets of ⟨*X*, ≤⟩. Therefore *U* ⊆ *H*(*X*).
- For $F, G \in H(X)$, we set $F \leq G$ if and only if $F \subseteq G$.
- The topology on H(X) is the topology generated by the sets
 U⁺ := {K ∈ H(X): K ⊆ U}

declared to be clopen where U is any clopen initial subset in X.

So $V^- := \{K \in H(X) : K \cap V \neq \emptyset\}$ is clopen in H(X) if V is clopen final in X.

Theorem 2.

Let X be a Skula space. Then H(X) is a Skula space.

Main order property $(A, B \in H(X))$:

• H(X) is a continuous join-semillattice where $A \lor B := A \cup B$.

Hyperspace H(X) of a Skula space X.

We define the Vietoris hyperspace H(X) over a Skula space X as follows :

- *H*(*X*) is the set of all nonempty closed initial subsets of ⟨*X*, ≤⟩. Therefore *U* ⊆ *H*(*X*).
- For $F, G \in H(X)$, we set $F \leq G$ if and only if $F \subseteq G$.
- The topology on H(X) is the topology generated by the sets
 U⁺ := {K ∈ H(X): K ⊆ U}

declared to be clopen where U is any clopen initial subset in X.

So $V^- := \{K \in H(X) : K \cap V \neq \emptyset\}$ is clopen in H(X) if V is clopen final in X.

Theorem 2.

Let X be a Skula space. Then H(X) is a Skula space.

Main order property $(A, B \in H(X))$:

• H(X) is a continuous join-semillattice where $A \lor B := A \cup B$.

イロト イボト イヨト イヨト

Canonical Skula spaces

Recall that for a compact space Z, we denote by $ht_{CB}(Z)$ the (unique) finite and nonempty Cantor-Bendixson derivative.

We say that Z is unitary if $|D^{htCB}(Z)| = 1$.

A space X is canonically Skula if X has a clopen selector $\mathscr{U} := \{U_x : x \in X\}$ such that for $D^{\operatorname{htcB}(U_x)}(U_x) = \{x\}$ for $x \in X$ and \mathscr{U} is called a canonical clopen selector. Recall that if X is Skula then $\operatorname{htcB}_X(x) \leq \operatorname{rkwF}_X(x)$.

Fact 3.

Let X be a Skula space and $\mathscr{U} := \{U_x : x \in X\}$ be a clopen selector. The following are equivalent :

- (i) X is canonically Skula. That is Each U_x is unitary and satisfies D^{htCB}(U_x) = {x}.
- (ii) Each U_x is unitary and $ht_{CB}(U_x) = rk_{WF}(U_x)$.
- (iii) Each x is the maximum of U_x and $\operatorname{ht}_{\operatorname{cB}}(U_x) = \operatorname{rk}_{\operatorname{wF}}(U_x)$.

< ロ > < 同 > < 回 > < 回 >

Canonical Skula spaces

Recall that for a compact space Z, we denote by $ht_{CB}(Z)$ the (unique) finite and nonempty Cantor-Bendixson derivative.

We say that Z is unitary if $|D^{htCB(Z)}| = 1$.

A space X is canonically Skula if X has a clopen selector $\mathscr{U} := \{U_x : x \in X\}$ such that for $D^{\operatorname{htcB}(U_x)}(U_x) = \{x\}$ for $x \in X$ and \mathscr{U} is called a canonical clopen selector. Recall that if X is Skula then $\operatorname{htcB}_X(x) \leq \operatorname{rkwF}_X(x)$.

Fact 3.

Let X be a Skula space and $\mathscr{U} := \{U_x : x \in X\}$ be a clopen selector. The following are equivalent :

- (i) X is canonically Skula. That is Each U_x is unitary and satisfies $D^{\operatorname{ht}_{CB}}(U_x) = \{x\}$.
- (ii) Each U_x is unitary and $ht_{CB}(U_x) = rk_{WF}(U_x)$.
- (iii) Each x is the maximum of U_x and $ht_{CB}(U_x) = rk_{WF}(U_x)$.

イロト イポト イヨト イヨト

Theorem 4.

If X is canonically Skula then H(X) is canonically Skula.

A computation of height and rank on canonical Skula space.

Fact 5. Let $\mathcal{U} := \{U_x : x \in X\}$ be a canonical selector for X and let $x \in X$ (so $\mathcal{U} \subset H(X)$). Then $\operatorname{rk}_{WF}(U_{x}) = \operatorname{rk}_{WFX}(x) = \operatorname{ht}_{CBX}(x) = \operatorname{ht}_{CB}(U_{x})$ and (1) If $\operatorname{rk}_{WF_X}(x) = 0$ then $\operatorname{ht}_{CB_H(X)}(U_x) = 0$. (2) If $\operatorname{rk}_{WFX}(x) = 1$ then $\operatorname{ht}_{CB_H(X)}(U_x) = 1$. (3) If $\operatorname{rk}_{WFX}(x) = 1 + \alpha \ge 2$ then $\operatorname{ht}_{CBH(X)}(U_x) = \omega^{\alpha}$. **Application.** Let $U_{\sigma} := \bigcup_{x \in \sigma} U_x$ where $\sigma = \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ is an antichain of X satisfying $ht_{CB_X}(x_1) = 1 = ht_{CB_X}(x_2) \quad ht_{CB_X}(x_3) = 2$ $\operatorname{htc}_X(x_0) = 0$ $ht_{CB_X}(x_4) = 10 = ht_{CB_X}(x_5)$ $ht_{CB_X}(x_6) = \omega + 7$ $ht_{CBX}(x_7) = 3.$

By Fact 5 and Telgasky Theorem, we have :

$$\operatorname{htc}_{\mathsf{B}_{H(X)}}(U_{\sigma}) = \omega^{\omega+7} + \omega^9 \cdot 2 + \omega^2_{\circ} + \omega^2_{\circ} + \omega^2_{\circ} + 2.$$

Examples of canonically Skula spaces.

Claim 6. Let α be an ordinal. Then $FS(\alpha) = \alpha + 1$ is canonically Skula. If D is a scattered chain then FS(D) is (canonically) Skula. But if $D' = \omega_1 + \omega^*$ then FS(D') not homeomorphic to FS(P) for any wqo P. [ABK, § 3.3] *Hint.* For $\beta \leq \alpha$ consider $\delta_{\beta} < \beta$ such that (δ_{β}, β) is indecomposable and cofinal in $[0, \beta)$. Then $\mathscr{U} := \{(\delta_{\beta}, \beta] : \beta \leq \alpha\}$ is a canonical clopen selector. For scatteredness, use variant in the proof of Hausdorff.

Claim 7. Let *P* be a countable wqo. Then FS(P) is canonically Skula. *Hint.* Each member of FS(P) is generated by a finite subset of *P*, and thus FS(P) is countable. Hence FS(P) is homeomorphic to a compact subset *K* of the reals \mathbb{R} . Again, since *K* is countable, *K* is scattered. Therefore *K* is homeomorphic to some $\alpha + 1$. So K := FS(P) is canonically Skula.

Main Question [M. Pouzet].

Let P be a well-quasi-ordering (w.q.o.) or a better-quasi-ordering (b.q.o.). Is FS(P) canonically Skula?

Examples of canonically Skula spaces.

Claim 6. Let α be an ordinal. Then $FS(\alpha) = \alpha + 1$ is canonically Skula. If D is a scattered chain then FS(D) is (canonically) Skula. But if $D' = \omega_1 + \omega^*$ then FS(D') not homeomorphic to FS(P) for any wgo P. [ABK, § 3.3] *Hint.* For $\beta \leq \alpha$ consider $\delta_{\beta} < \beta$ such that (δ_{β}, β) is indecomposable and cofinal in $[0, \beta)$. Then $\mathscr{U} := \{(\delta_{\beta}, \beta] : \beta \leq \alpha\}$ is a canonical clopen selector. For scatteredness, use variant in the proof of Hausdorff. **Claim 7.** Let P be a countable wqo. Then FS(P) is canonically Skula. *Hint.* Each member of FS(P) is generated by a finite subset of P, and thus FS(P) is countable. Hence FS(P) is homeomorphic to a compact subset K of the reals \mathbb{R} . Again, since K is countable, K is scattered. Therefore K is homeomorphic to some $\alpha + 1$. So K := FS(P) is canonically Skula.

Main Question [M. Pouzet].

Let P be a well-quasi-ordering (w.q.o.) or a better-quasi-ordering (b.q.o.). Is FS(P) canonically Skula?

Thanks

for you patience

≧ ▶ ◀ ≧ ▶ ≧ ∽ ۹ ↔ 23 février 2023 10 / 10

メロト メポト メヨト メヨト