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Abstract

An ordered set P is well quasi-ordered (w.q.o.) if it contains no
infinite descending chain and if all its antichains are finite. All linear
extensions of the order on P are well-ordered (Wolk 1967), hence
their order types are ordinals. A famous result, due to de Jongh and
Parikh (1977), asserts that among these ordinals, one, the ordinal
length of P denoted by o(P), is maximum. We give a topological
interpretation of the coefficients in ωβ0 ⋅m0 +⋯ + ωβk−1 ⋅mk−1, the
Cantor normal form of o(P), in terms of Cantor-Bendixson ranks of
appropriate topological spaces. We illustrate our result with the
poset P made of words over a finite alphabet A. We compute the
ordinal length of the set I<ω(P) of finitely generated initial segments
of a w.q.o. P that is embeddable into [ω]<ω, the poset of finite
subsets of ω.
This is a joint work with C.Delhommé (Université de la Réunion)
and M.Sobrani (University of Fes, Morocco). The results have been
presented at the Meeting of the Canadian Mathematical Society,
Session in Honor of Dr. Robert Woodrow on the Occasion of his
70th birthday, Vancouver, December 7 2018.

2/35 February 21, 2023 2 / 35



Introduction

Let P ∶= (X ,≤) be an ordered set (poset). This poset is well founded if
every non-empty subset of the vertex set X contains some minimal
element. It is well quasi-ordered (w.q.o for short) or (partially
well-ordered ); if, in addition, it has no infinite antichain i.e., if every
infinite set of vertices has comparable elements. Since its introduction
by Kurepa, then by Erdös and Rado and Higman in 1952 the notion of
w.q.o has attracted considerable interest in various areas of
mathematics and computer science. It was observed by Wolk in 1967
that a poset P is w.q.o if and only if its linear extensions are all well
orders.
de Jongh and Parikh proved in 1977 that there is a largest ordinal type
among these linear extensions, that we denote o(P) and call the
ordinal length of P.
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We give a topological interpretation of the coefficients in
ωβ0 ⋅m0 +⋯ + ωβk−1 ⋅mk−1, the Cantor decomposition of o(P).
For that, we recall that a topological space H is scattered if every
nonempty subset of H has an isolated point with respect to the induced
topology. Equivalently, the Cantor-Bendixson procedure, consisting to
take the derivatives of H, (namely H(0), . . . ,H(α), . . . where H(α) is the
set of isolated points of H ∖⋃β<αH(β)) terminates on the emptyset.
We recall that if H is a non-empty compact scattered space, there is a
largest ordinal β for which the Cantor-Bendixson derivative H(β) is non
empty; let rank−(H) be this ordinal, H(∞−) be this derivative and d0(H)
be the cardinality of H(∞−).
We also recall that I(P), the set of initial segments of a poset P,
equipped with the topology induced by the power set ℘(P), is a
compact space. If P is w.q.o, then I(P) is topologically scattered (while
it is not necessarily w.q.o.). In this case, the set Id(P) of ideals of P
(that is the set of non-empty updirected initial segments of P) is a
closed subspace of I(P), hence compact and scattered.
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We prove that if P is w.q.o, Id(P) and Id(o(P)) have same rank and
degree, namely:

Theorem 1

If P is w.q.o then:

rank−(Id(P)) = rank−(Id(o(P))); (1)

and
d0(Id(P)) = d0(Id(o(P))). (2)

For an example, if P is a well ordered chain of type α then, as a chain,
Id(P) is order isomorphic to α + 1 and, as a topological space,
isomorphic to the ordinal α + 1 equipped with the interval topology,
hence its rank, rank−(Id(P)), and its degree, d0(Id(P)), are
respectively β and m where ωβ ⋅m is the largest term in the Cantor
decomposition of the ordinal Id(P).
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The main result

More generally, we define inductively a finite sequence (Pi)i<k of
subsets of P, that we call the canonical decomposition of P. The set
P0 is the union of all members of Id(P)(∞−) and
Pi ∶= ⋃ Id(P ∖⋃j<i Pj))(∞−) while P ∖⋃j<i Pj /= ∅. The sequence
terminates on the first integer k such that P = ⋃i<k Pi . Let
βi ∶= rank−(Id(Pi)), mi ∶= d0(Id(Pi)) for i < k , and
s(Id(P)) ∶= ωβ0 ⋅m0 +⋯ + ωβk−1 ⋅mk−1.
For an example, if P is a well ordered chain of type α, then
s(Id(P)) = α. We show:

Theorem 2

If P is w.q.o then s(Id(P)) = o(P).

Our proof of Theorem 2 above is based on a characterization of o(P)
given in terms of the height of P in I(P).
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The height of a well-founded poset

We recall that if Q is a well-founded poset, the height of an element
x ∈ Q is the ordinal h(x ,Q) given by the inductive formula:

h(x ,Q) = 0 if x is minimal in Q; (3)

h(x ,Q) = Sup{h(y ,Q) + 1 ∶ y < x} (4)

otherwise.
If P is w.q.o, then I(P) is well-founded (and conversely) Higman 1952.

Theorem 3
The ordinal length of a w.q.o P is the height of P in the set I(P) of
initial segments of P.

Pouzet and N. Zaguia, 1985, see also Křı́ž, Thomas,1990, Blass,
Gurevich, 2006. With this result at hands, it suffices to prove:

Theorem 4

If P is w.q.o then h(P, I(P)) = s(Id(P)).
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Proof of Theorem 4

We proceed by induction on α = s(Id(P)), that is we suppose that the
property holds for all posets Q such that s(Id(Q)) < α.
Case 1 s(Id(P)) < ω.
In this case, P is finite and s(Id(P)) = ∣P ∣. Since, in this case,
h(P, I(P)) = ∣P ∣, the equality s(Id(P)) = h(P, I(P)) holds.
Case 2 s(Id(P)) ≥ ω.
In this case, rank−(Id(P)) ≥ 1. Among ideals Q ∈ Id(P) such that
rank(Q, Id(P)) = rank−(Id(P)), take Q minimal with respect to
inclusion.
Subcase 2.1 Q /= P.
By construction, s(Id(Q)) = ωβ0 where β0 = rank−(Id(P)) and
rank−(Id(P ∖Q)) ≤ β0.
We apply the following formula (that we prove separately):

s(Id(P)) = s(Id(Q))⊕ s(Id(P ∖Q)). (5)
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Due to induction, h(Q, I(Q)) = s(Id(Q)) and
h(P ∖Q, I(P ∖Q)) = s(Id(P ∖Q). Hence, h(Q, I(Q)) = ωβ0 and
rank−(h(P ∖Q, Id(P ∖Q))) ≤ β0. On an other hand, we have the
following inequalities:

h(Q, I(Q))+h(P∖Q, I(P∖Q)) ≤ h(P, I(P)) ≤ h(Q, I(Q))⊕h(P∖Q, I(P∖Q)).

Hence h(Q, I(Q))⊕ h(P ∖Q, I(P ∖Q)) = h(P, I(P)). The equality
h(P, I(P)) = s(Id(P)) follows. ◻
Subcase 2.2 Q = P. In this case, s(Id(P)) = ωβ0 , P0 = P and P is an
ideal. Let x ∈ P. Set Px = P∖ ↑ x . By induction, we have
h(Px , I(Px)) = s(Id(Px)). Hence,
h(P, I(P)) = Sup{h(Px , I(Px) + 1} = Sup{s(Id(Px)) + 1} = s(Id(P)). That
is h(P, I(P)) = s(Id(P)). ◻
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A special case of Theorem 2 yields:

Corollary 5

Let P be a w.q.o Then:
(a) o(P) = ωβ ⋅m if and only if rank−(Id(P)) = β, d0(Id(P)) = m and

P = ⋃ Id(P)(∞−). As a consequence,
(b) o(P) is of the form ωβ ⋅m if and only if P = ⋃ Id(P)(∞−);
(c) o(P) is of the form ωβ if and only if Id(P)(∞−) = {P}.

A special case of de Jongh-Parikh’s theorem, essentially due to
Carruth, 1942, is this:

Lemma 6

Given a finite family (αi)i<k of ordinal numbers, the Hessenberg sum
⊕i<k αi is the largest ordinal admiting a partition in k well-ordered
subsets Ai , i < k, each of order type αi .
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With this result and Corollary 5, one can derive the following
strengthening of Theorem 2.

Corollary 7
Let P be a w.q.o and P0, . . . ,Pk−1 be the canonical decomposition of
P. Then o(P) =⊕i<k o(Pi). Furthermore, if L is a linear extension of P
and for each i < k, Li ∶= L↾Pi then:

(a) The order type of L is equal to o(P) provided that for i < k, the
order type of Li is equal to o(Pi) and L = ∑i<k Li .

(b) The order type of each Li is equal to o(Pi) provided that the order
type of L is equal to o(P).
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Proof.
Let α be the order type of P, L be a linear extension of P and αi be the
order type of Li . According to Lemma 6, α ≤⊕i<k αi . Since o(Pi)
exists, αi ≤ o(Pi); since the Heissenberg sum in increasing,
⊕i<k αi ≤⊕i<k o(Pi) and thus:

o(P) ≤⊕
i<k

o(Pi). (6)

Conversely, since each Pi is convex in P, every lexicographical sum
∑i<k Si , in which each Si is a linear extensions of Pi , is a linear
extension of P. Hence, ∑i<k o(Pi) ≤ o(P). By Corollary 5, the o(Pi)
are ordinals of the form ωβi ⋅mi ; the βi ’s are decreasing, hence
∑i<k o(Pi) =⊕i<k o(Pi) and thus ⊕i<k o(Pi) ≤ o(P). The equality
⊕i<k o(Pi) = o(P) follows.
(a). If each Li has a order type o(Pi) then, by Corollary 5, its type
o(Pi) is ωβi ⋅mi and if L = ∑i<k Li then the order type of L is
ωβ0 ⋅m0 +⋯ + ωβk−1 ⋅mk−1, that is o(P) by the assertion above.
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(b). Suppose that the order type α of L is o(P). By (6) we have
α ≤⊕i<k αi ≤⊕i<k o(Pi). Hence, o(P) = α ≤⊕i<k αi ≤⊕i<k αi = o(P).
Since the Heissenberg sum is strictly increasing, the order type of
each Li is o(Pi).

Remark 1
The fact that the order type of L is o(P) = ∑i<k o(Pi) does not ensure
that L = ∑i<k Li . For an example, let P be the direct sum of two chains
A and B with order types ω2 and ω respectively. Then P0 = A, P1 = B,
o(P) = ω2 + ω. Let A0 be an initial segment of A, A1 be its complement
(in A), let B0 be an initial segment of B, B1 its complement (in B), then
L ∶= A0 +B0 +A1 +B1 is a linear extension of P. If B0 is non-empty and
distinct of B and if A1 is non-empty, then the order type of L is ω2 + ω,
while L0 is not an interval of L, hence, L is not the sum L0 + L1.
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We give an alternative definition of the canonical partition of a w.q.o
poset in terms of ordinal length.
Let P be a poset and β be an ordinal. Set
F(β,P) ∶= {x ∈ P ∶ o(↑ x) < ωβ} and R(β,P) ∶= F(β + 1,P) ∖ F(β,P).

Lemma 8
If P is a non-empty w.q.o, then the set C(P) ∶= {β ∶ R(β,P) /= ∅} is
finite and the sets R(β,P), with β ∈ C(P), form the canonical
decomposition of P.

Theorem 9

Let P be a w.q.o poset and β0 > ⋯ > βk−1 be a finite decreasing
sequence of ordinals. Then o(P) = ωβ0 ⋅m0 + ⋅ ⋅ ⋅ + ωβk−1 ⋅mk−1, with
m0, . . . ,mk−1 ∈ ω ∖ {0} if and only if P = R(β0,P) ∪ ⋅ ⋅ ⋅ ∪R(βk−1,P) with
each R(βi ,P) non-empty.
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A special case of Theorem 9 is essentially Theorem 3.2 page 203 of
de Jongh Parikh paper that we recall below.

Corollary 10

If P is wqo, there is a largest final segment P̌ of P which is finite,
furthermore o(P ∖ P̌) is a limit ordinal and o(P) = o(P ∖ P̌) + ∣P̌ ∣.
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Illustrations
The Boolean algebra of piecewise testable languages

Let A be a finite set and let A∗ be the set of finite sequence of
elements of A viewed as words. Subsets of A∗ are called languages. A
language L over A is said piecewise testable if it is a finite Boolean
combination of languages of the form:

A∗a1A∗ . . .aoA∗.

A characterization of piecewise testable languages was given by
Simon (1972). He proved that a language L is piecewise testable if and
only if its syntactic monoid ML is J -trivial (i.e. ML ⋅ u ⋅ML = ML ⋅ u′ ⋅ML
implies u = u′ for every u,u′ ∈ ML). Considering the pseudovariety J of
finite J -trivial semigroups, Almeida (1990) showed that the topological
semigroup Ωn(J ), projective limit of all n-generated members of J , is
countable. It turns out that, as a topological space, this semigroup is
the Stone space associated with the Boolean algebra of piecewise
testable languages.
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We prove:

Theorem 11
If the alphabet A is formed of n letters then the Stone space of the
Boolean algebra of piecewise testable languages is homeomorphic to
the ordinal ωω

n−1 + 1 equipped with the interval topology.
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Proof

Let P ∶= A∗. Order P with the subword ordering, that is, for two
wordsx ∶= x0, . . . ,xn−1 and y ∶= y0, . . . ,ym−1 of length n and m, set x ≤ y
if there is a one-to-one order preserving map
h ∶ {0, . . . ,n − 1}→ {0, . . . ,m − 1} such that xi ≤ yh(i) for all i < n. The
Boolean algebra of piecewise testable languages is by definition the
Boolean algebra Tailalg(P) generated by the final segments of the
form ↑ u for u ∈ P. According to Theorem 2.1 of M. Bekkali, M. Pouzet,
D. Zhani, Incidence structures and Stone-Priestley duality, Ann. Math.
Artif. Intell., 49 no.1-4 (2007) 27–38, for every poset P the Stone
space, dual of Tailalg(P), is the closure in ℘(P) of the set of initial
segments ↓ u for u ∈ P.
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In our case, this closure is the set Id(P) of ideals of P. Indeed, since A
is finite, our poset P is w.q.o. (Higman, 1952), hence, P, as a final
segment, is generated by the set of minimal element of P and for every
u ∈ P, v ∈ P, the intersection ↑ u∩ ↑ v is finitely generated thus belongs
to Tailalg(P). According to Corollary 2.7 of Bekkali-Pouzet-Zhani’s
paper, the closure of the set of initial segments ↓ u, for u ∈ P, is Id(P).
In their paper, de Jongh and Parikh proved that o(P) = ωωn−1

.
According to our Corollary above, rank(Id(P)) = ωn−1 and
d0(Id(P)) = 1. According to a result of Mazurkiewicz and Sierpinski
(1920), since Id(P) is countable, Id(P) is homeomorphic to an ordinal.
This ordinal must be ωω

n−1 + 1 equipped with the interval topology. ◻
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Finitely generated initial segments of a poset
A result of Schnoebelen-Schmitz

Let Q be a poset and I<ω(Q) be the poset made of finitely generated
initial segments of Q, ordered by inclusion. Schnoebelen and Schmitz
(2019) obtained a beautiful formula:

Theorem 12
Let Q be a w.q.o. Then o(I<ω(Q)) ≤ 2o(Q).

A short proof is given by Altman and Weiermann. This majoration and
a slight improvement can be obtained from our topological approach.
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We prove the following result.

Theorem 13

Let Q be a w.q.o and Q̌ ∶= {x ∈ Q ∶↑ x is finite }. Let ξ be such that
o(Q) = ω ⋅ ξ + p with p < ω and let q ∶= ∣I(Q̌)∣. Then:

1 p = ∣Q̌∣ and o(I<ω(Q)) ≤ ωξ ⋅ q;
2 Furthermore, if Q is embeddable into [ω]<ω, the set of finite

subsets of ω, ordered by inclusion, then the inequality above is an
equality.

Let α be an ordinal. We recall that there is unique pair of ordinals β, r
such that α = ω ⋅ β + r and r < ω. The ordinal β, denoted by 1

ω ⋅ α, is the
quotient of α by ω, the ordinal ω ⋅ β, denoted by l(α), is the limit part of
α, the ordinal r , denoted α mod ω, is the remainder . The formula
above becomes

o(I<ω(Q)) ≤ ω
1
ω
⋅o(Q) ⋅ ∣I(Q̌)∣.
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Hint for a proof of Theorem 13

In order to prove that the inequality holds, it suffices to prove that
o(I<ω(Q ∖ Q̌)) ≤ ωξ.
We prove by induction on ξ that for every w.q.o Q: uparrow

o(Q) ≤ ω ⋅ ξ ⇒ o(I<ω(Q)) ≤ ωξ. (7)

If ξ = 0, Q is the empty set, hence ∣I<ω(Q)∣ = 1 and the inequality holds.
If ξ = 1, then either Q is finite, in which case I<ω(Q) is finite, and the
implication holds, or Q is infinite. In this case Q∖ ↑ x is finite for every
x ∈ Q, from which follows that I<ω(Q) has the same property, hence
o(I<ω(Q)) ≤ ω. If ξ = ξ′ + 1 and o(Q) ≤ ω ⋅ ξ then Q = Q′ ∪Q′′, where
o(Q′) ≤ ξ′ and o(Q′′) ≤ ω. The poset I<ω(Q) embeds into the product
I<ω(Q′) × I<ω(Q′′), hence o(I<ω(Q)) ≤ o(I<ω(Q′))⊗ o(I<ω(Q′′)). Via the
induction hypothesis, o(I<ω(Q′)) ≤ ωξ′ and o(I<ω(Q′′)) ≤ ω, hence
o(I<ω(Q)) ≤ ωξ′ ⋅ ω = ωξ. ETC
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Examples

1)Suppose that Q = N×m with m < ω, the direct product of m copies of
N. Then Q̌ = ∅; q = 1; o(Q) = ωm (Carruth), hence ξ = ωm−1.
Since Q is embeddable in [ω]<ω, we have:
o(I<ω(Q)) = ωωm−1

. A formula obtained by Altman and Weierman in
2019.
2 Monomial ideals in m variables
The set I(P) of initial segments of a w.q.o. poset P is not necessarily
w.q.o. If it is, the ordinal length can be difficult to compute, even for
simple P. The value of the ordinal length of MonK (m), the set of
monomial ideals in m variables was asked by Aschenbrenner and
Pong 2004, and computed by Altman and Weiermann in 2019.
Let m be a positive integer, K be a field and R ∶= K [X ] = K [X1, . . . ,Xm]
be the ring of polynomials in indeterminates X = {X1, . . . ,Xm} with
coefficients from K . A monomial is any expression of the form
X n1 ⋅ . . .X ni ⋅ . . .X nm with ni ∈ N. As usual, X 0

i = 1.
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The set of monomonials ordered by divisibility is isomorphic to the
cartesian product of m copies of N ordered componentwise, that we
will denote by N×m . A monomial ideal is any ideal of R generated by
monomials. The set MonK (m) of monomial ideals, ordered by
inclusion, is isomorphic to the set F(N×m) of final segments of N×m.
Hence, it is dually isomorphic to the set I(N×m) of initial segments of
N×m. The set of monomials, ordered by divisibility, is a w.q.o., this fact
is known as Dickson’s Lemma, it appears also in Janet, 1920. The set
MonK (m) of monomial ideals, ordered by reverse of inclusion, is w.q.o
too. This fact, stated by Maclagan, 2001, follows from a basic result of
the theory of better quasi-ordering (b.q.o) invented by Nash-Williams,
namely that b.q.o. are w.q.o., that N is b.q.o and a finite product of
b.q.o is b.q.o.
For an ordinal α denote by α⊗m the m-th Hessenberg power of α;
hence o(α×m) = α⊗m.
Aschenbrenner and Pong proved that

ωω
m−1

+ 1 ≤ o(MonK (m)) ≤ ω(ω+1)⊗m
+ 1

and they asked for the correct value.
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Altman and Weiermann proved

Theorem 14

o(MonK (m)) = ω∑k=1,m ω
m−k( m

k−1) + 1.

The fact that o(MonK (m)) ≤ ω∑k=1,m ω
m−k( m

k−1) + 1 follows from Theorem
13
Indeed, as for every w.q.o, I(Q) is isomorphic to I<ω(Id(Q)). Hence,
MonK (m) is order isomorphic to I<ω(Id(N×m)). Since Id(N) is
isomorphic to N + 1, MonK (m) is order isomorphic to I<ω((ω + 1)×m).
According to Theorem 13
o(I<ω((ω + 1)×m) ≤ ω

1
ω
⋅o((ω+1)×m) + 1 = ω

1
ω
⋅((ω+1)⊗m) + 1.

(ω + 1)⊗m = ωm + ωm−1 ⋅ (m − 1) + ⋅ ⋅ ⋅ + ωm−u ⋅ (m
u) + ⋅ ⋅ ⋅ + ω ⋅m + ⋅ ⋅ ⋅ + 1

1
ω ⋅ ((ω + 1)⊗m) = ωm−1 + ωm−2 ⋅ (m − 1) + ⋅ ⋅ ⋅ + ωm−u−1 ⋅ (m

u) + ⋅ ⋅ ⋅ +m.

Setting k = u + 1, we get 1
ω ⋅ ((ω + 1)⊗m) = ω∑k=1,m ω

m−k( m
k−1) + 1.

Hence we get the upper bound given by Altman and Weiermann.

25/35 February 21, 2023 25 / 35



Instead of looking for the minoration, one can do as follows. Let p,q be
two non-negative integers. Let Ap,q ∶= (ω + 1)×p × ω×q be the cartesian
product of p copies of the chain ω + 1 with q copies of the chain ω. If
q = 0, ω×q is the one-element chain 1; hence Ap,0 = (ω + 1)×p; similarly,
A0,q ∶= ω×q. Using induction and our theorem on finitely generatred
segments one can prove easily that:

Theorem 15

For every non-negative integers p,q:

o(I<ω(Ap,0)) = ω
1
ω
⋅o(Ap,0) + 1; (8)

and if q is not zero, then:

o(I<ω(Ap,q)) = ω
1
ω
⋅o(Ap,q). (9)

Since MonK (m) is order isomorphic to I<ω((ω + 1)×m) = Am,0, this
yields the researched result.
This is not much different from Altman and Weiermann strategy of
proof.
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Motivation
Ages of relational structures

Our motivation for the study of the sets of ideals of a poset comes from
the theory of relations
First, recall that a relational structure is a pair R ∶= (E , (ρi)i ∈ I), where
for each i ∈ I, ρi is a ni -ary relation on E (that is a subset of Eni ) and ni
is a non-negative integer; the family µ ∶= (ni)i ∈ I is called the signature
of R. An induced substructure of R is any relational structure of the
form R↾F ∶= (F , (ρi ∩ F ni )i∈I). One may define the notion of relational
isomorphism and then the notion of embeddability between relational
structures with the same signature (e.g. R embeds into R′ if R is
isomorphic to an induced substructure of R′). According to Fraı̈ssé,
the age of a relational structure R is the collection A(R) of its finite
induced substructures, considered up to isomorphism.
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A first order sentence (in the language associated with the signature µ)
is universal whenever it is equivalent to a sentence of the form
∀x1⋯∀xnϕ(x1, . . . ,xn) where ϕ(x1, . . . ,xn) is a formula built with the
variable x1, . . . ,xn, the logical connectives ¬, ∨, ∧ and predicates =,
ρi , i ∈ I.
Let Ωµ be the set of finite relational structures with signature µ, these
structures being considered up to isomorphism and ordered by
embeddability. If µ is finite, then Ωµ is a ranked poset with a least
element. The set Id(Ωµ) is a closed subset of ℘(Ωµ) equipped with the
product topology. The consideration of Id(Ωµ) is justified by the
following:

Proposition 16
If µ is finite, Id(Ωµ) is the set of ages of relational structures with
signature µ. As a topological space, its dual is the Boolean algebra
made of Boolean combinations of universal sentences, considered up
to elementary equivalence.
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If µ is constant and equal to 1 (I ∶= {0, . . . ,k − 1} and ni = 1 for i ∈ I)
then Ωµ can be identified to the direct product of 2k copies of the chain
ω of non-negative integers. From this it follows that Id(Ωµ) is
homeomorphic to the ordinal ω2k + 1, equipped with the interval
topology. If µ contains some integer larger than 1, then Ωµ embeds as
a subposet the set [ω]<ω of finite subsets of ω hence Id(Ωµ) embeds
the Cantor space ℘(ω).
If µ is finite, then, like Ωµ, ages are ranked. The function ϕA, which
counts for each nonnegative integer n, the number of elements of rank
n, is the profile of A, (also called the profile of any R with age A). It
enjoys quite striking properties: for an example, if the domain is
infinite, ϕA is a non decreasing function of the rank (Pouzet 1971, see
the Fraı̈sse’s book on logic, t1, Exercice 8, p. 113, see Pouzet 2006 for
a survey on the profile). Still, the problem of characterizing ages
among posets is largely unsolved.
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An apparently easier task is to classify ages, distinguishing, first, those
which are complicated from those which are not and, next classifying
the simpler ones. The basic idea is that if an age is included into an
other one, then it is simpler. From this, the simplest ages must be the
finite ones, next the infinite ages such that all proper subages are
finite, and so on. The continuation of this process relies on the notion
of well-foundedness; the parent notion, namely well-quasi-ordering,
emerges then, but also topological notions, like scatteredness.
Let A ∈ Id(Ωµ). If Id(A) is well-founded, let H(A) be the height of A in
Id(A). If A is countable (which is the case if µ is finite), the ordinal
H(A) is countable. Every countable ordinal can be attained, but known
examples require an infinite signature Pouzet-Sobrani, 2001. If A is
w.q.o it is natural to use H(A) or o(A) as a measure of the complexity
of A. This leeds to look at the relationship between these parameters.
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Thank you for your attention.
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