
WQOs and BQOs in
automated program verification

Philippe Schnoebelen

LMF, CNRS & ENS Paris-Saclay
(now visiting CMI in Chennai)

WQO-BQO: What is up? / Lyon / 21-23 Feb 2023

Based on joint work with A. Finkel, S. Schmitz, P. Jančar, P. Chambard, N. Bertrand, P.
Karandikar, A. Rabinovich, Ch. Baier, etc.

OUTLINE OF THE TALK

I Part 1: Automated program verification?

I Part 2: WQOs and Well-Structured Systems (WSTSs)

I Part 3: Verifying WSTS

I Part 4: Assessing Complexity

2/29

Part 1

Automated program verification?

3/29

WHAT IS “(FORMAL) PROGRAM VERIFICATION”?

“Verification” = Proving that a computer program is “correct”, i.e.
behaves as announced, has absolutely no bugs.

It is a mathematical proof, about a finite mathematical object, e.g.
— a program;
— an algorithm;
— a protocol / a data type / high-level architecture / abstract program
/ hybrid system / ...

Proving that the program always terminates, in at most so many
steps, using at most so much memory, that it returns a value fulfilling
the specification, etc.

Formal verification was
— introduced in the 60s (Dijkstra, Floyd, Hoare, Milner, ..),
— led to “model checking” in the 80s,
— became a requirement for safety critical software (in avionics and
other strongly regulated industries).

4/29

PROS AND CONS OF FORMAL VERIFICATION

X The proof gives very strong guarantees about a “program” that is
almost exactly the real-world object we want to certify.

× Proof can be very difficult to find (or not exist if program has a bug).

× Specifying what has to be proven is hard, error-prone, & never
completed.

× Proofs of program correctness have bugs too

X Verification can be computer-assisted.

× Proof has to be redone every time you modify/update the program.

X Works very well at the right scale: abstract algorithms, protocols,
or subroutines/libraries with well-understood interfaces.

X Can already boast of some truly incredible achievements, e.g.
Xavier Leroy’s COMPCERT project.

5/29

AND “AUTOMATED” PROGRAM VERIFICATION?
Mostly exists in the form of Model Checking, based on algorithms that
automatically prove correctness properties of a program.

Think “computer algebra” or “automated theorem proving” but
specialized towards program behaviors and their properties.

Pioneered by Pnueli, Clarke, Emerson, Sifakis in the early 1980s.

Started with finite-state programs:
— Communication protocols, concurrent algorithms, cryptographic
protocols, ..
— VLSI designs with huge state space.

Then considered infinite-state programs:
— one cannot hope for a general algorithm.
— huge variety of ad-hoc methods for specific program constructions
and properties of interest, looking for best compromises between
expressiveness and tractability.

Field is very challenging! E.g. how to prove termination of the 3n+1
program, aka Collatz conjecture?

6/29

WELL QUASI-ORDERS AND PROGRAM VERIFICATION

I Well-structured systems (WSTSs) are a generic family of
models, with infinite but well-quasi-ordered set of states, that
admits generic verification algorithms.

I WSTSs invented by Finkel (1987 onward), developed and
popularized by Abdulla & Jonsson (1993 onward), Finkel &
Schnoebelen (1996 onward), and many others.

I Started with counters, queues, gap-order constraints, etc.

I Still very active these days, with new models (using wqos on
graphs, etc.), new algorithms (probabilistic properties,
game-theoretical properties, ..) or new applications (data logics,
modal logics, etc.) appearing every year.

7/29

Part 2

Well-Structured Systems (WSTSs)

8/29

EXAMPLE: PRIORITY CHANNEL SYSTEMS (2013)

p1

p2

!1?0 !2

!0

?1

q1

q2

?2!0

?0

!1

→ →

← ←

| 2 | 1 | 0 | 0 |

| 1 | 0 | 1 | 1 |

Unbounded fifo channels (or queues)

(p1,q1,0012,1011)
!1−→ (p2,q1,00121,1011)

(p1,q1,0012,1011)
!1−→ (p2,q1,00121,1011)−→ (p2,q1,00121,111)

messages in transit can supersede messages in front of them if
priority is not higher

9/29

OPERATIONAL SEMANTICS = TRANSITION SYSTEMS

The behaviour of a Priority Channel System P (more generally, a
program) is given by a transition system SP = (S,→)

NB: In general, SP is not deterministic: a configuration may have
several immediate successors

We are interested in proving properties of paths in SP

Main questions:

Safety: given I,Bad⊆ S, check that there are no paths from I to Bad.
E.g. “deadlock never occurs”.

Inevitability: given I,Good⊆ S, check that all maximal paths from I
eventually visit Good. E.g. “program always terminates”.

10/29

EXAMPLE: BROADCAST PROTOCOLS

Broadcast protocols (Esparza, Finkel, Mayr 1999), aka population
protocols, are dynamic & distributed collections of finite-state
processes communicating via brodcasts (and rendez-vous, not
featured here).

r c

a

q ⊥
d!!

spawn

m??

d?? m!!

A configuration collects the local states of all processes. E.g.,
s= {c,r,c}, also denoted {c2,r}.

Steps:

{c2,q,r}
s(pawn)−−−−−−→ {a2,c,q,r} s−→ {a4,q,r} m−→ {c4,r,⊥} d−→ {c,q4,⊥}

11/29

PROVING TERMINATION

r c

a

q ⊥
d!!

spawn

m??

d?? m!!

This protocol has no infinite runs

Proof. Write s= {rn1 ,qn2 ,cn3 ,a∗,⊥∗}.
In any step s→ s ′ the triple 〈n1,n2,n3〉 decreases in the
lexicographic ordering

This is the usual pattern for proofs of termination: one invents a
well-founded measure that decreases with every step

12/29

BROADCAST PROTOCOLS ARE WELL BEHAVED

1. Order the configurations by multiset inclusion, e.g., {c,q}⊆ {c2,r,q}

2. Observe that steps are monotonic:

s→ t∧ s⊆ s ′ =⇒ ∃t ′ : s ′→ t ′∧ t⊆ t ′

Proof. Case analysis: is s→ t an internal move? or a spawning
step? or a broadcasting? or a rendez-vous?

3. Further observe that (S,⊆) is wqo

⇒We say that broadcast protocols are “well structured TS”

Thm. (Finkel, Abdulla, ..)
For such systems termination and safety are decidable

13/29

PRIORITY CHANNEL SYSTEMS ARE WSTS

p1

p2

!1?0 !2

!0

?1

q1

q2

?2!0

?0

!1

→ →

← ←

| 2 | 1 | 0 | 0 |

| 1 | 0 | 1 | 1 |

Let u= p1..pk be a channel contents.
Write u→# u

′ when u ′ = p1..pi−1pi+1..pk and pi 6 pi+1.
E.g. 1011→# 111

1. Write 6# for the transitive closure of→−1
and let

(p,q,u,v)6# (p
′,q ′,u ′,v ′) def⇔ p= q ′∧q= q ′∧u6# u

′∧ v6# v
′

2. Steps are monotonic:

s→ t∧ s6# s
′ =⇒ s ′→ ·· · → s→ t

3. Furthermore (S,6#) is a wqo

⇒ PCS are WSTS! We can decide termination and safety.
14/29

Part 2

Verifying WSTSs

15/29

DECIDING TERMINATION FOR WSTS
Lem. [Finite Witnesses for Infinite Runs]
A WSTS S has an infinite run from sinit iff it has a finite run from sinit
that is a good sequence.

Recall: s0,s1,s2, . . . ,sn is good def⇔ there exist i < j s.t. si 6 sj

Proof. ⇒: the infinite run contains an increasing pair
⇐: good finite run s0

∗−→ si
+−→ sj can be extended by simulating si

+−→ sj

from above: sj
+−→ s2j−i, then s2j−i

+−→ s3j−2i, etc.
Corollary. One may decide Termination by enumerating all finite runs
from sinit until a good sequence is encountered.
If all runs are bad, the enumeration will eventually exhaust them

NB: This requires some minimal effectiveness assumptions on the
WSTS, e.g., that the ordering is decidable

Algorithm extends and allows deciding inevitability, finiteness, and
regular simulation

16/29

DECIDING SAFETY (HERE: COVERABILITY)
Coverability is the question, given S= (S,→, . . .), some initial sinit and
target t, whether S has a run sinit→ s1→ s2 · · · → sn with sn > t.

This is equivalent to having a pseudorun sinit,s1, . . . ,sn with sn > t,
where a pseudorun is a sequence s0,s1, . . . such that for all i > 0,
there is a step si−1→ ti with ti > si.

Picture s0→ t1 > s1→ t2 > s2→ ·· ·> · · · → tn > sn

Def. a pseudorun s0, . . . ,sn is minimal if for all 06 i < n, si is a
minimal pseudo predecessor of si+1.

Lem. [Finite Witnesses for Covering]
S has a pseudorun sinit, . . . ,sn covering t iff it has a minimal
pseudorun s0,s1, ..,t from some s0 6 sinit s.t. t,sn−1, ..,s1,s0 is bad

⇒ one decides Coverability by enumerating all minimal pseudoruns
ending in t that are bad sequences

17/29

Part 3a

Assessing Complexity: Upper Bounds

18/29

BROADCAST PROTOCOLS TAKE THEIR TIME

r c

a

q ⊥
d!!

s

m??

d?? m!!

“Doubling” run: {cn,q,(⊥∗)} s
n

−−→ {a2n,q,(⊥∗)} m−→ {c2n,(⊥∗)}

Building up: {c2
0
,qn,r} s

20m−−−→ {c2
1
,qn−1,r} s

21m−−−→ {c2
2
,qn−2,r}→

·· · → {c2
n−1

,q,r} s
2n−1

m−−−−−→ {c2
n
,r} d−→ {c2

0
,q2

n
}

Then: {c,q,rn} ∗−→ {c,q2
n
,rn−1}

∗−→ {c,qtower(n)}

where tower(n) def
= 22

...
2
}
n times ⇒ Runs of terminating systems

may have nonelementary lengths
⇒ Running time of generic algorithm verifying termination is not
elementary for broadcast protocols

19/29

THE FAST-GROWING HIERARCHY

An ordinal-indexed family (Fα)α∈Ord of functions N→N

F0(x)
def
= x+1 Fα+1(x)

def
=

x+1︷ ︸︸ ︷
Fα(Fα(. . .Fα(x) . . .))

Fω(x)
def
= Fx+1(x)

gives F1(x) ∼ 2x, F2(x) ∼ 2x, F3(x) ∼ tower(x) and
Fω(x) ∼ ACKERMANN(x), the first Fα that is not primitive recursive.

Fλ(x)
def
= Fλx(x) for λ a limit ordinal with a fundamental sequence

λ0 < λ1 < λ2 < · · ·< λ.

E.g. Fω2(x)=Fω·(x+1)(x)=Fω·x+x+1(x)=

x+1︷ ︸︸ ︷
Fω·x+x(Fω·x+x(..Fω·x+x(x)..))

Fα
def
= all functions computable in time FO(1)

α (very robust).

20/29

COMPLEXITY ANALYSIS?

When analyzing the termination algorithm, the main question is “how
long can a bad sequence be?”

WQO-theory only says that a bad sequence is finite

One can exhibit arbitrarily long bad sequences. E.g. over (Nk,6×):

— 999, 998, . . . , 1, 0
— (2,2), (2,1), (2,0), (1,999), . . . , (1,0), (0,999999999), . . .

Two tricks: unbounded start element, or unbounded increase in a step

The runs of broadcast protocols don’t have unbounded increases,
and the starting configuration is the input of our problem

21/29

CONTROLLED BAD SEQUENCES

Def. A sequence x0,x1, . . . is controlled def⇔ |xi|6 gi(n0) for all
i= 0,1, . . .

Here the control is the pair (n0,g) of n0 ∈N and g :N→N.

Fact. For a fixed wqo (A,6, |.|) and control (n0,g), there is max length
on controlled bad sequences (Kőnig’s Lemma again)
Write Lg,A(n0) for this maximum length.

Length Function Theorem for (Nk,6×) [McAloon 84,Figuiera2SS’11]
Lg,Nk is in Fk+m−1 when g is in Fm.

22/29

APPLICATIONS

Fact. The runs explored by the Termination algorithm are controlled
with |sinit| and Succ :N→N.

Coro. Time/space bound in Fk−1 for broadcast protocols with k
states, and in Fω when k is not fixed.

Fact. The minimal pseudoruns explored by the backward-chaining
Coverability algorithm are controlled by |starget| and Succ.

Coro. · · · same upper bounds · · ·

Thm. [Leroux & Schmitz ’19] The algorithm for verification of Vector
Addition Systems (or Petri nets) is in Fω.

This is a general situation:
— WSTS model (or WQO-based algorithm) provides A and g
— WQO-theory provides bounds for Lg,A
⇒ Complexity upper bounds for WQO-based algorithm

23/29

MORE LENGTH FUNCTION THEOREMS

For finite words with embedding, LΣ∗ is in Fω|Σ|−1 , and in Fωω when
alphabet is not fixed [Cichon,..]. Applies e.g. to lossy channel
systems.

For sequences over Nk with embedding, L(Nk)∗ is in F
ωω

k , and in
Fωωω when k is not fixed [S.S.]. Applies e.g. to timed-arc Petri nets.

For finite words with priority ordering, LΣ∗ is in Fε0 . Applies e.g. to
priority channel systems and higher-order LCS.

Bottom line: one can provide definite complexity upper bounds for
WQO-based algorithms

Some research goals: more varied/complex wqos (powerset,
restricted families of graphs, ..) & analysis of complex algorithms

24/29

Part 3b

Assessing Complexity: Lower Bounds

25/29

WHAT ABOUT LOWER BOUNDS?

Q. Are the upper bounds for Termination and Coverability optimal?

In the case of broadcast protocols:
The upper bound is tight for the algorithms we presented
But there may exist better algorithms (as with VASS, e.g.)

One can prove that the Termination and Coverability problems are
Fω-hard, hence Fω-complete, for broadcast protocols [Urquhart’99,..]

and Fωω -complete for lossy channel systems [ChambartS’08],
Fωωω -complete for timed-arc Petri nets [HaddadSS’12], Fε0 -complete
for priority channel systems [HaaseSS’13]

These results/characterizations have applications outside verification:
WSTS models are often used for decidability (or hardness) of
problems in logic.

26/29

PROVING Fα-HARDNESS

The four hardness results we just mentioned have all been proved
using the same techniques:

One shows how the WSTS model can weakly compute Fα and its
inverse F−1

α . (Recall: broadcast protocol computing tower function)

Encode initial ordinals in (S,6) & implement Hardy computations in S.
Hardy computations: (α+1,x) 7→ (α,x+1) and (λ,x) 7→ (λx,x).

Main technical issue: robustness

— One easily guarantee s6 t⇒ α(s)6 α(t) but this does not
guarantee Fα(s)(x)6 Fα(t)(x) required for weak computation of Fα.

— We need s6 t⇒ α(s)v α(t), using an ad-hoc stronger relation
αv β that entails Fα(x)6 Fβ(x).

27/29

CONCLUSION & EXECUTIVE SUMMARY

• Automated Program Verification is not just a dream, or just a
theoretical concept.

• Programs with well-quasi-ordered state space have decidable
verification problems.

• The complexity of these problems can often be measured precisely.
A good guide here is given by the maximal order type of the state
space.

• These results and techniques opened a new section in the
Complexity Zoo, see “Complexity Hierarchies Beyond Elementary”
[Schmitz ’16].

• Many extensions and developments I did not mention: forward
algorithms and topological completions of WQO, etc.

28/29

Thank you!

Any questions?
(except Did I miss the part where you mentioned BQOs?!)

29/29

