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Report on joint work with Maurice Pouzet.

Some Definitions.

(1) Points x , y ∈ P are said to be comparable if x ≤ y or y ≤ x . The
points are incomparable if they are not comparable. We write x⊥y to
say that x and y are incomparable.

(2) A subset A ⊆ P is a chain if any two points of A are comparable. We
say that A is an antichain if any two distinct points of A are
incomparable.

(3) A collection A of chains of P covers P when P =
⋃

A .
I.e. every x ∈ P is a member of some chain A ∈ A .

The Covering Number, Cov(P), of a poset P is the least cardinality
of a collection A of chains that covers P .

For any poset P = (V ,≤P) we notate with P∗ = (V ,≤∗) the dual of P
i.e. the inverse ordering.
Surely Cov(P∗) = Cov(P). ⊕
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The aim of our work is to give some information on Cov(P) when P
satisfies the Finite Antichain Condition (FAC) meaning that every
antichain is finite. All posets in this lecture satisfy the FAC.
The classical theorem of Dilworth is the paradigm of our work.

Theorem (R. P. Dilworth, 1950)

For any poset P and integer n, Cov(P) ≥ n iff P contains an antichain of
cardinality n.

So all posets that cannot be covered by n chains have the same
‘obstruction’, an antichain of size n.

We search similar theorems when Cov(P) > n is replaced by
Cov(P) ≥ κ where κ is an infinite cardinal.
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M. Perles and E. S. Wolk have independently shown that a naive extension
of Dilworth’s theorem is not true. It is possible that all antichains of a
poset are finite and yet Cov(P) ≥ ω.
Let ν be any infinite cardinal, denote with [ν]2 the collection of all
unordered pairs (a, b) of members of ν such that a ̸= b. For clarity, we
equate [ν]2 with the poset of all ordered pairs (a, b) such that a < b and
we order this collection by

(a1, b1) ≤ (a2, b2) iff a1 ≤ a2 ∧ b1 ≤ b2.

We say that [ν]2 is a ν-Perles ordering.

Theorem (Perles, Wolk)

The ν-Perles ordering [ν]2 satisfies the Finite Antichain Condition, and yet
Cov([ν]2) = ν.

Proof of Perles’s theorem on the blackboard for example for the case of
ν = ℵ1. ⊕
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It is time to state our theorem : Covering of FAC posets.

Theorem

The following holds for every poset P that has only finite antichains.

The successor case. For every successor cardinal κ+, Cov(P) ≥ κ+ iff
the poset P contains a copy of [κ+]2 or a copy of the dual (inverse)
of [κ+]2. ⊕
The limit case. If ν is a limit uncountable cardinal, then Cov(P) ≥ ν
iff P contains a poset Q, or its dual, where Q has the form Σc∈CQc

where
▶ C is a linear ordering of cardinality cf(ν), and
▶ Qc = [κ+

c ]
2 for every c ∈ C , where the cardinals κc are such that

ν = sup{κc | c ∈ C}.
⊕

Item 1 of this theorem is satisfying. There are only two obstructions : [ω1]
2

inverse of this poset. Item 2 however is incomplete : we have no knowledge
about the linear ordering C (except for its cardinality).
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Intriguing corollaries were observed by Maurice :

Corollary (Pouzet)

(1) For any poset P and cardinal κ, if Cov(P) ≥ κ then there exists a
subposet Q ⊆ P of cardinality κ such that Cov(Q) ≥ κ. (This resembles
compactness : If every subposet of cardinality κ+ is coverable with k
chains, then the whole poset is so coverable.) ⊕
(2) For any cardinal κ, the poset P = [κ+]2 is indecomposable.

That is, whenever P is decomposed, P = P1 ∪ P2, into two subposets,
then one of the two posets contains a copy of P itself.

Proof. (1) holds because the cardinality of [κ]2 is κ.
(2) By Perles’s theorem P = [κ+]2 is not a union of a collection of κ
chains. Hence P1 or else P2 is not a union of κ chains. But any FAC poset
that cannot be presented as a union of κ chains contains a copy of [κ+].
Hence P1 or else P2 contain a copy of [κ+].
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Some proofs are necessary. Let’s return to our theorem in the limit case on
page 5 :
where
You may ask, what can be said about the ω case ? By Dilworth’s theorem
if a FAC poset P has no cover by a finite family of chains, then it must
have antichains of arbitrarily large size. But we want to have a single poset
Q such that either P or its dual has Q as a subposet. Such a poset is
demonstrated by Milner and Pouzet.

Theorem (Milner – Pouzet)

Let P be a poset with no bound on the size of its antichains. Then P or
else P∗ contains a poset of the form Σi∈ωAi where Ai is the the antichain
with i elements, and for every i < j , Ai < Aj .

I give a new proof which illustrate the basic method of proving fact about
FAC posets, i.e. by induction on the rank of antichains of the poset.
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Theorem (Milner – Pouzet)

Let P be a poset with no bound on the size of its antichains. Then P or
else P∗ contains a poset of the form Σi∈ωAi where Ai is the the antichain
with i elements, and for every i < j , Ai < Aj .

Proof. We use the following notation. p⊥q say that p and q are
incomparable P. For p ∈ P p⊥ = {q ∈ P | p⊥q}. For antichains A and B
of a poset P we write A < B if ∀a ∈ A ∀b ∈ B (a <P b).
In case there is p ∈ P such that the antichains of p⊥ have no bound on
their cardinality, we get the theorem immediately by the induction
assumption.
So we may assume that for all p ∈ P there is a bound on the antichain
size. in p⊥.
Hence, for every finite X ⊂ P, there is a finite bound on the size of
antichains in X⊥ =

⋃
{p+ | p ∈ X}. Hence there is no bound on the

antichains of P \ X⊥, namely, for every finite X ⊂ P there is no bound on
the antichains of P \ X⊥ = comp(X ) where comp(X ) is the set of q ∈ P
that are strictly comparable with every member of X .
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Property of P : For every finite X ⊂ P , there is no bound on the
antichains in comp(X ) = the set of q ∈ P that are strictly
comparable with every member of X .

Define by induction on i ≥ 1 antichains Ai of P such that |Ai | = i and for
every i ̸= j , Ai < Aj or Aj < Ai .
Suppose that A1, . . . ,An are defined. Apply the property to
X = A1 ∪ · · · ∪ An. Since there is no bound on the antichain size of
comp(X ), we can pick and antichain A in comp(X ) of size |A| > (n + 1)2.
Every point x ∈ A has a “cut” with respect to the antichains A1, . . . ,An,
that is, the two sets of indexes {1 ≤ i ≤ n | Ai < {x}} and
{1 ≤ i ≤ n | Ai > {x}}. There are n + 1 possible cuts, and so there is a
set An+1 ⊂ A all of whose cuts are the same.
Finally, the set of antichains obtained {Ai | i ∈ ω} are linearly ordered and
being an infinite set, an increasing or else a decreasing sequence can be
foun. Renaming this sequence, we get a subposet Q of P of the form
Σi∈ωBi where every Bi is an antichain of size i and the sets Bi are either
increasing in the < order, or else they form a decreasing sequence.
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