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Siblings of relational structures
I want to highlight some of the work in two directions.   With permission of our student Davoud Abdi Kalow I am going to use slides 
he made up for a talk given at the Canadian Mathematical Society meeting in December on part of the work, focused on the 
development of a counterexample of Atsushi Tateno.  I will add more results establishing the conjecture in two settings.  Both these 
settings  draw heavily on the theory of wqo-bqo.

Because I am a very rusty and bad with technology, I am afraid there will be some jumping around from  Davoud’s slides with nice 
pictures, and mine, without.  My apologies.



To obtain countably infinite cographs another construction tool is needed.     The tool arises naturally from consideration of 
the modular decomposition of the graph.   
A subset M of a graph is said to be a module (or interval) just when   a not in M and b,c in M we have a is adjacent to b iff a is 
adjacent to c.       The empty set, singletons and the entire set G are always modules, the trivial ones.  

The modular decomposition tree arises  regarding strong modules.   A non-empty module M is said to be strong when it is 
comparable (with respect to inclusion) to every module N that it meets in a non-empty set.   Since the intersection of a family 
of strong modules containing a common element is always strong, one is led to consider the robust s of the graph---strong 
modules generated by one or two elements.    Ordered by reverse inclusion, the robust modules form a tree.
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Thomassé and Tyomkyn

Davoud Abdi

University of Calgary

davoud.abdikalow@ucalgary.ca

December 3, 2022

Davoud Abdi (University of Calgary) December 3, 2022 1 / 17



Equimorphism

Embedding

An injective map preserving the structure.

Sibling

Two structures E and E ′ are called siblings (or equimorphic), denoted by
E ≈ E ′, when there are mutual embeddings between them.
E ≈ E ′ ∼= E ′′, g(E ′) = E ′′ ⊇ (g ◦ f )(E) ∼= E .

f
E E ′

g
E ′′g(f (E)) f (E)
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Siblings in Some Categories

Cantor-Schröder-Bernstein Theorem (Sets)

If there exist injective maps f : A→ B and g : B → A between two sets A
and B, then there exists a bijection (isomorphism) h : A→ B.

Vector Spaces

If there are mutual injective linear transformations between two vector
spaces over a fixed field, then they are isomorphic.

Rational Numbers

Q as a chain: there are mutual injective order preserving maps between Q
and Q+∞, nonetheless, Q � Q+∞.
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Thomassé’s Conjecture

Sibling Number

The number of isomorphism classes of siblings of a relation E , denoted by
Sib(E).

If E is a ray, Sib(E) = 1 in the category of trees,

• • • • • . . .

and Sib(E) = ℵ0 as a binary relation.

• • • • • • • • • • • . . .

Thomassé’s Conjecture (2000)

For a countable relation E , Sib(E) = 1, ℵ0 or 2ℵ0 .

The Alternate Thomassé Conjecture

For a relation E of any cardinality, Sib(E) = 1 or ∞.
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The Bonato-Tardif Conjecture

Conjectures about Trees

The Bonato-Tardif Conjecture (2006): If T is a tree, then Sib(T ) = 1
or ∞ in the category of trees.

Tyomkyn’s Conjecture (2009): If a locally finite tree T has a
non-surjective embedding, then Sib(T ) =∞, unless T is a ray.

Note [Pouzet]

If for a tree T we have T ⊕ 1 6↪→ T , then the conjectures of Bonato-Tardif
and Thomassé are equivalent.
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Results towards the conjectures of Bonato-Tardif and
Tyomkyn

The Bonato-Tardif conjecture holds for

rayless trees [Bonato, Tardif] (2006)

rooted trees [Tyomkyn] (2009)

scattered trees and stable trees [Laflamme, Pouzet, Sauer] (2017)

Tyomkyn’s conjecture holds for

locally finite scattered trees [Laflamme, Pouzet, Sauer] (2017)
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Thomassé and the Alternate Thomassé Conjecture

Positive Results

Thomassé’s conjecture holds for

countable chains [Laflamme, Pouzet, Woodrow] (2017) and countable
direct sums of chains [Abdi] (arXiv, 2022+)

The Alternate Thomassé conjecture holds for

rayless graphs [Bonato, Bruhn, Diestel, Sprüssel] (2011)

chains [Laflamme, Pouzet, Woodrow] (2017)

countable ℵ0-categorical relational structures [Laflamme, Pouzet,
Sauer, Woodrow] (2021)

countable universal theories [Braunfeld, Laskowski] (arXiv, 2022+)

countable cographs [Hahn, Pouzet, Woodrow] (arXiv, 2022+)

direct sums of chains [Abdi] (arXiv, 2022+)

countable NE -free posets [Abdi] (arXiv, 2022+)
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Countable cographs (Hahn, 
Pouzet, Woodrow)

An undirected graph G is a cograph just when it does not embed a path on four vertices.   Since the graph complement of a 
path on four vertices is also a path on four vertices,  a graph is a cograph just in case its complement is.

Finite cographs can be obtained from the graph on a single vertex by the operations of direct and complete sum.  The direct 
sum of two graphs G and H is obtained by taking disjoint copies and adding no new edges between them.  The complete sum 
adds all possible edges between the two copies.



To obtain countably infinite cographs another construction tool is needed.     The tool arises naturally from consideration of 
the modular decomposition of the graph.   
A subset M of a graph is said to be a module (or interval) just when   a not in M and b,c in M we have a is adjacent to b iff a is 
adjacent to c.       The empty set, singletons and the entire set G are always modules, the trivial ones.  

The modular decomposition tree arises  regarding strong modules.   A non-empty module M is said to be strong when it is 
comparable (with respect to inclusion) to every module N that it meets in a non-empty set.   Since the intersection of a family 
of strong modules containing a common element is always strong, one is led to consider the robust s of the graph---strong 
modules generated by one or two elements.    Ordered by reverse inclusion, the robust modules form a tree.



Gallai Decomposition
The Gallai decomposition theorem applies. Given a  robust modules—its maximal 
proper strong modules form either a complete graph or an independent set, giving 
a natural label to the robust module 0 or 1, from which the graph structure can be 
recovered.



Decomposition Tree
To obtain countably infinite cographs another construction tool is needed.     The tool arises naturally from consideration of 
the modular decomposition of the graph.   
A subset M of a graph is said to be a module (or interval) just when   a not in M and b,c in M we have a is adjacent to b iff a is 
adjacent to c.       The empty set, singletons and the entire set G are always modules, the trivial ones.  

The modular decomposition tree arises from  regarding strong modules.   A non-empty module M is said to be strong when it 
is comparable (with respect to inclusion) to every module N that it meets in a non-empty set.   Since the intersection of a 
family of strong modules containing a common element is always strong  one is led to consider the robust modules of the 

                    



Infinite chain
Given an element x of the graph G one can consider all the robust modules which contain 
x.   In the order of reverse inclusion this may be a chain without a first element.  
This leads to the third construction tool,  an infinite chain without first element with each 
element labeled by a countable cograph and the label 0 or 1,  (0 for empty and 1 for 
complete).    



HPW result
• A countable cograph has either 1 or infinitely many siblings.   We would like to extend this to say 1, aleph 

zero or the continuum, however some lemmas, such as “if G is connected and G +1 is a sibling of G, then G 
has infinitely many non isomorphic siblings”  would need more.

A   key result, that uses wqo-bqo is the following:

If a countably infinite cograph and its complement are both connected, then it has a continuum of siblings.

This situation means that the decomposition tree has no first element.  This puts one in the situation of 
countable trees labelled by countable cographs and 0 or 1,   Σ C,  the sum of a chain labeled by 0, 1 and 
cographs.  Here we may assume that if i<j in C there is k with I \leq k < j such that the label at k is different than 
the one at j,  a form of density.  
Here one applies the result of Laver that countable chains are BQO, and of Thomassé that countable cographs 
are BQO to obtain that that the labeled order is WQO,   This allow us to work with left indecomposability to 
drive out the results,  with some effort.



• The key idea is to take a left indecomposable initial segment J of the 
order C.   We identify a coinitial sequence a_n with label one and add 
infinitely many new  b_n, c_n with b_n covering a_n, and with label 0, 
and c_n covering b_n with label 1.    Next  ensure that for i in J we 
have that   in the modified labeled chain, the cograph   associated 
with i is an odd clique, if it was  originally associated to an  an even 
clique (and similarly with antichain).   We then associate even 
chains/antichains at b_n and c_n according to a mapping f.

• Fix a mapping f from N to {0,1}.   Associate to b_n an independent set 
of size 2f(n) +2 and to c_n a clique of size 2f(n)+2.



• Now the idea is to argue that we obtain siblings of the original Sum, 
and that for a suitable collection of f they are pairwise non 
isomorphic.

A key lemma is the following:
• Lemma 2.12. Let C ∶= (I, ℓ) be a countably infinite labelled chain. If the labels

• belong to a b.q.o. and C is indecomposable then for every positive integer n,

• the ordinal product n.C embeds in C.

This lemma allows us to argue that we do indeed obtain siblings of the initial structures.



• Lemma 2.11. Let C ∶= (I, ℓ) be a countable chain labelled over a b.q.o. Q.
• Then
• (1) C is a finite sum of indecomposable labelled chains;
• (2) If I has no least element, then there is some initial interval J such that
• C↾J is left-indecomposable;
• (3) If C is left-indecomposable then C is an ω∗ sum Σ∗
• n<ωCn where each
• Cn is indecomposable and the set of m such that Cn embeds into Cm is
• infinite;
• (4) If C is indecomposable and the quotient I/ ≡C is dense then C
• is equimorphic to a sum Σq∈QCq such that for every p < q and r
• in Q there are s0, . . . , snm−1 with p < s0 < ⋯ < snm−1 < q and
• Cr ≤ Cs0 +⋯+ Csnm−1
• < C.



Obtaining non-isomorphic siblings

• Lemma 2.8. Let G, G′ be two isomorphic cographs such that their tree decomposition

• has no least element. If G = ΣC and G′ = ΣC′ where C ∶= (I, ≤, ℓ)

• and C′ ∶= (I′, ≤′, ℓ′) are two reduced labelled chains then there are two infinite

• initial segments W of I and W′ of I′ and an isomorphism h of the induced

• Labelled chains C↾W and C′ ↾W′ .



• Having disposed of finite even chains and antichains except those 
introduced via f for the b_n and c_n, we obtain that the isomorphism 
h for large enough n must take b_n to some b_m, and we obtain two 
final segments D and D’ of N such that f’(h(n))=f(n), when f and f’ 
yield isomorphic cographs.

• This means we only need a continuum of functions f such that for f 
and f’ distinct and h an isomorphism of a final segment D onto 
another D’ there is n such that f(n) \neq f’(h(n)).   This is possible via 
an almost disjoint family of subsets of a set X which exhibits a strictly 
increasing sequence of gaps, so that if A is in the family then A+n is 
almost disjoint from A.  



Davoud Abdi’s thesis

Davoud’s initial thesis goal was to prove the tree conjecture in the case 
of locally finite trees.   On the way he obtained some extensions of 
work in the area.    As it happens, in personal communications with 
Tyomkin he learned of a counterexample to Thomassé’s conjecture in 
the Oxford thesis of Tateno.   The example was never published, but 
Tateno did supply  a copy.   Claude, Davoud, Tateno and I  eventually 
produced the counterexamples reported in last part of the talk.

Of course Davoud’s thesis had to take a different tack.   He took on 
generalizing the work on countable cographs to countable NE free 
posets,  these are posets which do not embed an N.    



• This was not a straightforward application of the cograph result.  While 
cographs are the comparability graphs of NE free posets,  a moments 
thought highlights the difficulty—all infinite chains have the same 
comparability graph—a clique.

• Another way to see this is as follows.   Suppose P is a summand with 
incomparable elements p, q and r (not in P) is deemed to be comparable 
with p and q.  (This will arise with either the linear sum or with sums 
corresponding to robust modules.)   We must have r <p and r<q   or p<r and 
q<r.   This forces an analysis which splits the two simple situations 0 and 1 
from cographs into three 0 1- and 1+, which must be handled.    It also 
makes the discussion about density and applications of the arguments 
much more subtle.  



• Let (I \leq) be a chain with r :I\rightarrow{-1,0,1}.   Define Q^I_r = (I \leq’)  by  for i<j 
• i is orthogonal to j if r(i) = 0
• i<‘ j if r(i) = -1 and 
• j ,’I if r(i) =+1.

• Then we define the poset labelled sum of I w.r.t. r as the poset substitution of the P_i according to Q^I_r



• Davoud did apply the tools of WQOBQO and modified the arguments 
to drive out the result establishing the “weak” results for N  partial 
orders P—A countable N free partial order has 1 or infinitely many 
siblings.



• The modular decomposition by  robust modules must allow for this 
split and with a resulting complication in labelling.     While the 
disjoint sum of posets is relatively straight forward, there are 
complciations that arise for the linear sum.    

• Fortunately Laver’s result on BQO for countable chains, and 
Thomassé’s proof for NE free posets provide the essential tools 
needed to carefully extend the approach and carry the day.



Counterexample to the Conjectures of Bonato-Tardif,
Tyomkyn, Thomassé, and more

[Abdi, Laflamme, Tateno, Woodrow] (arXiv, 2022+)

There are locally finite trees having an arbitrary finite number of siblings
disproving all conjectures of Bonato-Tardif, Tyomkyn and Thomassé.

Properties of the Tree Examples

For each n > 0 there is a locally finite tree T with exactly n siblings such
that

T ⊕ 1 6↪→ T ;

for each self-embedding φ of T , T \ φ(T ) is finite.

Partial Order Counterexamples

The tree examples can be adapted to construct partial orders with an
arbitrary finite number of siblings.
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What is going to be constructed?

We inductively build two locally finite trees Ti =
⋃

k Ti (k), i = 0, 1 with
the following properties:

at each step k , Ti (k) \ φ(Ti (k)), i = 0, 1, is finite for any
self-embedding φ of Ti (k);

Sib(Ti (k)) = ℵ0 for all k;

T0(k) � T1(k) for each k.

Then we will have:

Ti \ φ(Ti ) is finite for each self-embedding φ of Ti ;
T0 � T1;

if S ≈ T0, then either S ∼= T0 or S ∼= T1. Therefore, Sib(Ti ) = 2.

Ti ⊕ 1 does not embed into Ti .
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A Labelled Tree

We label the vertices of R = (R, r) as follows. The 0-labelled vertices of
R are called tree vertices, denoted by R0.
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T0(0) and T1(0)

T0(0) on tp0 • •· · ·
0 0

•
0
• •

0(z0)
• •

1
•
1

•
1

•
1
. . .

(R, r) (R, r) (R, r) (R, r) (R, r) (R, r) (R, r) (R, r)

T1(0) is similarly constructed on the following double ray (tp1)

• •· · ·
0 0

•
0
• •
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1
• •
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•
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•
1

•
1
. . .

•
•

0

•
• •

•
1

•
•
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Target Vertex

target vertex tv ` of height ` : a tree vertex v ∈ T0(k) such that the label
of the last consecutive pair w ,w ′ ∈ Pz0,v is `.

• •· · · •• •
z0

•

(R, r) (R, r) (R, r) (R, r)

•1 •
1

...

•0
tv1
· · ·

•2

... •
2

...

•1
•0
tv2
· · ·
•1

...

•0 · · ·
tv1
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Target Vertex

target vertex tv ` of height ` : a tree vertex v ∈ T0(k) such that the label
of the last consecutive pair w ,w ′ ∈ Pz0,v is `.

• •· · · •• •
z0

•

(R, r) (R, r) (R, r) (R, r)

•1 •
1

...

•0
tv1
· · ·

•2

... •
2

...

•1
•0
tv2
· · ·
•1

...

•0 · · ·
tv1

Davoud Abdi (University of Calgary) December 3, 2022 12 / 17



Crater

Let v ∈ (R ′, r ′) be a target vertex of height `.
C(v) = {u ∈ T0(k) : htv (u) < `}.

•
v

•
0

•1 •1

•
0

•
0

•
`− 1

•
`− 1

•` •`
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T0(k)

Pick a target vertex v ∈ T0(k − 1) of height k

•
r

•
0

S0,0

•1 •1
•
v

•
0

•
k − 1

•
k − 1

•k •k

S0,k−2

S0,k−1

•
z0

· · ·· · ·

where S0,0 ≈ T0(0), S0,k−2 ≈ T0(k − 2), S0,k−1 ≈ T0(k − 1) and so on.
More, Sib(T0(k)) = ℵ0.
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Main Property of T0 (T1)

Any non-isomorphic sibling of T0(k) is almost equal to T0(k), so has been
embedded at some stage, the partial isomorphism extends to the whole
structure. This implies that any sibling of T0 is isomorphic to either T0 or
to T1

The following posets can be added to Ti . Double rays in Ti can also be
adapted by making them as infinite fences. Then, the siblings of each Ti
are the same as trees (and relational structures) or as posets.

PK (m, n) •
u0

u1

•
u2

•
u4

u3

•
u6

u5
· · ·•

um−1

•
um

v1 vn· · ·

Conclusion

All conjectures of Bonato-Tardif, Tyomkyn and Thomassé are false.
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Future Directions

Goal

Counting the number of siblings provides a good first insight into the
siblings of a mathematical structure.
The real problem is to fully understand the structure of those siblings.
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Thank You for Your Attention
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