B8-3COMATH1 -SI - Moveling liological dynamies with owinaw aifferential equations

Contrauction to modeling skills 2/2

Exheise 1:

1. a. $\left\{\begin{array}{l}S^{\prime}=-\beta S I \\ t^{\prime}=\beta S I-\gamma I \\ R^{\prime}=\gamma I\end{array}\right.$

b. $S^{\prime}+I^{\prime}+R^{\prime}=O(*)$

Note $S+I+R=N$ (total gulation)
(*) $\left(\equiv N^{\prime}=0\right.$ that is $N \equiv c$: conotant population
c. $\quad S(0)=S_{v}>0$

$$
\begin{aligned}
& I(0)=I_{0}>0 \\
& R(0)=R_{0} \text { can be >0 on }=0
\end{aligned}
$$

2. a.

$$
\text { b. }\left\{\begin{array}{l}
S^{\prime}=\gamma_{2} P-\alpha S I-\gamma_{1} S \\
I^{\prime}=\alpha S I-\beta I \\
P^{\prime}=\gamma_{1} S-\gamma_{2} P
\end{array}\right.
$$

3. a.

4.

$$
\left\{\begin{aligned}
S^{\prime} & =-\alpha I M_{I N F} \\
I^{\prime} & =\alpha I M_{M N F}-\beta I \\
M_{E G G}^{\prime} & =-\gamma_{1} M_{E G G}+\gamma_{3}\left(M_{A D}+M_{N A}\right) \\
M_{A D}^{\prime} & =\gamma_{1} M_{E G G}-\gamma_{2} M_{A D} \cdot \sigma \\
M_{\text {INF }}^{\prime} & =\gamma_{2} M_{A D} I
\end{aligned}\right.
$$

+ death rates

Exencise 2:
1.a. self esteem

$$
\mathcal{R}
$$

b. $\left\{\begin{array}{l}R^{\prime}=a R+b J \\ J^{\prime}=c R+2 J\end{array}\right.$
c. Lose conlience on feelings: negative tem

$$
\begin{aligned}
& R^{\prime}=a R+b J-a_{n} R-b J \\
&=a R\left(1 \cdot \frac{R}{R_{0}}\right)+b J\left(1-\frac{J}{r_{0}}\right)-\text { nedatite tems }
\end{aligned}
$$

2.

Li love of lamn for the Petrach
P:" "Petarch " Cama
z : mingation.
R_{L} and R_{ρ} : venction funciais
Ap [AL]: ajpeal of Petranch (lama] (ayeal: Fhysial, souinl, intellectual)
love of Petanch

$$
\begin{aligned}
& \text { forgething reacion of } \begin{array}{r}
\text { reconse to he ajeal } \\
+ \text { to the }
\end{array} \\
& \text { Perand 店 } \\
& + \text { to the impration } \\
& \text { the coreg Lama } \\
& \text { (the nook he is niskined } \\
& \text { the len te is aticated) }
\end{aligned}
$$

$$
z^{\prime}=-\alpha_{3} z+\beta_{3} P
$$

$\underbrace{\text { in suotoino mimation by love }}_{\text {inpuatioi }}$ decuys
6. $\quad R_{p}(L)=\beta_{2} L$: the more Lama loves Perarch the mas he lnco ter and meidly

$$
P_{L}(\rho)=\beta, p\left(1-\left(\frac{\rho}{\gamma}\right)^{2}\right): \bigcap^{\uparrow \rightarrow p} \text { Peranh is too big }
$$

then laus is soned an) Sit fase away she sbach to love
3. a. $\quad P_{1}^{\prime}=\alpha P_{1}\left(1-\frac{P_{1}}{k}\right)\left(P_{1}-M\right)-E P_{1}$
(compla: $\left\{\begin{array}{l}P_{1}^{\prime}=\alpha\left(\alpha_{2}\right) P_{1}\left(1-\frac{P_{1}}{k_{1}\left(P_{2}\right)}\right)\left(P_{1}-M_{n}\left(P_{2}\right)\right)-\sum_{1}^{E_{1} P_{1}} \\ P_{2}^{\prime}=\alpha_{2}\left(P_{1}\right) P_{2}\left(1-\frac{P_{2}}{k_{1}\left(P_{1}\right)}\right)\left(P_{2}-M_{2}\left(P_{2}\right)\right) \cdot E_{2} P_{2}\end{array}\right.$ ${ }_{E_{2}\left(P_{1}\right)}$
b. Perterbothors can be aded in the initrail convitant (pulses) ore in stachaotic leims in the equationio

Exancie 3:

$$
\text { 2. } \begin{aligned}
x^{\prime} & \left.=\alpha_{1} x\left(1-\frac{x}{k_{1}}\right) \quad \alpha_{1} \geqslant \alpha_{2} \quad k_{1}\right)>k_{2} \\
y^{\prime} & =\alpha_{2} y\left(1-\frac{x}{k_{2}}\right)
\end{aligned}
$$

3. $\quad \begin{cases}x^{\prime}=x(3-x-2 y) & \rightarrow \text { Rabbith } \\ y^{\prime}=y(2-x-y) & \rightarrow \text { sheep }\end{cases}$
