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Abstract. This paper analyses the behavior of the solutions of a model of cells
that are capable of simultaneous proliferation and maturation. This model is
described by a first-order singular partial differential system with a retardation
of the maturation variable and a time delay. Both delays are due to cell
replication. We prove that uniqueness and asymptotic behavior of solutions
depend only on cells with small maturity (stem cells).

1. Introduction. Mathematical models of biological populations structured in age
or maturity appeared in various contexts more than forty years ago. In particular,
there exists a vast literature on models for progress through the cell cycle and its
various phases. See for example the references given in Metz and Diekmann (1986),
and in Gyllenberg and Heijmans (1987). More recently Mackey and Rudnicki (1994
and 1999) studied a particular time-and-age maturation structured model of bio-
logical process of hematological cell development in bone marrow. This model is a
generalization of those that have been introduced previously both in the absence
of maturation by Mackey (1978 and 1979) and presence of maturation with only
one phase by Rey and Mackey (1992 and 1993). They considered a mathematical
model for the dynamics of a population of cells which can be distinguished from
each other according to their maturity and their position in the cell cycle phase.
Mackey and Rudnicki (1994 and 1999) assumed that the cell cycle consists of two
distinct phases. The cells in the first phase (resting phase) cannot divide, they ma-
ture, and provided they do not die, they eventually enter the second phase. In the
second phase (proliferating phase) the cells are committed to undergo cell division a
time τ later. The position of a cell in each phase is denoted by a (cell age) which is
assumed to range in the proliferating phase from a = 0 (the point of commitment)
to a = τ (the point of cytokinesis), and in the resting phase from a = 0, when the
cell enters, to a = +∞. The maturity variable m represents the concentration of
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what composes a cell such as proteins, or other elements one can measure experi-
mentally. The maturity variable m can range, without loss of generality, from 0 to
1. Cells can be lost in the proliferating phase with a rate γ(m) and in the resting
phase with a rate δ(m). At the point of cytokinesis, a cell with maturity m divides
into two daughter cells with maturity g(m) ≤ m, that enter directly the resting
phase. In the resting phase, cells can return to the proliferating phase with a rate
β and complete the cycle. The cells of both types mature with the same velocity
V (m).
In the model considered by Mackey and Rudnicki (1994 and 1999), the main results
concern the global stability for the following first order partial differential equation

∂

∂t
u(t,m) + V (m)

∂

∂m
u(t,m) = f (u(t,m), u(t − τ,∆(m))) , (1)

where ∆ : [0, 1] → [0, 1] is a continuous function such that ∆(0) = 0 and ∆(m) < m,
for m ∈ (0, 1]. These authors gave in 1999 a criterion for global stability of Equation
(1). However, they considered only the case when the term f (u, v) in Equation (1)
does not depend on the maturity variable. This restriction implies that the rates of
mortality in the two phases, the rate of return from the resting to the proliferating
phase and V ′(m) are independent of the maturity variable. This allowed Mackey
and Rudnicki to introduce the following delay differential equation

u′(t) = f (u(t), u(t − τ)) , (2)
and to establish the connection between the global solution behavior of the equation
(2) and the local and global solution behavior of the partial differential equations
(1). More exactly, they proved that local stability of Equation (1) and global
stability of Equation (2) yield to global stability of (1).
This model has also been analyzed by Dyson et al. (1996a and 1996b) in the
particular case when the maturity X(−τ, g−1(m)) is independent of τ and is equal
to αm, with 0 < α < 1. In these studies, it is shown that the behavior of solutions
is dependent upon the stem cells. Numerical studies performed by Rey and Mackey
(1993) suggest such a result. For other recent developments concerning properties
of similar equations see for example Dyson et al. (2000a and 2000b) and Bernard
et al. (2001)
The model investigated in the present paper is more general than those considered
by Mackey and Rudnicki in (1994 and 1999). It takes into account the maturity
variable. In particular, we consider a general velocity of maturation V (m) and a
general function g(m) which is the maturity of the two daughter cells if m is the
maturity of their mother. Moreover, the rates of mortality and the rate of return
from the resting to the proliferating phase are, in our paper, depending on the
maturity variable. We prove, under local conditions on the rates of mortality and
the rate of return from the resting to the proliferating phase, exponential stability
of the trivial solution of our system. This result is obtained under the assumption
that the proliferating phase is long enough,

τ > sup
m∈[0,g(1)]

(∫ g−1(m)

m

ds

V (s)

)
. (3)

We also obtained under Condition (3), that if the initial population of cells ϕ(t,m)
is 0 for the maturity m in [0, b], where b > 0 can be chosen as small as we want
(stem cells), then the population goes to extinction at a finite time. Moreover, if
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ϕ(t, 0) = 0 (primitive cells), then N(t,m) → 0 as t → ∞. In the interpretation
of these results the case of a sufficient supply of stem cells implies a normal blood
production and the case of injury or destruction of stem cells or primitive cells
corresponds to an abnormal production (the aplastic anemia).

2. Presentation of the model.

2.1. Proliferating phase. We suppose that V : [0, 1] → [0,+∞) is a continuously
differentiable function such that V (m) > 0, for m ∈ (0, 1], and V (0) = 0.
We also assume that γ : [0, 1] → [0,+∞) is a continuous function of the maturity
m.
The conservation equation for the proliferating phase is

∂

∂t
p(t,m, a) +

∂

∂a
p(t,m, a) +

∂

∂m
(V (m)p(t,m, a)) = −γ(m)p(t,m, a), (4)

with the initial condition

p(0,m, a) = Γ(m,a), for (m,a) ∈ [0, 1] × [0, τ ] ,

where Γ ∈ C ([0, 1] × [0, τ ]).
Here, p(t,m, a) represents the density of proliferating cells at time t, maturity m
and age a.
The total density of proliferating cells at a given time t and a maturity level m is
defined by

P (t,m) =
∫ τ

0

p(t,m, a) da.

2.2. Resting phase. We denote by

N(t,m) =
∫ +∞

0

n(t,m, a) da,

the total density of cells in the resting phase at a given time t and maturity level
m, where n(t,m, a) represents the density of resting cells at time t, maturity m and
age a.
We assume that the rate β(m,N(t,m)) is a nonlinear function of N(t,m).
The conservation equation for the resting phase is

∂

∂t
n(t,m, a)+

∂

∂a
n(t,m, a)+

∂

∂m
(V (m)n(t,m, a)) = − [δ(m) + β(N(t,m),m)] n(t,m, a),

(5)
with the initial condition

n(0,m, a) = µ(m,a) , for (m,a) ∈ [0, 1] × [0,+∞) ,

where µ ∈ C ([0, 1] × [0,+∞)) and lim
a→+∞µ(m,a) = 0.

We suppose that δ and β are continuous functions.
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2.3. Boundary conditions. The cellular flux between the two phases is given by
the system

n(t,m, 0) = 2(g−1)′(m)p(t, g−1(m), τ), for m ≤ g(1),

p(t,m, 0) =
∫ +∞

0

β(N(t,m),m)n(t,m, a)da = β(N(t,m),m)N(t,m),
(6)

where g(m) represents the maturity of the daughter cells when m is the maturity
of their mother.
The first boundary condition describes the flux of daughter cells into the resting
phase just after the division of their mother. Note that the maturity m of the
daughter cells just after division is smaller than g(1). This fact is expressed by the
following boundary condition

n(t,m, 0) = 0, for m > g(1). (7)
The second condition in (6) represents the re-entry of resting cells into the prolif-
erating phase.
We assume that g : [0, 1] → [0, 1] is a continuous function such that g ∈ C1 [0, 1],
g′(m) > 0 and g(m) ≤ m, for m ∈ [0, 1].

3. Equations for N and P . We define the characteristic curve s → X(s,m)
through (0,m), m ∈ [0, 1], in the two phases by the ordinary differential equation

du

ds
(s) = V (u(s)), s ∈ R,

u(0) = m.

(8)

We have X(0,m) = m and X(s, 0) = 0, for s ∈ R and m ∈ [0, 1].
Note that the expression X(s,m) appears in our model only for s ≤ 0. Furthermore,
one can prove that X(s, .) is given explicitly, for s ≤ 0 and m ∈ [0, 1] , by

X(s,m) = h−1 (h(m)es) , (9)
where h : [0, 1] → [0, 1] has the explicit form

h(m) =


exp

(
−

∫ 1

m

ds

V (s)

)
, for m ∈ (0, 1] ,

0, for m = 0.

(10)

Using the method of characteristics, one can derive evolution equations for N(m, t)
and P (m, t) :
(1) If m ∈ [0, g(1)] and 0 ≤ t ≤ τ,

∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = − [δ(m) + β(N(t,m),m)] N(t,m) + f1(t,m),

(11)
with

f1(t,m) = 2(g−1)′(m)ξ(g−1(m), t)Γ
(
X(−t, g−1(m)), τ − t

)
, (12)

and
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ξ(m, t) = exp
{
−

∫ t

0

(γ (X(−s,m)) + V ′ (X(−s,m))) ds

}
. (13)

If m ∈ [0, g(1)] and t ≥ τ,

∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = − [δ(m) + β(N(t,m),m)] N(t,m)

+f2(m)β
[
N

(
t − τ,X(−τ, g−1(m))

)
,X(−τ, g−1(m))

]
N

(
t − τ,X(−τ, g−1(m))

)
,

(14)
with

f2(m) = 2(g−1)′(m)ξ(g−1(m), τ). (15)

If m ∈ [g(1), 1] and t ≥ 0,

∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = − [δ(m) + β(N(t,m),m)] N(t,m). (16)

(2) If m ∈ [0, 1] and 0 ≤ t ≤ τ,

∂

∂t
P (t,m)+

∂

∂m
(V (m)P (t,m)) = −γ(m)P (t,m)+β(N(t,m),m)N(t,m)−f3(t,m),

(17)
with

f3(t,m) = ξ(m, t)Γ (X(−t,m), τ − t) . (18)

(3) Finally, if m ∈ [0, 1] and t ≥ τ,

∂

∂t
P (t,m) +

∂

∂m
(V (m)P (t,m)) = −γ(m)P (t,m) + β(N(t,m),m)N(t,m)

−ξ(m, τ)β [N (t − τ,X(−τ,m)) ,X(−τ,m)] N (t − τ,X(−τ,m)) .

(19)

Since our objective in this work is to prove that uniqueness and asymptotic behavior
of the solutions depend only on the cells with small maturity (stem cells), we will
focus our study on the production process given by Equation (14) on the maturity
interval [0, g(1)].
The first term on the right-hand side of Equation (14) describes the loss due to death
and transition to the proliferating phase. The second term describes the birth of
cells with maturity m from mother cells completing their proliferating phase who
entered into the proliferating phase a time τ ago with a maturity X(−τ, g−1(m)).

4. Existence and uniqueness. The integrated version (variation of constants
formula) of Equation (14) for t ≥ τ and m ∈ [0, g(1)] is given by
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N(t,m) = ϕ (τ,X(−(t − τ),m)) K(t − τ,m)

−
∫ t

τ

K(t − s,m)β [N (s,X(−(t − s),m)) ,X(−(t − s),m)] N (s,X(−(t − s),m)) ds

+
∫ t

τ

K(t − s,m)f2 (X(−(t − s),m))

×β
[
N

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

,X
(−τ, g−1(X(−(t − s),m))

)]
×N

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

ds,
(20)

and N(t,m) = ϕ (t,m) , for t ∈ [0, τ ], and m ∈ [0, g(1)],
where

K(t,m) = exp
{
−

∫ t

0

(δ (X(−σ,m)) + V ′ (X(−σ,m))) dσ

}
, (21)

and

ϕ ∈ C ([0, τ ] × [0, g(1)]) .

Note that the initial datum ϕ is in fact the solution of Equation (11) for (t,m) ∈
[0, τ ] × [0, g(1)] .

Proposition 4.1. Suppose that the function x �→ β(x,m)x is Lipschitz continuous,
that is

|β(x1,m)x1 − β(x2,m)x2| ≤ k |x1 − x2| , for x1, x2 ∈ R and m ∈ [0, g(1)] ,

where k is a positive constant. If ϕ ∈ C ([0, τ ] × [0, g(1)]), then there exists a unique
solution N ∈ C ([0,+∞) × [0, g(1)]) of Equation (20).

Proof. The proof is classical. Let t ≥ 0, m ∈ [0, g(1)] and N ∈ C ([0,+∞) × [0, g(1)]).
We set

G(N)(t,m) = −
∫ t

τ

K(t − s,m)β[N (s,X(−(t − s),m)) ,

X(−(t − s),m)]N (s,X(−(t − s),m)) ds,

(22)

and

H(Nτ )(t,m) =
∫ t

τ

K(t − s,m)f2 (X(−(t − s),m))

×β
[
N

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

,X
(−τ, g−1(X(−(t − s),m))

)]
×N

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

ds.
(23)

Then, Equation (20) becomes
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N(t,m) − G(N)(t,m) = ϕ (τ,X(−(t − τ),m)) K(t − τ,m) + H(Nτ )(t,m). (24)

Let (Nn)n∈N
be a sequence of continuous functions given, for t ∈ [0, 2τ ] and m ∈

[0, g(1)], by

Nn(t,m) =


N0(t,m) + G(Nn−1)(t,m), for t ∈ [τ, 2τ ] ,

ϕ (t,m) , for t ∈ [0, τ ] ,
and, for t ∈ [τ, 2τ ]

N0(t,m) = ϕ (τ,X(−(t − τ),m)) K(t − τ,m) +
∫ t

τ

K(t − s,m)f2 (X(−(t − s),m))

×β
[
ϕ

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

,X
(−τ, g−1(X(−(t − s),m))

)]
×ϕ

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))

ds.

Due to the continuity of X, δ, V ′, ϕ and f2, there exist α > 0 and M0 ≥ 0 such
that

|K(t,m)| ≤ α, for t ≥ 0 and m ∈ [0, g(1)] ,

|N0(s,X(−(t − s),m))| ≤ M0, for t ∈ [τ, 2τ ] , s ∈ [τ, t] and m ∈ [0, g(1)] .

Then, we obtain for t ∈ [τ, 2τ ] and m ∈ [0, g(1)] that

|N1(t,m) − N0(t,m)| = |G(N0)(t,m)| ≤ αk

∫ t

τ

|N0 (s,X(−(t − s),m))| ds,

and thus

|N1(t,m) − N0(t,m)| ≤ αkM0(t − τ).
In the general case, we have

Nn(t,m) − Nn−1(t,m) = G(Nn−1)(t,m) − G(Nn−2)(t,m).
Thus

|Nn(t,m) − Nn−1(t,m)| ≤ αk

∫ t

τ

|Nn−1 (s,X(−(t − s),m))

− Nn−2 (s,X(−(t − s),m)) |ds.

By induction, we obtain

|Nn(t,m) − Nn−1(t,m)| ≤ αnknM0
(t − τ)n

n!
.

So, the limit N := lim
n→∞ Nn exists uniformly on [0, 2τ ] and N is continuous on [0, 2τ ].

To prove that N is a solution of Equation (20), we introduce the function v defined
by

v(t,m) = |N(t,m) − N0(t,m) − G(N)(t,m)| .
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Then, we have

v(t,m) ≤ |N(t,m) − Nn+1(t,m)| + |Nn+1(t,m) − N0(t,m) − G(N)(t,m)|,

≤ |N(t,m) − Nn+1(t,m)| + |G(N)(t,m) − G(Nn)(t,m)|,

≤ |N(t,m) − Nn+1(t,m)| + αk

∫ t

τ

|N(s,X(−(t − s),m))

−Nn(s,X(−(t − s),m))|ds.

Moreover ,

N(t,m) − Nn(t,m) =
+∞∑
p=n

(Np+1(t,m) − Np(t,m)).

This implies that,

|N(t,m) − Nn+1(t,m)| ≤ M0

+∞∑
p=n+1

αp+1kp+1 (t − τ)p+1

(p + 1)!
.

So,

v(t,m) ≤ 2M0

+∞∑
p=n

(αk(t − τ))p+2

(p + 2)!
, for all n ∈ N.

Hence, when n tends to +∞, we obtain

v(t,m) = 0, for t ∈ [0, 2τ ] and m ∈ [0, g(1)] .
Consequently, N is a solution of Equation (20) on [0, 2τ ] × [0, g(1)].
To prove uniqueness, we suppose that Z is also a solution of Equation (20). Then,

|N(t,m) − Z(t,m)| ≤ αk

∫ t

τ

|N (s,X(−(t − s),m)) − Z (s,X(−(t − s),m))| ds.

We suppose that t ∈ [τ, 2τ ] is fixed and we consider the function w for σ ∈
[τ, t] and m ∈ [0, g(1)], defined by

w(σ) = |N (σ,X(−(t − σ),m)) − Z (σ,X(−(t − σ),m))| .
Remark that,

X (−(σ − s),X (−(t − σ),m) m) = X (−(t − s),m) .

Then, we obtain

w(σ) ≤ αk

∫ σ

τ

|N (s,X(−(t − s),m)) − Z (s,X(−(t − s),m))| ds.

Consequently,

w(σ) ≤ αk

∫ σ

τ

w(s)ds.

By the Gronwall’s inequality, it follows that w = 0. Then, N = Z on [τ, 2τ ].
By the method of steps, we deduce the existence and uniqueness for all t ≥ 0.
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Remark 1. If x �→ β(x,m)x is only locally Lipschitz continuous, one can prove
using Gronwall’s inequality that Equation (20) has at most one solution.
We will now study the transformation of maturity from one generation of cells to
another. We put

∆(m) = X(−τ, g−1(m)), for m ≤ g(1). (25)
Recall that ∆(m) represents the maturity of a mother cell at commitment when m
is the maturity of its two daughter cells. The function ∆ : [0, g(1)] → [0, g(1)] is
continuously differentiable and satisfies

∆(0) = 0, ∆(g(1)) = h−1(e−τ ),

∆′(m) > 0, for m ∈ [0, g(1)] .
Note that for s ≤ 0

max
m∈[0,1]

(X(s,m)) = X(s, 1) = h−1(es).

Let 0 < m0 ≤ g(1) be fixed. We set
τ0 = sup

m∈[m0,g(1)]

(∫ g−1(m)

m

ds

V (s)

)
,

τ1 =
∫ 1

m0

ds

V (s)
.

Remark that, if

lim
m→0

(∫ g−1(m)

m

ds

V (s)

)
< +∞

then m0 can be chosen equal to zero, and which in this case means that τ1 = +∞.
As in the linear case, to prove our main results, we need the following lemma.

Lemma 4.1. (i) τ0 < τ1,
(ii) m0 < h−1(e−τ ) if and only if τ < τ1,
(iii) if τ > τ0 then h−1(e−τ ) < g(1),
(iv) τ > τ0 if and only if ∆(m) < m, for all m ∈ [m0, g(1)] .
The condition τ > τ0 means that the duration of the proliferating phase is suffi-
ciently long to let a future mother cell, whose maturity at the point of commitment
was ∆(m), increase sufficiently its maturity during this phase such that, just after
its division the maturity m of its daughter cells will be greater than the maturity
∆(m).
We assume in the sequel of this paper that

lim
m→0

(∫ g−1(m)

m

ds

V (s)

)
< +∞, (26)

and

τ > τ0, with m0 = 0.

The results hold with obvious modifications, for any m0 ∈ (0, g(1)] .
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We give now an example for which the condition (26) is satisfied.

Example 4.1. Suppose that V (s) ∼
s→0

αs, with α > 0.

Then,

lim
m→0

(∫ g−1(m)

m

ds

V (s)

)
< +∞ if and only if g′(0) > 0.

Note that a cell in the proliferating phase whose maturity at the point of commit-
ment is h−1(e−τ ) will give birth to two daughter cells with maturity g(1), which is
the maximal maturity of cells just after division. So, we can consider the function
Λ : [0, g(1)] → [0, 1] defined by

Λ(m) =


∆−1(m), for m ∈ [

0, h−1(e−τ )
]
,

g(1), for m ∈ [
h−1(e−τ ), g(1)

]
.

Note that the function Λ is continuously differentiable on
[
0, h−1(e−τ )

)
and satisfies

Λ(0) = 0, Λ(h−1(e−τ )) = g(1),
Λ(m) > m, for m ∈ (

0, h−1(e−τ )
]
,

Λ′(m) > 0, for m ∈ [
0, h−1(e−τ )

)
.

Let b ∈ (
0, h−1(e−τ )

)
be fixed. Consider the following sequence

bn+1 = Λ(bn),

b0 = b.
(27)

The condition τ > τ0 implies that the sequence (bn)n∈N
is increasing and that there

exists N ∈ N
∗ such that

b0 < b1 < ... < bN < h−1(e−τ ) ≤ bN+1 < bN+2 = ... = g(1). (28)
Now we give the first of our main results, which emphasizes the strong link between
the process of production of cells and cells with small maturity (stem cells).
The following result has been proved by Adimy and Pujo-Menjouet (2001) in the
linear case (i.e. β = β(m)). It has also been proved by Dyson, Villella-Bressan and
Webb (1996b) in the special case when the maturity X(−τ, g−1(m)) is independent
of τ and equal to αm, 0 < α < 1. It is also a first step to study the asymptotic
behavior and instability of our model.

Theorem 4.1. Assume that the function x �→ β(x,m)x is locally Lipschitz con-
tinuous and N1(t,m), N2(t,m) are solutions of Equation (20) with initial condi-
tions ϕ1, ϕ2 ∈ C([0, τ ] × [0, g(1)]) respectively. Suppose that there exist τ > τ0

and b ∈ (
0, h−1(e−τ )

)
such that ϕ1(t,m) = ϕ2(t,m) for m ∈ [0, b] and t ∈ [0, τ ] .

Then, there exists t > τ such that N1(t,m) = N2(t,m), for all m ∈ [0, g(1)] and

t ≥ t, where t can be chosen equal to tN+2 = ln
[
h (bN+2)

h (b)

]
+ (N + 2)τ .

Proof. Recall that h−1(e−τ ) < g(1).
The proof is based on our proof in the linear case and the use of the Gronwall’s
lemma.
First, we establish by induction that N1(t,m) = N2(t,m), for m ∈ [0, b] and t ≥ 0.
That is, for t ∈ [τ, 2τ ] and τ ≤ σ ≤ t, we obtain
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∆ (X(−(t − σ),m)) ≤ ∆(m) ≤ m ≤ b.

Hence,

N1 (σ − τ,∆ (X(−(t − σ),m))) = N2 (σ − τ,∆ (X(−(t − σ),m))) .

Consequently,

N1(t,m) − N2(t,m) = G(N1)(t,m) − G(N2)(t,m).

By the Gronwall’s inequality, it follows that

N1(t,m) = N2(t,m), for m ∈ [0, b] and t ∈ [τ, 2τ ] .

By a method of steps, we deduce that

N1(t,m) = N2(t,m), for m ∈ [0, b] and t ≥ 0.

Secondly, we reconsider the sequence (bn)n≥0 given by (27), and the sequence
(tn)n∈N defined by

tn = ln
[
h (bn)
h(b)

]
+ nτ. (29)

This sequence (tn)n∈N is increasing. Thus, we prove by induction the following
result

N1(t,m) = N2(t,m), for m ∈ [0, bn] and t ≥ tn.

So, by induction and using (28), we obtain

N1(t,m) = N2(t,m), for m ∈ [0, g(1)] and t ≥ t = tN+2,

with

tN+2 = ln
[
h (bN+2)

h (b)

]
+ (N + 2)τ.

According to the proof above, we also have the following existence result.

Corollary 4.1. Let τ > τ0 and b ∈ (
0, h−1(e−τ )

)
. Suppose that the function

x �→ β(x,m)x is Lipschitz continuous and ϕ ∈ C([0, τ ] × [0, b]). Equation (20) has
a unique solution Nϕ(t,m), for m ∈ [0, b] and t ≥ 0.
It is believed that the pathology of aplastic anemia is due to injury or destruction
of a common pluripotential stem cell. Theorem 4.1 proves that the production of
cells depends strongly on the state of cells with small maturity. In particular, it
describes the destruction of a cell population when its starting value is defective.
This is the first step to study the asymptotic behavior of our model that we present
in the following section.
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5. Invariance and asymptotic behavior. Let τ > τ0, b ∈ (
0, h−1(e−τ )

)
and ϕ ∈ C([0, τ ] × [0, b]).
We set

‖ϕ‖b = sup
0≤t≤τ , 0≤m≤b

|ϕ(t,m)| .

We define the sequence of continuous functions (Nn)n∈N
, for t ≥ 0 and m ∈ [0, b],

by

N0(t,m) =


ϕ (τ,X(−(t − τ),m)) K(t − τ,m), for t ≥ τ,

ϕ(t,m), for t ∈ [0, τ ] ,

and

Nn(t,m) =


N0(t,m) − G(Nn−1)(t,m) + H(Nτ

n−1)(t,m), for t ≥ τ,

ϕ(t,m), for t ∈ [0, τ ] .
(30)

Proposition 5.1. Let ε > 0. Suppose that

δ(m) + V ′(m) > 0, for m ∈ [0, b] ,

and that the function x → β(x,m)x satisfies the following Lipschitz condition

|β(x1,m)x1 − β(x2,m)x2| ≤ k |x1 − x2| , for |x1| ≤ ε, |x2| ≤ ε and m ∈ [0, b] ,

where k := k(ε) is a positive constant such that

k <
Ib

1 + ξ̃b

,

with Ib = inf
m∈[0,b]

(δ(m) + V ′(m)) and ξ̃b := sup
m∈[0,b]

|f2(m)|. If the initial condition

ϕ ∈ C([0, τ ] × [0, b]) satisfies

‖ϕ‖b ≤ ε,

then, the unique solution Nϕ of Equation (20) satisfies

|Nϕ(t, .)|b := sup
m∈[0,b]

|Nϕ(t,m)| ≤ ε, for all t ≥ 0, (31)

and

|Nϕ(t, .)|∞ := sup
m∈[0,g(1)]

|Nϕ(t,m)| ≤ ε, for all t ≥ tN+2. (32)

Furthermore,

sup
m∈[0,g(1)]

|Nϕ(t,m)| → 0 exponentially as t → +∞.
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Proof. Let T ≥ τ . We consider the sequence (Nn)n∈N
given by (30) for t ∈ [0, T ]

and m ∈ [0, b].
We have

K(t,m) ≤ e−Ibt. (33)
On the other hand, we have for all t ∈ [τ, T ] and m ∈ [0, b]

X(−(t − τ),m) ≤ m ≤ b.
Then,

|ϕ (τ,X(−(t − τ),m))| ≤ ε.
Consequently,

|N0(t,m)| ≤ εe−Ib(t−τ) ≤ ε.

Similarly, we have

|G(N0)(t,m)| ≤ k

∫ t

τ

e−Ib(t−s) |N0 (s,X(−(t − s),m))| ds,

≤ kε

∫ t

τ

e−Ib(t−s)ds,

and

|H(Nτ
0 )(t,m)| =

k

∫ t

τ

e−Ib(t−s) |f2 (X(−(t − s),m))| ∣∣N0

(
s − τ,X

(−τ, g−1(X(−(t − s),m))
))∣∣ ds.

As g′(m) > 0 for m ∈ [0, 1], we have

ξ̃b := sup
m∈[0,b]

|f2(m)| < +∞. (34)

On the other hand,

X
(−τ, g−1(X(−(t − s),m))

)
= ∆(X(−(t − s),m)),
≤ X(−(t − s),m)),
≤ m ≤ b.

Then,

|H(Nτ
0 )(t,m)| ≤ ξ̃bkε

∫ t

τ

e−Ib(t−s)ds.

Consequently,

|N1(t,m)| ≤ ε
(
e−Ib(t−τ) + µ0

(
1 − e−Ib(t−τ)

))
,

where

µ0 =
k

(
1 + ξ̃b

)
Ib

< 1.
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Hence,

|N1(t,m)| ≤ ε
(
e−Ib(t−τ) [1 − µ0] + µ0

)
≤ ε.

By induction we show that for n ∈ N
∗, t ∈ [0, T ] and m ∈ [0, b]

|Nn(t,m)| ≤ |N0(t,m)| + |G(Nn−1)(t,m)| + ∣∣H(Nτ
n−1)(t,m)

∣∣ ≤ ε.

On the other hand, using the same technique as in the proof of Proposition 5.1, we
can see that the sequence (Nn)n∈N converges to the solution Nϕ ∈ C([0,+∞)×[0, b])
of Equation (20). When n → +∞, we obtain

|Nϕ(t, .)|b ≤ ε, for all t ∈ [0, T ] .

Then, the inequality (31) holds for t ≥ 0.
Moreover, as in Theorem 4.1, we can prove that

|Nϕ(t, .)|bn
≤ ε, for all t ≥ tn.

In particular,

|Nϕ(t, .)|∞ ≤ ε, for all t ≥ tN+2.

Let λ0 ∈ (0, Ib) such that

k <
Ib − λ0

1 + ξ̃beλ0τ
<

Ib

1 + ξ̃b

,

and set

λ1 =
(1 + ξ̃be

λ0τ )k
Ib − λ0

.

Then, by induction we obtain

|Nn(t,m)| ≤ ε
1 − λn+1

1

1 − λ1
e−λ0(t−τ),

for n ∈ N, t large enough and m ∈ [0, g(1)]. Remark that

0 < λ1 < 1.

When n → +∞, we obtain exponential decay. This completes the proof.

Corollary 5.1. Assume that the assumptions of Proposition 5.1 are satisfied. If
the initial condition ϕ ∈ C([0, τ ] × [0, b]) is such that

ϕ(t, 0) = 0, for all t ∈ [0, τ ] , (35)

then, the unique solution Nϕ of Equation (20) satisfies

sup
m∈[0,g(1)]

|Nϕ(t,m)| → 0 exponentially as t → +∞.
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Proof. Condition (35) and the continuous property of ϕ imply that there exists b
such that

‖ϕ‖b ≤ ε.

Let b0 = min(b, b). Then,

‖ϕ‖b0
≤ ε and k <

Ib

1 + ξ̃b

≤ Ib0

1 + ξ̃b0

.

Consequently, Proposition 5.1 gives the result.

We also obtain the following global stability result.

Corollary 5.2. Suppose that

δ(m) + V ′(m) > 0, for m ∈ [0, g(1)] ,

and that the function x → β(x,m)x is Lipschitz continuous for all m ∈ [0, g(1)]
with a Lipschitz constant k such that

k <
Ig(1)

1 + ξ̃g(1)

.

Then, for all initial condition ϕ ∈ C([0, τ ]× [0, g(1)]), the solution Nϕ of Equation
(20) satisfies

sup
m∈[0,g(1)]

|Nϕ(t,m)| → 0 exponentially as t → +∞.

Proof. As in the proof of Proposition 5.1, we have

|Nϕ(t,m)| ≤ ‖ϕ‖ , for m ∈ [0, g(1)] and t ≥ 0.

Then, sup
m∈[0,g(1)]

|Nϕ(t,m)| → 0 exponentially as t → +∞.

We now give an example.

Example 5.1. Let

V (x) = rx and g(x) = αx, with r > 0 and 0 < α < 1.

Equation (14) reduces to

∂

∂t
N(t,m) + rm

∂

∂m
N(t,m) = − [δ + r + β [N(t,m),m]] N(t,m)

+2α−1e−(γ+r)τβ [N(t − τ,∆(m)),∆(m)] N(t − τ,∆(m)).

(36)

This particular model has been considered by Rey and Mackey (1995b) and Mackey
and Rudnicki (1999).
We have in this case
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τ0 := sup

m∈[0,α]

(∫ g−1(m)

m

ds

V (s)

)
= −1

r
ln α,

τ1 :=
∫ 1

0

ds

V (s)
= +∞,

and

∆(m) = X(−τ, g−1(m)) = α−1e−rτm.

So,

τ > τ0 if and only if ∆(m) < m, for m 	= 0.

We also have 
h−1(e−τ ) = e

−rτ

,

Ib = r + δ,

ξ̃b = 2α−1e−(γ+r)τ .

Consequently,

Ib

1 + ξ̃b

=
r + δ

2α−1e−(γ+r)τ + 1
.

Then, we have the following result.

Proposition 5.2. Let ε > 0, τ > −1
r

ln α and 0 < b < e
−rτ

. Suppose that the

function x → β(x,m)x satisfies

|β(x1,m)x1 − β(x2,m)x2| ≤ k |x1 − x2| , for |x1| ≤ ε, |x2| ≤ ε and m ∈ [0, b] .

where k is a positive constant such that

k <
r + δ

2α−1e−(γ+r)τ + 1
.

If the initial datum ϕ ∈ C([0, τ ] × [0, b]) is such that,

‖ϕ‖b ≤ ε.

Then, the unique solution Nϕ of Equation (36) satisfies

sup
m∈[0,b]

|Nϕ(t,m)| ≤ ε, for t ≥ 0,

and

sup
m∈[0,α]

|Nϕ(t,m)| → 0 exponentially as t → +∞.
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6. Instability. Consider the space

C0 = {ϕ ∈ C([0, τ ] × [0, g(1)]) : ϕ(t, 0) = 0, for t ∈ [0, τ ]} .

Definition 6.1. We say that a solution Nϕ of Equation (20) with initial datum
ϕ ∈ C([0, τ ] × [0, g(1)]) is stable if for given ε > 0 there exists ρ > 0 such that

‖ϕ − ψ‖ < ρ,

implies ∣∣Nϕ(t, .) − Nψ(t, .)
∣∣
∞ < ε, for all t ≥ T .

We say that Nϕ is unstable if it is not stable.
To prove the instability of solutions of Equation (20) we need the following hypoth-
esis.
(H) There exists a solution of Equation (20) that does not converge to 0, as t →
+∞.
Dyson et al. (1996b) showed , for a particular model, that if (H) is satisfied for an
initial datum ϕ0 ∈ C0, then for every ϕ ∈ C0, Nϕ0 is unstable. They also give an
example for which (H) is satisfied.
We obtain the same instability property for the more general model (20), that is

Theorem 6.1. Suppose that Hypothesis (H) holds for an initial datum ϕ0 in C0.
Then, for all ϕ ∈ X0, Nϕ is unstable.

Proof. The proof is similar to the ones given by Dyson et al. (1996a and 1996b). It
suffices to suppose that there exists Nϕ that is stable and the contradiction comes
from Theorem 4.1.
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