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Abstract
Many neurodegenerative diseases (NDs) are characterized by the slow spatial spread
of toxic protein species in the brain. The toxic proteins can induce neuronal stress,
triggering the Unfolded Protein Response (UPR), which slows or stops protein trans-
lation and can indirectly reduce the toxic load. However, the UPR may also trigger
processes leading to apoptotic cell death and the UPR is implicated in the progression
of several NDs. In this paper, we develop a novel mathematical model to describe
the spatiotemporal dynamics of the UPR mechanism for prion diseases. Our model
is centered around a single neuron, with representative proteins P (healthy) and S
(toxic) interacting with heterodimer dynamics (S interacts with P to form two S’s).
The model takes the form of a coupled system of nonlinear reaction–diffusion equa-
tions with a delayed, nonlinear flux for P (delay from the UPR). Through the delay,
we find parameter regimes that exhibit oscillations in the P- and S-protein levels. We
find that oscillations are more pronounced when the S-clearance rate and S-diffusivity
are small in comparison to the P-clearance rate and P-diffusivity, respectively. The
oscillations become more pronounced as delays in initiating the UPR increase. We
also consider quasi-realistic clinical parameters to understand how possible drug ther-
apies can alter the course of a prion disease. We find that decreasing the production
of P, decreasing the recruitment rate, increasing the diffusivity of S, increasing the
UPR S-threshold, and increasing the S clearance rate appear to be the most powerful
modifications to reduce the mean UPR intensity and potentially moderate the disease
progression.
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1 Introduction

Neurodegenerative diseases (NDs) are devastating conditions affecting the brain and
central nervous system.Twoof themost commonNDs areAlzheimer’sDisease (Goed-
ert 2006), with the gradual loss of memory and capacity to function independently,
and Parkinson’s Disease (Davie 2008), with loss of muscle coordination and cognitive
impairment. While various hypotheses exist as to the origins and etiologies of NDs,
medicine is not yet able to cure most of them (Akhtar et al. 2021).

Despite their vastly different presentations and affected brain regions, many NDs
share a common set of features. The main commonality is the presence of toxic pro-
teins, that are thought to impair neuronal function or cause cell death, spreading
through the brain (Kiaei 2013). During this spreading, there is a recruitment process
where normal proteins can become toxic through interacting with other toxic proteins
in prion diseases (Newby and Lindquist 2013) or can become toxic through forming
various oligomers (Ono et al. 2009). In the case of AD, the toxic proteins are thought
to be Amyloid-beta oligomers (Ono et al. 2009; Tolar et al. 2020); in Parkinson’s,
Alpha-synuclein (Stefanis 2012); in prion diseases, Scrapie proteins (Prusiner 1989);
and so on.

When subjected to the stress of a toxin, neurons are known to exhibit the Unfolded
ProteinResponse (UPR) (Hetz et al. 2020) andmay temporarily shut downor limit their
cellular processes, reducing their production of healthy, endogenous proteins (Halliday
and Mallucci 2014). This limiting thereby cuts down on the supply chain that could
yield more toxic proteins, and allows natural clearance mechanisms of the toxins to
take place. When the stress is lowered, the neuron can commence its normal cellular
functions again. The activation of theUPRmay also cause damage and apoptosis to the
neurons. When activated, the UPR results in increasing production of the endoplasmic
reticulum (ER) kinases, PERK and Ire1, which reduce protein translation. But, these
proteins also lead to apoptosis through a cascade of processes (Fricker et al. 2018).
Post-mortem autopsies of ND patients suggest the UPR has been activated (Halliday
and Mallucci 2014). It is also suggested that weakened UPR mechanisms may be
implicated in the progression of NDs (Apodaca et al. 2006).

Given the innate complexities of biological systems, it is extremely difficult to study
how individual mechanisms affect disease etiologies. This is where mathematical
modelling can be extremely useful, giving researchers a mechanism to put together
a set of assumptions and to observe the outcomes of model systems subject to those
assumptions.Mathematicalmodels havebeenused to study ahost of different disorders
andmechanisms, includingAD (Hao and Friedman 2016; Puri and Li 2010; Lindstrom
et al. 2021), PD (Desplats et al. 2009; Bakshi et al. 2019; Pandya et al. 2019), CJD
(Greer et al. 2006; Salman and Ahmed 2018), the UPR (Adimy et al. 2022, 2024;
Trusina and Tang 2010), and many others. The models considered cover a range of
scales from studies of a single neuron or two (Adimy et al. 2022), to the spatial
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spreading of toxic proteins in the brain through modelling the connectome and how it
evolves (Goriely et al. 2020).

In recent work, a simple compartment model, comprised of a nonlinear system
of Delay Differential Equations (DDEs), was introduced to model the UPR in prion
diseases (Adimy et al. 2022). This yielded intriguing results whereby the presence of
delay was able to induce oscillations in the levels of toxic proteins, and these oscilla-
tions could be turned on/off in different parameter regimes. Moreover, the parameters
could be tuned to drive the toxic protein concentration to zero.

In this paper, our objective is to extend the prior model of Adimy et al. (2022) to a
delayed spatiotemporal model. We develop a nonlinear system of Reaction Diffusion
Equations, with a nonlinear flux term exhibiting a delay. Our model focuses on prion
diseases using heterodimer dynamics (Garzón et al. 2021), centered around a single
neuron. Cellular prion protein, PrPC is produced by neurons; through its interaction
withmisfolded, toxic scrapie prion proteins, PrPSc, PrPC misfolds into PrPSc (Atkinson
et al. 2016; Selkoe 2003).We numerically investigate parameters that yield oscillations
and which parameter modifications can reduce select measures of disease severity.

Our paper is organized as follows: we present our method of study, a mathematical
model, in Sect. 2; an exploration of the model and its general behavior is covered in
Sect. 3; we focus on the biological parameters and treatment implications for prion
diseases in Sect. 4; and our work is concluded in Sect. 5. The Appendices A and B
provide additional mathematical details not located in the main text.

2 Materials andMethods

We focus on gaining an understanding into the UPR mechanism and its relation to
prion diseases at the neuron scale. In isolation, different mechanisms have been stud-
ied experimentally; however, at present, an in-depth knowledge of in vivo parameters
of biological significance is lacking. For this reason, we combine multiple well-
established biological processes into a mathematical model, to simulate a system
and glean understanding into its dynamics. The hope is that enough of the important
biology is present in the model for it to provide clinically relevant insights, even if
only in approximation. Our experiments then take the form of numerical simulations,
where each parameter can be carefully controlled.

A reader less focused on the mathematics, with more interest in the biology, should
consider reading Sect. 2.1.1 and then reading Sects. 3 and 4. It would also be useful to
refer to Table 1 to see the different parameters studied in our model.
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Table 1 All dimensional parameters in the model where M = mass, L = length, and T = time

Parameter SI base units Interpretation

DP L2/T Diffusion coefficient of P

DS L2/T Diffusion coefficient of S

c L3/(MT ) Rate of combination of P and S

f 1/T Spontaneous misfolding rate of P

a 1/T Clearance rate of P

b 1/T Clearance rate of S

td T Delay time of the UPR

A M/(L2T ) Maximum possible P-flux

Sc M/L3 Critical S-concentration

R L Representative neuron size/radius

2.1 Model

This section concerns developing a mathematical model.

2.1.1 Overview

Our objectives with this model are to uncover the spatiotemporal dynamics of the
Unfolded Protein Response. For simplicity, we consider two representative protein
species, P (healthy proteins, different forms of the cellular prion protein, PrPC) and
S (misfolded proteins, different forms of the toxic scrapie protein, PrPSc). The S-
proteins can recruit P-proteins to become S-proteins. We do not model higher-order
structures—dimers, higher-order oligomers, nuclei, and fibrils are not present. We
argue that the capacity for S to recruit P is at least representative of the more detailed
biochemistry whereby misfolded proteins can form oligomers and nuclei, which can
fragment to generate further recruitment. This is often referred to as a heterodimer
model.

Our model centers around one neuron, with dynamics taking place in the interstitial
fluid surrounding it. The P-proteins are produced within the neuron and released
through the membrane into the intercellular space. We note cellular prion protein and
scrapie protein can be found as both membrane-bound and extracellular forms (Shafiq
et al. 2022; Rangel et al. 2013), but we focus upon the latter here to build a simple
model. Through a buildup of S near the membrane, the P-production is lowered (due
to the UPR) after some delay representing the processing time needed to stop/slow
translation.

Figure1 depicts the relevantmechanisms.Our simulations center around the geome-
tries depicted in Fig. 2.
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Fig. 1 Representative sketch of model. Left: a cell produces protein P that is released into the intercellular
space and diffuses with a rate DP . P may be recruited to become S that diffuses with a rate DS . The neuron
is sensitive to S at a concentration Sc and will reduce its maximum flux of P from A in the presence of S.
Right Spontaneous misfolding from P- to S-proteins occurs at a rate f , recruitment by interaction with an
S-protein happens with a rate c, and degradation rates for P- and S-proteins are respectively a and b

Fig. 2 Reductions to 1-dimensional (left), 2-dimensional radially symmetric (middle), and 3-dimensional
radially symmetric (right) geometries, respectively. The green dots represent the P proteins, while the red
rods represent the S proteins (Color figure online)

2.1.2 Derivation

We denote P the concentration of P-proteins and S the concentration of S-proteins.
We use x for position and t for time.

From a chemical reaction perspective, we assume that

• P and S combine at a rate c ≥ 0 to form two separate S proteins;
• P is cleared at a rate a ≥ 0;
• S is cleared at a rate b ≥ 0, with b ≤ a;
• spontaneously, P can misfold to become S at a rate f ≥ 0; and
• P and S have diffusivities within the interneuronal space of DP and DS , respec-
tively, with 0 ≤ DS ≤ DP .

The fact that DS ≤ DP stems from the fact that we expect, in general, a single S-
protein is at least as massive as a single P-protein (recall we are not directly modelling
oligomers but S represents misfolded proteins of all sizes). We also anticipate that
b ≤ a as larger proteins likely take longer to break down. Given the relative rarity of
prion diseases, we expect that f � a.

To account for the UPR mechanism, we prescribe that the rate that P-proteins are
produced and released decreases as the S concentration at the cell membrane increases.
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More precisely, the magnitude of the flux, J , of P from the neuron on the neuron
boundary at time t is given by the proportionality relation

J ∝ (1 + (〈S(·, t − td)〉/Sc)m)−1, (1)

with the constant of proportionality A > 0 being the maximum possible P-flux and
where Sc > 0, m > 0, and td ≥ 0 are prescribed constants. The 〈·〉 denotes the mean
value over the membrane. The value Sc is more or less a sensitivity of the neurons
to S: when 〈S〉 > Sc, the flux may decrease very rapidly and when 〈S〉 < Sc, the
flux stays near its maximum. The value m controls how rapidly the neuron switches
from maximum P-flux to near zero P-flux. The delay td models the fact that during
stress, the P-production cannot shut down immediately; a cascade of signals needs to
be transmitted to decrease P-production, which is modelled by td . The same principle
applies to increasing P production when S is cleared.

Weconsider the system ind-dimensional space.Whiled = 3 ismost natural, certain
geometric arrangements of neurons could bemodelled as being 1 or 2 dimensional.We
let the neuron occupy a bounded, closed, and connected region � ⊂ R

d containing
the origin. In d = 1 we assume, without loss of generality, that � = [−R, R] for
some length R > 0. For d = 2, 3, we further assume a smooth boundary and that a
characteristic length scale for � is R > 0. The computational domain is the region
� := R

d \ � and the cell membrane is given by ∂� = ∂�. With d = 1, we
only model the region (R,∞) so that 〈S(·, t − td)〉 = S(R, t − td). For d = 2, 3,
〈S(·, t − td)〉 = 1

|∂�|
∫
∂�

S(x, t − td)dx .
For boundary conditions,we assume that P and S tend to 0 as |x | → ∞ (exponential

decay is common in diffusion problems) and that there is no flux of S on the boundary
∂�. The flux of P on ∂� is based on the UPR assumptions outlined above.

From our preceding assumptions, our model amounts to the following system on
� × (0,∞):

P,t =
diffusion

︷ ︸︸ ︷
DP � P −

recruitment loss
︷︸︸︷
cPS −

spontaneous misfolding
︷︸︸︷
f P −

breakdown
︷︸︸︷
aP, (2)

S,t =
diffusion
︷ ︸︸ ︷
DS � S +

recruitment gain
︷︸︸︷
cPS +

spontaneous misfolding
︷︸︸︷
f P −

breakdown
︷︸︸︷
bS, (3)

with

P, S → 0, |x | → ∞, (4)

−DP∇P(x, t) · n̂ = −A

1 + (
〈S(·,t−td )〉

Sc
)m

, x ∈ ∂�, t ≥ 0 (5)

−DS∇S · n̂ = 0, on ∂�, (6)

(P(x, 0), S(x, 0)) = (P0(x), S0(x)), x ∈ �̄, (7)

S(x, t) = S−(x, t), x ∈ ∂�, t ∈ [−td , 0]. (8)
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Note that n̂, the outward unit normal is based on the frame of �. Hence, for the influx,
we have −A in Eq.5. We assume that S0(x) = S−(x, 0) on ∂�. We prescribe that
P0 and S0 satisfy the proper boundary conditions, namely P0, S0 → 0 as |x | → ∞,
∇S0 · n̂ = 0 on ∂�, and −DP∇P0(x) · n̂ = −A

1+(
S−(x,−td )

Sc
)m

on ∂�. We note this is

likely not strictly necessary as equationswith diffusion tend to smooth out irregularities
instantaneously. We also assume a finite total amount of protein in the system so that∫
�
P0(x)dx,

∫
�
S0(x)dx < ∞. See Table 1 for a listing of all dimensional parameters.

Figure1 depicts this system.
Since a sustained UPR mechanism itself may cause damage to the cells (Moreno

et al. 2012; Di Domenico and Lanzillotta 2022), we are interested in coming up with
a proxy for what fraction of time the mechanism is active and to what extent. To that
end, given the P-flux magnitude, J , we note that the quantity

h = 1 − J/A ∈ [0, 1) (9)

effectively describes whether the UPR is on or off at any given time and the closer h
is to 1, the more strongly the UPR is activated. Then, the time average havg, gives a
loose estimate for the fraction of time the UPR is active—an effective UPR intensity.

An alternative point of study would be to consider the frequency of UPR activations
over times on (0, T ). We define

WT = 1

T

∣
∣{t |t is a strict local maximum for h on (0, T )}∣∣, (10)

which computes an average frequency of h-peaks on (0, T ).

2.1.3 Nondimensionalization

Nondimensionalizing and rescaling our system via x = x̄ x̃ , � = x̄�̃, t = t̄ t̃ ,
P(x, t) = P̄ p(x̃, t̃), and S(x, t) = S̄s(x̃, t̃) (see Table 2), after simplifying and
removing tildes, on � × (0,∞), we have

p,t = �p − γ ps − (1 + σ)p (11)

s,t = δ � s + ηγ ps + ησ p − βs (12)

Table 2 Scales chosen where M = mass, L = length, and T = time

Scale SI base units Definition Interpretation

t̄ T 1/a Characteristic time for P to be cleared

x̄ L
√
Dp/a Characteristic distance P diffuses before being cleared

P̄ M/L3 A√
DPa

Characteristic scale of P as measured on the diffusive scale x̄, given
the flux

S̄ M/L3 Sc Critical S-concentration to trigger decreased P-production
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Table 3 Dimensionless parameters appearing in the model

Parameter Definition Interpretation

γ
cSc
a Ratio of (the rate P is converted to S when S

concentration is Sc) to (the rate P is cleared)

σ � 1 f /a Ratio of the rate P misfolds to the rate it is cleared

δ ≤ 1 DS/DP Ratio of S diffusivity to P diffusivity

η A
Sc

√
DPa

Ratio of characteristic P-concentration to Sc

β ≤ 1 b/a Ratio of rate S is cleared to the rate P is cleared

τ atd Delay relative to P-clearance time

ρ
R
√
a√

DP
Ratio of (the characteristic cell size) to (the
characteristic distance P travels before being cleared)

m > 0 Chosen value Controls abruptness of switch

with

p, s → 0, |x | → ∞ (13)

−∇ p · n̂ = −1

1 + 〈s(·, t − τ)〉m x ∈ ∂�, t ≥ 0 (14)

−∇s · n̂ = 0, on ∂� (15)

(p(x, 0), s(x, 0)) = (p∗
0(x), s

∗
0 (x)), x ∈ �̄ (16)

s(x, t) = s∗−(x, t), x ∈ ∂�, t ∈ [−τ, 0] (17)

where p∗
0 and s

∗
0 satisfy the correct boundary conditions at t = 0 and s0(x) = s∗−(x, 0)

on ∂�. The definitions of the dimensionless parameters are found in Table 3.
Given the diffusive nature of the system, we anticipate smooth solutions to the

system of Eqs. (11)–(17) that exist globally in time. The proof of existence of such
solutions and the properties they enjoy is left as future work. Hereafter, we assume
the existence of classical solutions p, s ∈ C2x ∩ C1t (�, [0,∞)).

Note that through nondimensionalization and rescaling, we reduce a systemwith 10
dimensional parameters (Table 1) to a dimensionless system involving 7 dimensionless
parameters (Table 3), excludingm. It is useful to consider that all dimensional systems
resulting in the same set of dimensionless parameters have the same dimensionless
solutions.

2.1.4 Simplified Geometries

As specific scenarios, we consider d = 1 in a planar geometry and d = 2, 3 in
radially symmetric geometries—effectively describing an idealized “spherical neuron”
in different dimensions. See Fig. 2. We denote r = |x | and reduce � to B = (ρ,∞).
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Then

∫

�

z(x)dx = Cd

∫ ∞

ρ

z(r)rd−1dr

where

Cd =

⎧
⎪⎨

⎪⎩

1, d = 1,

2π, d = 2,

4π, d = 3

is a surface area factor.
In the symmetric geometry, on B × (0,∞), we have

p,t = p,rr + d − 1

r
p,r − γ ps − (1 + σ)p, (18)

s,t = δ(s,rr + d − 1

r
s,r ) + ηγ ps + ησ p − βs, (19)

with

p, s → 0, r → ∞, (20)

p,r |r=ρ = −1

1 + s(ρ, t − τ)m
t ≥ 0, (21)

s,r |r=ρ = 0, (22)

(p(r , 0), s(r , 0)) = (p0(r), s0(r)), r ∈ B̄, (23)

s(ρ, t) = s−(t), t ∈ [−τ, 0], (24)

havg = lim
ϒ→∞

1

ϒ

∫ ϒ

0
(1 − 1

1 + s(ρ, t − τ)m
)dt, (25)

ωavg = lim
ϒ→∞

1

ϒ
×

∣
∣{t |t is a strict local maximum for s(ρ, t − τ) on (0, ϒ)}∣∣, (26)

where p0 and s0 satisfy the correct boundary conditions at t = 0, and where s−(0) =
s0(ρ).Wehave added the formulas for the average fraction of time theUPR is activated,
Eq. (25), and the average dimensionless frequency of UPR activations, Eq. (26). We
shall keep m = 10 fixed throughout this work as it allows for a relatively rapid switch
term.

We choose initial conditions tomodel the introduction of a highly localized quantity
of S at position r = r∗ > ρ so that initially s ≈ 0 is negligibly small at r = ρ. We let

i p := Cd

∫ ∞

ρ

rd−1 p0(r)dr (27)
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and

is := Cd

∫ ∞

ρ

rd−1s0(r)dr (28)

represent the initial quantity of the proteins and

− p0,r |r=ρ = n p (29)

specify the normal derivative of p0 at the cell boundary where s0 = 0. We then choose

p0(r) = c1dr
1−de−c2d (r−ρ)−(r−ρ)2 , (30)

s0(r) = isr1−d

Cdω
(
1 + tanh( r∗−ρ

ω
)
) sech2(

r − r∗
ω

), (31)

s−(t) = s0(ρ), t ∈ [−τ, 0], (32)

where c1d and c2d satisfy the system

√
πc1d
2

ec
2
2d/4erfc(c2d/2) = i p/Cd ,

c1dc2dρ
1−d + (d − 1)c1dc

−d
2d = n p,

and ω = 0.2 is a shape parameter. Under this setup, Cd
∫ ∞
ρ

rd−1s0(r)dr = is . With ω

small, s0 and its derivatives are very small for r∗ − r = O(1) so that s0(ρ), s′
0(ρ) ≈ 0

are negligibly small. Then with s0(ρ) = 0, boundary conditions require that p′
0(ρ) =

−1. The constants c1d and c2d ensure p′
0(ρ) = −n p and Cd

∫ ∞
ρ

rd−1 p0(r)dr = i p.
For most problems, i p = is = n p = 1, but this system is more general.

We make one final remark on the total protein quantity. In d = 1, we interpret the
system as describing protein concentrations in a very narrow, straight region. The cell
membrane is one boundary and concentration variations orthogonal to the direction
pointing away from the cell are negligible. Thus, the system has a small cross-sectional
area and is effectively one-dimensional. Likewise, in d = 2, we interpret the system
as describing protein concentrations when primarily confined to a plane with limited
variation normal to the plane, with concentration varying with distance from a circular
cell membrane. The system has a narrow height and is primarily two dimensional with
the cell membrane being a circle. In d = 3, we interpret the system as concentrations
of proteins as their radial distance from the centre of a sphere varies. Thus, for d = 1,
i p is expressing a dimensionless total quantity of P per unit area of the region. Likewise
with d = 2, i p is the total dimensionless quantity of P per unit height of the region.
Then with d = 3, i p is the total dimensionless quantity of P. The same applies to is .

2.2 Numerical Method

Owing to the challenging nature of the equations, we analyze our model numerically.
Full details can be found in the “Appendix A”. In brief: we implement a finite dif-

123



Oscillations in Neuronal Activity: A Neuron-Centered… Page 11 of 35    82 

ference scheme that is first order in time, second order in space, with semi-implicit
timestepping.

3 Math andModel Investigations

This section is dedicated to studying the qualitative behavior of the model itself over
a range of parameters. Numerical specifications are given in “Appendix B.1”.

3.1 Model Simulations

To study how the system responds to different parameters, we begin by considering
variations in β and δ at different fixed values of τ . In making these explorations,
we focus primarily on phase portraits for d = 1 dimensions depicting the protein
concentrations at the cell membrane over time (since this is the driving mechanism of
the UPR). This is found in Figs. 3, 4, 5, 6 and 7. We also consider the spatiotemporal
spreading of the proteins with further experiments in Figs. 8 and 9. We wish to caution
the reader that the ranges of values along the vertical differ between trials.

From the phase portraits, Figs. 3, 4, 5, 6 and 7, we observe that oscillations tend
to decrease in intensity and are dampened out as β increases, as δ increases, and as
τ decreases. The UPR intensity havg tends to decrease as β and δ increase, and does
not vary significantly as τ varies in the experiments. The UPR frequency ωavg, when
present, is quite consistent in its values across the phase portraits for fixed τ -values,
and tends to decrease as τ increases.

From the spatiotemporal plots for parameter variations, Figs. 8 and 9, we observe
that the oscillations become less pronounced as the dimension d increases. We again
observe how decreasing δ and β can make the system oscillatory. Increasing γ makes
these oscillations more pronounced. The effect of σ on the oscillations is quite small.
Increasing η makes the oscillations more pronounced in the d = 2 case and drastically
increases the s-values in d = 3. Finally, when ρ is increased, the d = 2 system
becomes more oscillatory and the d = 3 system begins to oscillate (the only set of
oscillations observed in the spatiotemporal plots). The fact that ρ has no effect in d = 1
is unsurprising since there is no geometric d−1

r ∂r term appearing in the Laplacian. As
ρ increases, the d = 2 and d = 3 systems are more planar on the cell membrane, so it
makes sense that with d = 1 being highly oscillatory in general, increasing ρ should
make d = 2 and d = 3 more oscillatory.

In Fig. 10, we illustrate how the oscillations and UPR intensity are weakened as the
dimension of the system d increases.
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Fig. 3 Phase diagram at τ = 0 with d = 1 along membrane r = ρ. The horizontal axis is t , the vertical axis
is concentration with p solid blue and s dashed red. Unspecified parameter values are γ = 1, σ = 0.02,
η = 1, and ρ = 0.25 (Color figure online)
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Fig. 4 Phase diagram at τ = 1 with d = 1 along membrane r = ρ. The horizontal axis is t , the vertical axis
is concentration with p solid blue and s dashed red. Unspecified parameter values are γ = 1, σ = 0.02,
η = 1, and ρ = 0.25 (Color figure online)
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Fig. 5 Phase diagram at τ = 2 with d = 1 along membrane r = ρ. The horizontal axis is t , the vertical axis
is concentration with p solid blue and s dashed red. Unspecified parameter values are γ = 1, σ = 0.02,
η = 1, and ρ = 0.25 (Color figure online)
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Fig. 6 Phase diagram at τ = 3 with d = 1 along membrane r = ρ. The horizontal axis is t , the vertical axis
is concentration with p solid blue and s dashed red. Unspecified parameter values are γ = 1, σ = 0.02,
η = 1, and ρ = 0.25 (Color figure online)
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Fig. 7 Phase diagram at τ = 4 with d = 1 along membrane r = ρ. The horizontal axis is t , the vertical axis
is concentration with p solid blue and s dashed red. Unspecified parameter values are γ = 1, σ = 0.02,
η = 1, and ρ = 0.25 (Color figure online)

3.2 Comparison with PreviousWork

Having explored many of the parameters in our model, we briefly turn to the ques-
tion of how this new model compares with the DDE model of Adimy et al. (2022)
which inspired this work. The DDE model also studied a heterodimer system with a
production rate for healthy monomers with delay, clearance rates for both the healthy
and toxic proteins, and a recruitment rate to convert healthy proteins to toxic proteins.
The authors found that for low levels of delay, the system could be stable (without
oscillations) and that a bifurcation could take place by increasing the delay to yield
an oscillatory solution. With the DDEs, a locally and globally asymptotically stable
disease-free steady state was found when the reproductive ratio R0 < 1, where R0
gives the ratio of the product of the peak production rate and recruitment rate to the
product of the clearance rates. When R0 > 1, the disease takes overand oscillatory
solutions may occur.

Here, we illustrate how our system observes similar behavior. In Fig. 11, we begin
with parameters for a disease-free state with small γ and large β, bring about a disease
state with increasing γ , induce oscillations with an increase in τ , and then eliminate
the oscillations with an increase in δ. We note that while the behavior is similar to the
DDE model, factors like δ stemming from diffusion also play a role. And as noted in
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Fig. 8 Behavior of p with varying parameters

Figs. 8, 9 and 10, geometric factors such as the cell size ρ and the dimension d of the
spatial domain are relevant.

3.3 Mathematical Perspective

Given the nonlinear structure in themodel, especiallywithin the delayed flux boundary
condition for P, there are open questions as to the well-posedness of the PDE system
and to the solution properties. For example, a function in g ∈ C2xC1t (�; (0,∞)) could
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Fig. 9 Behavior of s with varying parameters

exhibit unbounded behavior for x near ∂� as t → ∞while retaining a bounded normal
derivative. We expect solutions with intuitive, physical bounds to exist, but this is left
as a future work in mathematics. Additionally, while delay differential equations are
well-studied, having a delay in the boundary condition itself is somewhat unique.

We additionally observe several “bifurcations” that emerge in our system, such as
the turning off/on of oscillations as model parameters vary or going from a disease-
free to diseased state. We have 7 dimensionless parameters (excludingm) and it would
be of great interest to understand their individual effects from a rigorous, theoretical
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Fig. 10 Temporal variations in concentration at r = ρ in d = 1 (left), d = 2 (middle), and d = 3 (right)
with p solid blue and s dashed red. Parameters are γ = 6, σ = 0, δ = β = 0.075, η = 0.9, τ = 1.25, and
ρ = 0.5 (Color figure online)

Fig. 11 Temporal variations in concentration at r = ρ with d = 1 with p solid blue and s dashed red. From
left to right: disease-free (γ = 0.2, σ = 0, δ = 0.2, η = 0.5, β = 1, τ = 0.2, and ρ = 0.25); endemic,
no oscillations (γ = 3, σ = 0, δ = 0.2, η = 0.5, β = 0.2, τ = 0.2, and ρ = 0.25); endemic, oscillations
(γ = 3, σ = 0, δ = 0.2, η = 0.5, β = 0.2, τ = 2, and ρ = 0.25); and endemic, no oscillations (γ = 3,
σ = 0, δ = 1, η = 0.5, β = 0.2, τ = 2, and ρ = 0.25) (Color figure online)

perspective. We also note that, due to the limitations of a numerical study, some of the
observed oscillations that appear to be damped may actually be sustained at a small
amplitude in the limit, and some of the systems that appear to have no oscillations
may actually oscillate. This makes further mathematical study important.

4 Biological Implications

We now focus our attention on the biological and medical insights provided by the
model.

4.1 Parameter Estimation and Setup

To our knowledge, extant literature does not provide data to accurately determine the
many parameters used in ourmodel. It would be of interest to conduct experiments that
directly measure the chemical reaction rates, diffusivities, etc., in vivo. Nevertheless,
we venture to obtain very loose estimates for the parameters based on the literature
to then model, as best possible, a representative biological system. The data we use
come from a variety of animal models, tissue types, and mathematical models with
different objectives than our own. Our parameters are listed in Table 4 in cgs units and
justifications follow in the paragraphs below. The resulting dimensionless parameters
are then given in Table 5. We only utilize one significant figure to reflect the parameter
uncertainty.
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Table 4 Loose estimates of parameter values

Parameter Value Source

DP 2 × 10−7 cm2/s Martin (1992), Bera et al. (2022) and Young et al. (1980)

DS 2 × 10−8 cm2/s Martin (1992), Bera et al. (2022), Masel et al. (1999)
and Young et al. (1980)

a 5 × 10−5 s−1 Masel et al. (1999)

b 9 × 10−7 s−1 Masel et al. (1999)

Sc 1 × 10−4 g/cm3 Beekes et al. (1996) and Barber et al. (1970)

f 0 s−1 N/A

c 2 cm3

gs Matthäus (2006) and Barber et al. (1970)

td 8 × 104 s Peña and Harris (2011)

A 2 × 10−10 g
cm2·s

∗ Matthäus (2006), Barber et al. (1970), Braitenberg (2001)
and Raine (1999)

R 1 × 10−2 cm Stuart et al. (2016)

∗Value reported is 4× 105 times the true estimated flux of a single neuron in isolation—see explanation in
text

Table 5 Dimensionless values for clinical model

Parameter Value

γ 4

σ 0

δ 0.1

η 3.16

β 0.018

τ 4

ρ 0.158

Parameters DP and DS : The cellular prion protein PrPC has a molecular mass of
27-3-0 kDa (Martin 1992). We shall use 28.5 kDa. Interstitial fluid has been reported
to have a range of viscosities of 0.7–3.5cP (Bera et al. 2022) and we shall use the
mean of the extremes for a value 2.1 cP. A useful engineering approximation is that
the diffusivity of a protein is given by

D ≈ ζT

vm1/3 (33)

where ζ = 8.34 × 10−8 cm2·cP·Da1/3
s·(◦K)

, T is the absolute temperature, v is the solvent
viscosity, and m is the molar mass of the solute (Young et al. 1980). However, due to
tortuosity, this is scaled down further by ι2 where ι ≈ 1.6 is the tortuosity of the brain
(Hrabe et al. 2004). At T = 310◦K, this yields DP ≈ 2 × 10−7 cm2/s.

In a nucleated polymerization model based on mouse brain data, the mean number
of monomers in a PrPSc protein is estimated at 100–10,000 (Masel et al. 1999). Using
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the geometric mean, this suggests our S-proteins should have a mass that is 1000 times
larger than our P-proteins. Based on diffusivity scaling with the inverse cube root of
molecular mass in Equation (33), we find DS ≈ 2 × 10−8 cm2/s.
Parameters a and b: Based on mouse and hamster brain data, a nucleated polymeriza-
tion model estimated the clearance rate of PrPC at approximately 3–5day−1 (Masel
et al. 1999). We use a value of 4 day−1 so a ≈ 5 × 10−5 s−1. The rate of clearance
of toxic Scrapie proteins was also estimated to be 0.03–0.2day−1 and we use the
geometric mean of the extremes yielding b ≈ 0.0775 day−1 ≈ 9 × 10−7 s−1.

Parameter Sc: For hamsters at the terminal stage of Scrapie, the concentration of
Scrapie proteins was measured to be about 100 µg per gram of brain tissue (Beekes
et al. 1996). The density of brain tissue is approximately 1 g/cm3 (Barber et al. 1970).
Taking the terminal concentration as the critical concentration Sc, we have Sc =
100µg/cm3 = 1 × 10−4 g/cm3.

Parameter f : Due to the rarity of spontaneous prion diseases, we take f = 0 s−1.
Parameter c: Based on hamster data, a heterodimer model estimates the combination
rate at 0.15 g brain

µg day (Matthäus 2006). Again with a brain density of 1 g/cm3 (Barber

et al. 1970), we find c ≈ 0.15 cm3

µg day ≈ 2cm3

g s .

Parameter td : A study that infected humanfibrosarcoma cellswithDengueVirus found
an increase in phosphorylated elF2α—indicating the activation of Integrated Stress
Response armof theUPR—at approximately 6h post infection (Peña andHarris 2011).
At at 24–36h in that same study, the inositol-requiring-protein-1 UPR pathway was
activated. This suggests a timescale for the UPR may be in the loose range of 6–36h,
and we use the mean of the extremes, td ≈ 21 h or td ≈ 80, 000 s.
Parameter A: The most challenging parameter to estimate is the maximum flux of
P-proteins. We first note that a heterodimer model on hamster data estimates the rate
of monomer production to be λ = 4 µg

(g brain) day (Matthäus 2006), which with brain

density of 1 g/cm3 (Barber et al. 1970), we have λ ≈ 5 × 10−11 g
cm3 s.

There are approximately 2× 109 neurons per cm3 (Braitenberg 2001) across many
species. Neuronal perikaryal diameters range from about 6–80 µm and the perikarya
accounts for approximately 10% of the neuron surface area (Raine 1999). By these
estimate and with the geometric mean of the diameter lower and upper bounds taken
as a length scale, the surface area of a neuron is ∼ 5000 µm2 or 5 × 10−5 cm2.

Then, as a ballpark figure for the flux of P-proteins from a single neuron, we obtain
A∗ ≈ 5×10−11

2×109×5×10−5 = 5 × 10−16 g
cm2 s

. To this figure, we make a scaling correction.
As our intent with the model is to understand the dynamics experienced by a single
typical neuron, we need to take into account that no neuron functions in isolation and
the brain is full of neurons. Neurons in a nearby vicinity will also experience similar
stresses due to the presence of S-proteins. We thereby choose to scale A∗ by a ballpark
estimate of the number of neurons that could influence any particular neuron through
their release of P-proteins.

On average, a P-protein survives a time of 1/a, resulting in a characteristic dif-
fusive lengthscale of

√
Dp/a ≈ 0.06 cm. Within a volume of 0.063 cm3, there are

approximately 4 × 105 neurons, and we scale A∗ up by this to give a nominal flux of
A ≈ 2 × 10−10 g

cm2 s
.
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Parameter R: cells of the globus pallidus in humans can have dendritic extends of
≈ 1000 µm and soma radii of ≈ 16.5µm (Stuart et al. 2016). To come up with a
representative length scale for an idealized “spherical neuron”, we take a geometric
mean of these length scales giving R ∼ 128 µm ≈ 0.01 cm.
Setup for Systems:We focus on the behavior of ourmodel with the estimated biological
parameters. Numerical specifications for our biologically-driven study are given in
“Appendix B.2”. The parameters of Table 4 define characteristic scales of t̄ = 20,000
s, x̄ = 0.06 cm, P̄ = 6 × 10−5 g/cm3, and S̄ = 0.0001 g/cm3. Throughout all
simulations, we choose initial conditions so that the dimensional values of ic and is
of Eqs. (27) and (28) are

IP = P̄ x̄d ≈

⎧
⎪⎨

⎪⎩

4 × 10−6g/cm2, d = 1

3 × 10−7g/cm, d = 2

2 × 10−8g, d = 3

(34)

IS = S̄ x̄d ≈

⎧
⎪⎨

⎪⎩

6 × 10−6g/cm2, d = 1

4 × 10−7g/cm, d = 2

3 × 10−8g, d = 3

(35)

when i p = is = 1. We also ensure the initial concentration profiles match exactly in
dimensional units across all systems.

To retain a consistent dimensional point of comparison with identical initial condi-
tions, we nondimensionalize according to the baseline parameters and simulate; this
results in a slightly more general nondimensionalization discussed in “Appendix A.1”.

4.2 Sensitivity Analysis

The capacity for medicine to modify some or most of the parameters seems likely.
We therefore consider how small, 30%, changes in each modifiable parameter in the
system affect the UPR mechanism. Specifically, we look at havg (Eq. (25)) and

Wavg := ωavg/t̄, (36)

the dimensional value of ωavg (Eq. (26)). We comment that havg is already dimension-
less.

For baseline, we use the parameter values of Table 4. Then, we vary each parameter
individually by 30% up and down, keeping all others fixed at baseline. We assume
cell sizes are fixed and do not change R. The results are found in Tables 6 and 7 in
differing dimensions.

In the case d = 1, the model has large havg-values, suggesting a very diseased state.
In that case, even 30% changes in many parameters do not result in large changes
because so many parameters contribute to high S-presence. We notice much larger
changes with d = 2 where the S-presence is smaller. For d = 1, the most beneficial
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Table 6 Values of havg under various parameter changes with changes relative to baseline in parentheses

Parameter changes havg (1D) havg (2D)

Baseline 0.830 0.0687

DP ← 0.7DP 0.831 (+ 0.1%) 0.124 (+ 80.5%)

DP ← 1.3DP 0.828 (− 0.2%) 0.032 (− 53.7%)

DS ← 0.7DS 0.842 (+ 1.4%) 0.187 (+ 172%)

DS ← 1.3DS 0.812 (− 2.2%) 0.0107 (− 84.4%)

a ← 0.7a 0.840 (+ 1.2%) 0.108 (+ 57.2%)

a ← 1.3a 0.821 (− 1.1%) 0.037 (− 46.1%)

b ← 0.7b 0.847 (+ 2.0%) 0.0947 (+ 37.8%)

b ← 1.3b 0.810 (− 2.4%) 0.047 (− 31.6%)

c ← 0.7c 0.815 (− 1.8%) 0.00211 (− 96.9%)

c ← 1.3c 0.838 (+ 1.0%) 0.140 (+ 103.8%)

A ← 0.7A 0.772 (− 7.0%) 0.000128 (− 99.8%)

A ← 1.3A 0.860 (+ 3.6%) 0.218 (+ 217.3%)

td ← 0.7td 0.836 (+ 0.7%) 0.0696 (+ 1.3%)

td ← 1.3td 0.823 (− 0.8%) 0.0678 (− 13.5%)

Sc ← 0.7Sc 0.861 (+ 3.7%) 0.160 (+ 132.9%)

Sc ← 1.3Sc 0.792 (− 4.6%) 0.0197 (− 71.3%)

The havg values were 0 for all 3D cases

Table 7 Values of Wavg at various parameter changes

Parameter changes Wavg (µHz) (1D) Wavg (µHz) (2D)

Baseline 3.85 0

DP ← 0.7DP 3.91 0

DP ← 1.3DP 3.79 0

DS ← 0.7DS 3.79 4.06

DS ← 1.3DS 3.87 0

a ← 0.7a 3.84 0

a ← 1.3a 3.85 0

b ← 0.7b 3.78 0

b ← 1.3b 3.80 0

c ← 0.7c 3.74 0

c ← 1.3c 3.92 4.10

A ← 0.7A 3.81 0

A ← 1.3A 3.87 4.20

td ← 0.7td 5.19 0

td ← 1.3td 3.02 0

Sc ← 0.7Sc 3.76 4.03

Sc ← 1.3Sc 3.88 0

No oscillations were noted for any 3D cases
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changes were decreasing A, increasing Sc, increasing b, and increasing DS . For d = 2,
the most beneficial changes were decreasing A, decreasing c, increasing DS , and
increasing Sc. Both d = 1 and d = 2 show the same pattern of increase/decrease
with the different parameter changes. The d = 3 cases did not show notable disease
prevalence with havg = 0 and no oscillations.

As for the oscillation frequency, Wavg, most of the parameters had little effect.
The only parameter that had an appreciable effect was the UPR delay td . Oscillations
tended not to occur much above d = 1, but when present in d = 1 and d = 2, they
tended to be very close in value.

4.3 Case Study

It appears the drug pentosan polysulfate (PPS) can extend survival times in patients
with prion diseases (Rainov et al. 2007). One man survived 10 years with CJD while
receiving that drug treatment (Wade 2011). Researchers have suggested the drug
inhibiting the binding of PrPSc to PrPC or causing the fragmentation of PrPSc as
possible mechanisms (Yamasaki et al. 2014). It appears PPS does not affect levels
of PrPC (Yamasaki et al. 2014). Other drugs have also been studied where PrPC lev-
els were made significantly lower—through chloropromazine (CPZ) and U18666A
(Yamasaki et al. 2014).

To speculate quantitatively on drug treatments in ourmodel,we consider a hypothet-
ical concoction of drugs that (1) increases the clearance rate of PrPSc, (2) increases the
diffusivity of PrPSc, (3) reduces the capacity of PrPSc to convert PrPC, and (4) reduces
the production of PrPC. Items (1)–(2) are inspired by the speculation on the PPS drug,
where we assume fragmented PrPSc will be cleared more readily and diffuse more
easily. Item (3) is again a possible benefit of PPS, and item (4) is based on the possible
effects of CPZ and U18666A. Numerically, we investigate how havg andWavg change
as the drug “potency” changes. We define the potency λ ∈ [1,∞) so that at potency
λ, the values of Ds and b are both increased by a factor λ relative to baseline (Table
4) and the values of c and A are both decreased by a factor of λ relative to baseline
(Table 4). The resulting outcomes are found in Fig. 12. We observe that havg is nearly
zero and oscillations stop above λ ≈ 2.4.

Fig. 12 Variations in havg and Wavg at various potencies
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4.4 Clinical Relevance

At this point, we discuss the potential clinical significance of our model. From Table
6, we note that the change in each dimensional parameter has a corresponding change
in the strength of the UPR response havg. This suggests that medical interventions
that increase the diffusivities of either or both proteins; reduce the P–S conversion
rate; enhance the rate that either or both proteins are cleared; shorten the UPR delay;
decrease the maximum flux of P; and increase the threshold at which the UPR is
triggered, may benefit patients clinically. The most significant reductions in the UPR
intensity seem to come about through decreasing the maximum rate P is released,
decreasing the recruitment rate, increasing the diffusivity of S, increasing the rate at
which S is cleared, and increasing the threshold sensitivity of the UPR to S. We note
these results may vary depending on the point about which sensitivity is studied. We
remark that based on the possible effects of drugs used in prion disease treatment to
date, their methods of action are strongly aligned with these targets.

An experimentalist may be able to identify signs of the UPR mechanism through
reduced production of PrPC. Based on our simulations, we expect that oscillations
will become more pronounced when the relative diffusivity of PrPSc relative to PrPC

is small, the relative clearance rate of PrPSc relative to PrPC is small, and the UPR
delay is large relative to the PrPC clearance time. It is also expected that the temporal
frequency of oscillations will decrease as the UPR delay time increases and that for
large enough diffusivities or clearances of PrPSc, the oscillations may entirely fade
away.

4.5 Model Limitations

To arrive at the system we studied, we had to make several assumptions. A proper
understanding of the resulting limitations is indispensable for healthy scientific scepti-
cism in interpreting themodel results and in developing better, more insightful models.
We include a list of limitations below along with possible remedies.

• Only two proteins instead of including multitudes of oligomeric states and stable
nuclei, we chose to only include P- and S-proteins. A more refined model could
consider assortments of assembly sizes, with associated mass-dependent diffusiv-
ities and clearance rates.

• Only one neuronwe centered ourmodel on one neuron, but it is possible to consider
multiple neurons, with associated positions in space so that species that diffuse
away from one neuron can affect another.

• Simplified neuron geometry we used simplified geometries for the neuron shape.
Due to the long axons relative to the cell body size, radial symmetry is not accurate.
Through a finite element approach, amore complicated geometry could be tackled.

• Constant reaction rates through the ageing process, the rates of misfolding or
clearance, among other parameters, may vary. It is possible to consider time-
dependent parameters as well.

• No membrane-bound P-protein we did not consider a form of P-protein that is
bound to the cell membrane. Further refinements could add this.
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• Protein production not impacted by UPR the model could be adapted to include a
reduction in maximal P-protein production due to cumulative effects of the UPR.
Likewise, since the UPR may be a mechanism of cell death, the model could be
extended to determine when the neuron dies.

• Only one cell type there are many cell types in the brain, but we focused only on
neurons. By including other cell types, we could better model the effects of stress
and inflammation.

• Lackof data-drivenparametersdue to the uncertainty of the differentmodel param-
eters, we focused mostly on the qualitative aspects of the model. Our clinical
exploration study provided interesting insights with regards to possible medical
treatments, but accurate measurements of parameters are needed.

However, even with these limitations, our simple approach already highlights some
important features of these complex mechanisms, as well as the role of key parameters
involved.

5 Conclusion and FutureWork

In this paper, we presented a nonlinear, coupled system of reaction–diffusion equations
with nonlinear, delayed boundary conditions to model the Unfolded Protein Response
in a simplified setting with representative healthy and unhealthy proteins. We found
that oscillations in neuronal activity may be found under certain parameters and that
through modifying certain biological parameters it may be possible to lessen intensity
of the UPR.

To extend our work and make it more applicable to neurological systems and the
study of neurodegenerative diseases, we consider obtaining accurate estimates for the
model parameters based on clinical and experimental data, incorporating additional
biological features and realism (see limitations section), and coming to a theoretical
understanding of the effects of each model parameter.

A Numerical Method

A.1 Different Nondimensionalization

With scales t̄, x̄, P̄, and S̄ chosen from the baseline parameters, the dimensionless
system, more generally, takes the form

p,t = δp(p,rr + d − 1

r
p,r ) − γ ps − (α + σ)p, (37)

s,t = δs(s,rr + d − 1

r
s,r ) + ηγ ps + ησ p − βs, (38)

p,r |r=ρ = −θ

1 + (μs(ρ, t − τ))m
(39)
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havg = lim
ϒ→∞

∫ ϒ

0
(1 − 1

1 + (μs(ρ, t − τ))m
)dt, (40)

where we have suppressed equations that do not change their form. Here, δp = t̄ DP
x̄2

,

γ = S̄t̄c, α = t̄a, σ = t̄ f , η = P̄
S̄
, δs = t̄ DS

x̄2
, β = t̄b, ρ = R

x̄ , θ = x̄ A
P̄DP

, μ = S̄
Sc
,

and τ = td
t̄ . With the baseline parameters, δp = α = θ = μ = 1.

A.2 Implementation

We solve the dimensionless system of “Appendix A.1”. The domain for r , [ρ,∞),

is unbounded and we need to truncate the computational domain at some value, r∞.

From a back-of-the-envelope calculation, we note that for s = 0, a one-dimensional
steady state solution is p(r) = 1√

1+σ
exp(−√

1 + σ(r − ρ)) ≤ exp(−(r − ρ)). And

if we impose p(r∞) = 0 with r∞ = ρ + 7, the truncation error is ∼ 0.0009. And p
and s are coupled together, with p being the only source for s. Solutions tend to decay
faster in 2 and 3 dimensions. Thus, for O(1) solutions and data, choosing r∞ = ρ +7,
we anticipate associated truncation errors to be ∼ 0.001 in the far field.

We choose positive integers Nr and Nt to be the meshing parameters in space and
time. For a computational domain running from r = ρ to r = r∞ and t = 0 to t = t∞,

we define the spatial and temporal step sizes by

�r = r∞ − ρ

Nr
, �t = t∞

Nt
.

Then for i = 0, 1, 2, . . . , Nr and j = 0, 1, . . . , Nt , we define ri = ρ + i�r and
t j = j�t . We denote p j

i as the numerical approximation to p(xi , t j ) and s ji as the
numerical approximation to s(ri , t j ). We furthermore take the delay τ = k�t for
some k ∈ {0, 1, 2, . . .}. At step j , second-order spatial discretizations of the diffusion
and reaction terms for p and s are given by

M̄p = δp
p j+1
i+1 − 2p j+1

i + p j+1
i−1

�r2
− γ p j+1

i s ji

− (1 + σ)p j+1
i , 0 ≤ i ≤ Nr − 1, j = 0, 1, 2, . . . , (41)

M̄s = δs
s j+1
i+1 − 2s j+1

i + s j+1
i−1

�r2
+ ηγ p j

i s
j+1
i

+ ησ p j
i − βs j+1

i , 0 ≤ i ≤ Nr − 1, j = 0, 1, 2, . . . , (42)

respectively.
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Handling the derivative conditions at i = 0 requires ghost points at the fictitious
position r−1 = ρ − �r , and the far-field at i = Nr , zero values are imposed. Thus:

p j
Nr

= s jNr
= 0, j = 0, 1, 2, . . . (43)

p j
1 − p j

−1

2�r
= −θ

1 + (μs j−k
0 )

m , j = 0, 1, 2, . . . (44)

s j1 − s j−1

2�r
= 0, j = 0, 1, 2, . . . . (45)

To handle the delay, we assume s−1
0 , s−2

0 , . . . , s−k
0 are given where τ = k�t . For

initial conditions, we assume pi 0, si 0 are given for 0 ≤ i ≤ Nr .
These equations can be converted to matrix–vector form. We denote p j =

(p j
0 , p

j
1 , . . . , p

j
Nr−1)

ᵀ and s j = (s j0 , s j1 , . . . , s jNr−1)
ᵀ. Let I ∈ R

Nr×Nr be the identity

matrix, D2 ∈ R
Nr×Nr be given by

D2 = 1

�r2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 2 0 · · · 0 0
1 −2 1 · · · 0 0

0
. . .

. . .
. . .

...
...

... · · · . . .
. . .

. . .
...

0 0 · · · 1 −2 1
0 0 · · · 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D1 ∈ R
Nr×Nr be given by

D1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d−1)
2�r

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0

−1/r1 0 1/r1 · · · 0 0

0
. . .

. . .
. . .

...
...

... · · · . . .
. . .

. . .
...

0 0 · · · −1/rNr−2 0 1/rNr−2

0 0 · · · 0 −1/rNr−1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, d = 2, 3,

0, d = 1,

and V j ∈ R
Nr×1 be given by

V j =
(

2θδp

�r(1 + (μs0 j−k)m)
, 0, 0, . . . , 0

)ᵀ

+
{

(
−θδp(d−1)

ρ(1+(μs0 j−k)m )
, 0, 0, . . . , 0)ᵀ, d = 2, 3,

0, d = 1.
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Defining functions Mp, Ms : RNr×1 → R
Nr×Nr via

Mp(s) = δp(D2 + D1) − γ diag(s) − (σ + α)I

Ms(p) = δs(D2 + D1) + ηγ diag(p) − β I ,

we can define a weighted semi-implicit first-order time-stepping via

p j+1 − p j

�t
= w(Mp(s

j )p j+1 + V j+1) + (1 − w)(Mp(s
j )p j + V j )

s j+1 − s j

�t
= wMs(p

j )s j+1 + (1 − w)Ms(p
j )s j + ησ p j

where 0 ≤ w ≤ 1.Withw = 0 this is the Euler method.Withw = 1, this is a standard
semi-implicit method.We take inspiration from the implicit Crank–Nicholson method
(Douglas 1961) and take w = 1/2. In practice, we find w = 1/2 yields smaller
errors with our semi-implicit approach. The semi-implicit systems require simple
linear solves of two systems of size Nr . In contrast, Crank–Nicholson would require
nonlinear solves of systems of size 2Nr and we find that the semi-implicit method is
faster. When k = 0 (no delay), we compute V j+1 by first estimating s j+1 with the
Improved Euler method.

Overall our method, as subsequently validated in “Appendix A.4”, is second order
in space and first order in time.

A.3 Frequency

To estimate the mean frequency over a finite computational window, we make some
modifications. Because s can take a while to peak and a final peak may take place
sufficiently before t∞ to contribute a non-negligible error, we seek to estimate themean
peak-to-peak frequency of s(ρ, t−τ).But because oscillationsmay stop altogether,we
need to avoid giving a frequency for situationswhere s(ρ, t−τ) peaks a few times early
on and then stops. If there N ≤ 1 peaks for s(ρ, t − τ) on (0, t∞), we define ωavg = 0
since a mean peak-to-peak interval cannot be computed for the frequency. Assuming
there are N ≥ 2 peaks, let them occur at the times 0 < t1 < t2 < · · · < tN < t∞. We
define a proxy for the mean frequency as

ω̂ = N − 1

tN − t1
.

Then we define

ωavg =
{

ω̂, t∞ ≤ tN + max1≤i≤N−1(ti+1 − ti )

0, otherwise.
(46)

Intuitively, if the system is continuing to oscillate, then the end of the computational
time t∞, should occur before the estimated latest possible time for the (N + 1)st peak
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(otherwise there should have been N + 1 peaks). If this condition fails, we define the
frequency to be 0, indicating the system stopped oscillating.

A.4 Validation of Numerical Scheme

Throughout the validation and simulations, the initial conditions prescribed are those
of Eqs. (30)–(32).

To validate the convergence rates, we shall use mesh refinements. Let Nr and Nt be
the meshing parameters. Denote Q(Nr , Nt )

j
i = (p j

i , q
j
i )ᵀ for 0 ≤ i ≤ Nr − 1, 0 ≤

j ≤ Nt } to be the numerical approximation at r = ri and t = t j over the chosen grid.
We define the operations

�r Q(Nr , Nt ) = max
0≤i≤Nr−1
0≤ j≤Nt

||Q(Nr , Nt )
j
i − Q(2Nr , Nt )

j
2i ||∞

�t Q(Nr , Nt ) = max
0≤i≤Nr−1
0≤ j≤Nt

||Q(Nr , Nt )
j
i − Q(Nr , 2Nt )

2 j
i ||∞

If q j
i = q(ri , t j ) = (p(ri , t j ), s(ri , t j ))ᵀ is the exact solution on the same mesh as

Q(Nr , Nt ) then in the asymptotic limit, we anticipate that

max
i, j

||Q(Nr , Nt )
j
i − q j

i ||∞ = O(�r2) + O(�t)

and we make the ansatz that

Q(Nr , Nt )
j
i − q j

i = H(ri , t j )/N
2
r + K (ri , t j )/Nt

for O(1) error functions H and K . From this, we have

Q(Nr , Nt )
j
i − Q(2Nr , Nt )

j
2i = 3H(ri , t j )

4N 2
r

Q(Nr , Nt )
j
i − Q(Nr , 2Nt )

2 j
i = K (ri , t j )

2Nt
.

Finally, assuming the meshes are refined enough, we have that

�r Q(Nr , Nt ) = 3H∗

4N 2
r

�t Q(Nr , Nt ) = K ∗

2Nt

where H∗ = sup[ρ,r∞]×[0,t∞] ||H ||∞ and K ∗ = sup[ρ,r∞]×[0,t∞] ||K ||∞.

In our validation, we focus our attention on simulations near the biologically rel-
evant parameters of Table 5 and the phase diagrams of Figs. 3, 4, 5, 6 and 7. With
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Table 8 Spatial convergence results

d mr br H∗

1 − 1.987 6.275 708.292

2 − 2.006 7.177 1744.776

3 − 1.999 5.362 284.106

Table 9 Temporal convergence results

d mt bt K ∗

1 − 1.051 5.812 668.522

2 − 0.999 4.282 144.800

3 − 0.971 2.629 27.720

Table 10 Estimates of mesh parameters to keep asymptotic errors ≤ 0.005

d Nt Nr

1 150,000 400

2 30,000 600

3 6000 300

Table 11 Estimates of mesh parameters to keep asymptotic errors ≤ 0.005

d Nt Nr

1 140,000 400

2 120,000 500

3 80,000 300

t∞ = 80, we choose γ = 5, σ = 0.01, δ = 0.05, β = 0.01, η = 1, τ = 5, and
ρ = 0.15.

Numerically, we fix Nt = 214 and vary Nr over the values 2i where i = 7, 8, 9, 10
to compute �r -values. Then we fix Nr = 210 and vary Nt over the values 2 j where
j = 11, 12, 13, 14 to compute �t -values. We have

log�r Q(Nr , Nt ) = (log(3/4) + log(H∗)) − 2 log Nr = br + mr log Nr

log�t Q(Nr , Nt ) = (log(1/2) + log(K ∗)) − log Nt = bt + mt log Nt

for slopes mr and mt we expect to be close to −2 and −1, respectively, and intercepts
br and bt . The values H∗ and K ∗ can be found from br and bt . From lines of best fit,
we estimate these values in Tables 8 and 9. Convergence plots are found in Fig. 13.

These results suggest that to keep the asymptotic errors in both space and time
below 0.005, we can use meshes as presented in Table 10.
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Fig. 13 Plots of convergence with best fit

B Numerical Specifications

B.1 Model Investigation

B.1.1 Phase Diagram (Figs. 3, 4, 5, 6, 7)

For a computational domain, we used [ρ, r∞] with ρ = 0.25 and r∞ = 7.25 for r ,
and [0, t∞] with t∞ = 80 for t . We used r∗ = (3ρ + r∞)/4, i p = is = n p = 1. Our
meshing parameters were those presented in Table 10. The switch parameter m = 10
was used.
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B.1.2 Spatiotemporal Parameter Variations (Figs. 8, 9, 10)

For a computational domain, we used [ρ, r∞] (with ρ as specified in the figures) with
r∞ = ρ + 7 for r , and [0, t∞] with t∞ = 80 for t . We used r∗ = (3ρ + r∞)/4,
i p = is = n p = 1. To ensure similar accuracy as in the phase diagram, we used
meshing parameters outlined in Table 11. The switch parameter m = 10 was used.

B.1.3 Comparison with Prior Work (Fig. 11)

For a computational domain, we used [0.25, r∞] with r∞ = ρ + 7 for r , and [0, t∞]
with t∞ = 80 for t . We used r∗ = (3ρ + r∞)/4, i p = is = n p = 1. We used meshing
parameters outlined in Table 10. The switch parameter m = 10 was used.

B.2 Biological Investigation

B.2.2 Generation of Tables 6, 7 and Fig. 12

For a computational domain, we used [ρ, r∞]with ρ found in Table 5 and r∞ = ρ +7
for r and [0, t∞] with t∞ = 80 for t . We used r∗ = (3ρ + r∞)/4. Our meshing
parameters were those presented in Table 10. The switch parameterm = 10 was used.
In this application, i p = is = 1 again, but n p varied depending on the parameter that
changed.
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