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Biologie mathématique et modélisation

avec des équations aux dérivées partielles

I Introduction : les systèmes de réaction diffusion

Dans un cadre biologique, ils ont été introduits essentiellement

par Alan TURING en 1952 pour étudier la MORPHOGENÈSE (apparition' des formes

dans les embryons) au cours de laquelle des formes semblent apparaître"à partir de rien"

Turing a montré que ce type d'émergence de forme peut avoir lieu dans des

systèmes "très simple" comme des mélanges d'espèces chimiques soumises à de la

diffusion et de la reaction :





Ces formes dites STRUCTURES DE TURING (TURING PATTERNS) ont été utilisés depuis les

années 70 dans de nombreux travaux de bio mathématiques.: dessins sur les plages

d'animaux, apparitions de structures dans des communautes (ville, cimetières de fourmis,...)

a

•

I La diffusion.

L'equation type décrivant les phénomènes diffusifs est :

Épult, ×) = d. Ault, x) (1) équation de la chaleur, historiquement

introduite par Fourier

u : quantité qui diffuse

t : temps (t :o) ↑""

✗ : espace

→ Δ : opérateur de diffusion appelé LAPACIEN

✗ ER CIRN N-42,043 ici ce sera N :/ , ✗ Efo, L] (Iso)

L◦ c- A

A

aix :(%)

DELTA

N :) (dimension 1) Ault, x) = %,u1t,×)

N :2 ( 11 4 Delt, x)- 2%114×77%2411:X)

d : coefficient de affusion

Definition. La diffusion est un phénomène pour lequel "le flux est proportionnel au gradient"

(do)

gradient

fort gradient

positif ⇒ fort flux vers la gauche

> fort gradient negatif: fort flux

vers la droite

On peut dire que la diffusion "aplatit" les bosses d'autant plus vite qu'elles sont hautes

Que se passe-t-il si dao ?



Que se passe-t-il si dao ?

1

dans ce cas là on a un phénomène d'agrégation ou concentration. m'ent

1. Condition initiate

2concitions poux

(conditions qux bows)

nov 2 eux

↑

0%414×7

% (Gx): d. Du'lt, ×,

1 condition initiale

Pour que le problème soit complet, il est necessaire de préciser. ce qu'on appelle

les conditions aux limites : la condition initiale et les emotions aux bords.

Pour la condition initiale on definit de façon arbitraire u (o,×): f4) (ait

est donnée par l'expérimentateur) et ✗ e RCRN (en génial ✗ e- (o, L]).



2. Les conditions au bows

Il existe plusieurs types de conditions aux bords. Nous allons considérer seulement les

2 plus" classiques" . Dans ce qui suit on suppose ✗ ∈ [0,4 (dimension 1) avec ↳ o.

a. Condition de DiricHLET homogène
✗ E [o, L] Mlt, X) 100°

alt, o) = 4142)-0

O
L

limiult, x)-0
tata

b. Emotion de NEUMANN homogène

L

£140)-§ 144=0 (flux nul aux bords)

conséquence: la masse est conservée

(la chaleur

%

L

ult.xldxsl.hr ⇒ h : ½/jullixldx



O

½/jullixldx

Le problème est alors complet :

§ ultix): dAult, x)

Ulo, x) s fix) , ✗ ELL)

+ conditions aux bords ↗ 0ᵗʰ" "

, to et ✗ Eloy]

t

→ NEUMANN

(5)

Comment peut on résoudre ce système ?

Pour sa on introduit un nouvel outil mathématique: les fonctions popes

3. Les fonctions propres



3. Les fonctions propres

Definition : une fonction propre de l'opérateur de diffusion Δ (avec conditions aux bords)

est une fonction qui ne dépend que de × (x: variable d'espace) (on l'appelle aussi

forme ou profil spatial) que l'on noté W : ✗ ↳ Wh) et qui vérifié :

1. West dérivable aux moins 2 fois

2. Δ WE) s 7W(x) où 7 est une constante (qu'on appellera valeur pope)

3. W ¥0 (w n'est pas identiquement nulle-c'est à dire pas nulle partout)

4. W venfie les conditions aux bons

5- W est définie à une constante multiplicative ps

Remarque : la condition 2. signifié que l'opérateur de diffusion" amplifié"ou • réduit"

Lamatit

la forme Wh):

exemple µg " "M. (la forme ne change pas !)

elle est juste amplifiée

ou amortie)







Exercice : on considère ✗ ∈ (o, L] avec ↳ ◦ , et donc

Dult, ×): %, uh, ×) que ×

Pour les fonctions pops won aux : Durex): E. Wbh): W"4)

On considère les conditions de DIRICHLET homogène en ◦ etc : c'est à oie W (a) = Wlc) so

Question : quelle est l'expression de la (ondes) fonctions pops associées à ces conditions?

Autrement it cherchons w.

On cherche W une fonction 2 fois demable (au moins),non mille partout,

(2) avec W (o)-W (L):O

solution :

qui vérifie : Durex):W"/x) s duex)

↑
pour tout-✗ Elo, t]

W vérifie l'équation afférentielle : W" (x)-awk) pourtout ✗ Eloi].

Rappel : on cherche les solutions sous la forme wa): e" (avc r constante, complexe)

on obtient: w' (x) = re" ((e"" )": n'41e" " )

et W" (x) = 22ᵉ"

et donc w" 4) = AWA) s'écrit 12e" s 7f pour tout ✗ Eloy]

polynôme caractéristique22=7

On a alors plusieurs cas :

1 si 770 12=7 a 2 racines réelles distinctes y etre avec

r,: A et 12 :-A (r, =-22)

On a alors 2 solutions : en" et ê"

Il est connue que toutes les solutions or de l'equations W" (x): tuk) sont sous la forme

Wh): c, e" + yeux

Les constantes c, et E sont déterminées par les convitions aux bouis : ici who)-who

(Oirichlet)

W (o) s ◦ nous donne : C, ê + yé so ⇐ , c, + 2=0



W (o) s ◦ nous donne : C, ê + yé so ⇐ , c, + 2=0

- C, =-E

Les solutions sont donc données par W (x) = c, ê"-e, é" (c):-sets,:-22)

Wh): c, (e"-é"")#

La deuxième conoiton est : Wh):O autrement dit:

C, (e".- é" ):O → 4=0 ou è-é":O

impossible sinon west mille partout

pas possible (convoi 3)

(H)

avec ✗ =L

2ⁿᵈ = e- ¾

⇔ r, 1=-41

⇔ 21,1=0 : IMPOSSIBLE

↓ >

A

1>0

pas de solution pour le cas où 7>0.

2 750 Dans ce cas là W " (x) so, alors Wh):c, et Wh): C, ✗ + E

Gets sont déterminées par les conditions aux bords :

arco): W (L): ◦

or who) so ⇔ 4.0+2=0 ⇔

de plus W (C) so ⇔ 4.1=0

E- 0 done Wh):X

↓

> 0

C,:O PAS POSSIBLE sinon W est nulle partout

done pas de solution si 7=0

3 70 Dans ce cas là ma r² = A qui s'écrit 2's-la/= ilot

(avec i imaginaire pure, défini par i ?-1)

On a alors 2 solutions complexes : r, = ital et ½ :-ifal

Rappel quand 4 : ✗ tip et 22 : α-iβ

alors les solutions Wh) sont données par : wa) s e" (Goopy + Esinpx))

Ici ~, = if donc α : ◦ et β : f71

donc Wh) s é CG co (V71.x) tasin (F1. x)

= C, CD (fax) + Esin (V71.x)

G et E sont données par ls conditions aux bords.

W (o) so ⇔ acos (o) + Esin (o) so

7 O



← done WIX) = Esin (V71.x)

De plus W (L)-o ⇔ a sin/A. 4=0 ⇐
→ 4=0 PAS POSSIBLE sinon W est nulle partout

→ sinc. 1. L) 

⇔ 171. L = KIT KEEsin Oso ⇔ O-KIT
H

21T- IT

> 0

O

> 0

il faut k so ind KEIN"

41,334.--

Conclusion on a une infinité de fon

W (x) s q sin (

de plus V71 : KIT

L

dons pops : données par

" . x) on peut prendre 9=1 sans perte de généralité

et on a donc HI s %) KEN *

No

3 :-(E) ²

Wp (x) s Sin (⅔" - et ¾-(E) ' /KEN"

fonctions pops de Δ

avec Dirichlet homogène

en ◦ et L

≈k

↑ valeurs pops associes à Wh.

O L

3h22

k=, w, G)-sin (½

✗ = % sin (1 %)-sil !)

l

¼ ½ ¾

k : 2 Wz (x) s fin (2È)-

✗ = ½ sin (2E)-sinti)

✗ : ¼ sin (21%1)-sinCE)

✗ :3 ¼ sin (24¥):" (E)

1

g

kst

Remarque : on dit que k est la fréquence (membre d'oscillations)

des fonctions propres.

Exercice : Quelles sont ls fonctions pops et valeurs pops associées pour Δ avec

les conditions de NEUMAN homogène

Il faut chercher ls u verifiant w" (x)-7Wh) avec W' (o): W' (L)

4. Résolution de l'équation de la chaleur



on rapelle l'equation : Êultix)-d. Dutt;D

Condition initiale est une fonction popeα

On suppose que cela, ×): Week) avec * Lac]

141E, x)

Δ week)-4Wh")

Ë

✗

1=0
✓

Wk (x)

⅓

½

Remarque : avec cette condition initiale,

comme Duka): dunk), au cours du temps

lsesolutions ult, x) seront ds forms dilatées ou

amorties de la forme initiale.

On cherche donc le solutions de la forme :

Mlt, ×) = ✗ (t). Ugh)

(méthode de séparation des variables)

On remplace alors ult,x) par ✗ (t) Wpk) dans l'équation de la chaleur :

♀ ult,x) = ddult, x)

◦ ♀ (✗ 4) week)) s d Δ (Xt) wha)

⇔ Wha) ¾ alt) s dall) Δ Week)

⇔ Wpk). α' (t) s d ✗ (t). ¾ Wka) pour tout t≥o et pointoutxelo, c)

Whl x) n'St pas nul partout

'2%2

⇔ wek) (✗ "It)-d. dealt)):O

$0

partout

⇔ α' (t)- ddgalt) 

⇔ d'It)-dirait)

Rappel : yl (t) say (t)

alors ylt)-c. e"

'y"t):c.cat,

donc ✗ (t) = ced.tt avec Dirichlet ½ Co

d) 0

Conclusion : si la condition initiale est une fonction pope we, alors les

solutions de l'equations de la chaleur sont données par :

ulkx) = Xlt) Uk) s c. edkᵗ Wpk)



Que vaut c ? quand tso UCO, ×)- C-C" Wha) R la condition initiale est

1110, ✗ ): Wp (x)
= C. Wpk)

Ici

donc ult, ×) s e 41ˢᵗ Weix)

s

- IS SI

Dirichlet

(BORNÉ)

Remarque : de façon générale. ls le seront toujours so et on les numerste de

la fagon suivante :... SI ≤ ½ ≤ 1, co :L

• ls uk seront bornées

Par conséquent on aura toujours ult,×): e" twerk) → ◦ (sites)

t" t" clé si 7k" °

C-I

»

«

toto





b Condition initiale : combinaison've 2 fonctions pops

On suppose Ulo, x)-&, Wh, 4) + ½ Week), ketkEN (ou IN" ) et &,/KEIR

✗ EGL]

Par le principe de superposition, les solutions ult,» sont données par la combinaison

des solutions quand la condition initiale est une seule de ces valeurs propres



des solutions quand la condition initiale est une seule de ces valeurs propres

Milo, X) = *, Wh, 4) → Uft, x) s 4, ed"k" Wyk)

+ u, lo, x) = ✗ 42Wh" ) → 12ᵗʰ ✗ ) s * 2ᵈ" "WE" )

U Lo, ×) : Milo, x) + Malo, x) → Ultix) s u,/t, ×) tuzltix)

s xp, edk.tk, (x) + age" "twerk)

Remarque : de façon générale, par le principe de superposition sik

condition initiale est la combinaison linéaire de N fonctions pops :

(c'est à dire allo, ×) = TE Xp.. Weilx))

alors UH, X) = ? xp, eddhitwa, (x)

Exercice : On considère l'équation de la chaleur fuit,x) = Dult, x), ↳ ◦

et ✗ ∈ [◦ IIT] (L : IT) qui satisfait les conditions aux bords de



et ✗ ∈ [◦ IIT] (L : IT) qui satisfait les conditions aux bords de

Neumann homogène.

1. Determiner les fonctions pops et les valeurs popes associées de Δ pour ces conditions

aux bouts

2. Dessiner les 3 premières fonctions pops

3. On suppose la condition initiale suivante ulo, ×) =.3 + cas (x) + 5es (3D

a. Résoudre l'équation de la chaleur si dsl

b. Calculer ftp.ult, x).



solution : 1. Les fonctions propres de Δ pour les conditions de Neumann

sont données pu Week)- co (KI) avec ✗ EE, ☐

de valeur propre associée 7ps • (KIT ?

Ici ✗ ∈ [0,1T] done L : IT, et ainsi

2. Representation graphique des 3 premières fonctions pops

avec KEN

Why : co (kx) et le = -k² , KEN

✗

O

Wk

1

3% 11

l

k so Wok): colo):|

k :) Wily-co(x)

1=2 Wax) =co(2x)

✓ Gwo

→ CWz

2

GW,

3. La condition initiale est relax): 3+200 (x) +50013×3

✗ = 1% AC 2x):b (2È):P, 

a. D'api le cours, si Ulo, x) = Xk, Wk,") ici

Sur Lo, li]

+ Neumann

4,.co (k, x)

Alors la solution est donnée par

Avec ds

Ici Uco, ×) = 3 + 2es (x) + 500/3×3 = en Co, x) tehlo,✗) thglo, x) XE [ONT]

. On a 1410, ×)-3=3×1 :3 ✗ colo. X) -346)

Donc Mlt, ×):3 e- ◦ "

Mlt, X) = y editing, 4) = xp, é" k "eos (kx)

tks.kz

• pour, 1,10, ×) =3



Donc Mlt, ×):3 e- ◦ "co (ox) =

↑ k so, d"

3

• pour 110, ×): 2004) On a Uco, ×): 2es/1.x) kst 2=2

One uft, ×): 2e-14 52 Wyk,
co (x) = 2e-took)

• pour Glo, ×) = 543 ×) On a Uzlo, ×)-5es (3. ×) ✗ 55 k :3

Omc Mlt, x): 559" co (3×1

Par le principe de superposition si Ulo,×) stylo, x) tudo, x) tylo, x)

alors Ulf, x) s Mlt, ✗ ) +14,» + Glt,#

= 3 + détox) + 5é9ᵗeo(3×)

b. ftp.ultx) = ? tleaitomoultix) = lent, 3 :3

left est, ×) = lin

tatoo

borné

↑

2éterlx) so

Et, 4, ×)-LÀ, 5ᵉ"tes 134=0 k :3

limult, x)

to to

= ftp.httxlth.lt, x) tes It, x) s 3 totos

k-t

3

k  : O



Remarque on remarque que, plus la fréquence k est grande, plus



Remarque on remarque que, plus la fréquence k est grande, plus

ftp.ekt, ◦ rapidement. Autrement dit, la solution s'aplatit"

plus vite pour ls fréquences les plus hautes.

2H, ×)

3

c. Condition initiale : une fonction f quelconque

On suppose maintenant que ulo, ×): f4) f- quelconque (connue)

↳ donnée

On cherche quand même à se ramener au cas où fest une combinaison

lineaire des fonctions propres (c'est à dire une combinaison de sms et crimes)

Cette idée est la BASE de la théorie des SERIES DE FOURIER

Ehesième : sur [0,2] existe

toute fonction 7, L-périodique et de carré intégrable sur [0,2] (S ! t'Wdxcto)

se décompose comme une somme infinie de cosinus et senies

de la façon suivante: f4) s LE (apos(Ex) + besoin (KI)

Les coefficients ah et be sont appelés coefficients de Fourier et on peut les

calculer en fonction de f(il existe des formules pour sa)

Remarque 1. en mathématiques une somme infinie est appelée SERIE

c'est defini comme la limite en to de sommes finies.

On doit alors étudier sa convergence. La conoitini "f de camé integralle

sur GL]" suffit à avoir cette convergence.

2. Ainsi si U (o,x) = fix) = Éffak cop"✗ ) + basin (KI))



Éffak cop"✗ ) + basin (KI))

alors la solution est donnée par :

U (Ex) = %? (agé""so (Ex)+ ké " " "Eck 1)

Ë



T Equation de réaction-diffusion

Un système de réaction-diffusion est de la forme:

% ultix) =

JE V4, ×) =

f (u Ct, x), Vlt, X))

g (alt, x), Vlt, x))

+ du Ault, x)

dr Arlt, x)t

REACTION DIFFUSION

il y a deux quantités : u etv qui se diffusent

• leurs coefficient de diffusion du et du so peut etre afférent

• les fonctions fet y constituent la partie reaction du modèle

elles décrivent le bilan entre production et destruction de uetv en (t, ×)

flu, v)

Exemple : d" (f) X) =

at

gult, x) s

24

Zultix) -Vlt, x) + du Ault, x)

+ du Arlt, x)

1g (ur)

Nlt, x) + {ult, x

u v

- v

½"

Comment étudier ce type de modèle ? mauvaise nouvelle : on ne peut pas donner

de formulation explicite des solutions de ce type de système en général.

A étrioré alors les équilibres et leurs stabilité.



équilibres et leurs stabilité.

1. Une seule équation de réaction diffusion

Etudions l'équation : Éultix)- flulax)) + dAultix)



Éultix)- flulax)) + dAultix)

reaction diffusion

Etape 1 : recherche des équilibres

On recherche les équilibres stationnaires (indépendants de t) et homogènes en espace (indépendants

de x) de la forme u* ai u"est une constante.

comme u * est constant ma 8,1" ⇒ et Du":O

il nous reste ◦ = flux) to c'est à dire

: recherche de la stabilité

flux):O

Etape 2

Pour étudier la stabilité, on perturbe l'équilibre : on pose ult, ×): u" + up Ctx)

On remplace dans l'équation : fuit,×): fluckx) + adult,»

ce qui donne ♀ (u"+ Uplet"): f (u * tuple, x)) tdd (u" tupltix)

⇔ %u* tofupltix) s fluttupltix)td (Du * + DupltM)

" ◦ ⅓

¾ upltix) = flux tuple, x)) + d Δ uplet,x)

On linéarise f autour deux f- (u * tuple, *) ≈ t' (u*). upltix)

1714) ◦

Cf
sécante : pente flu#up)-flip) fluxpp,

i

Il reste

u#up

Tangente up

en ut s pente : l' (ut)

fluktup)

flux)

#+ up -4" up

linéariser

fluttup) v f' (u")

up

fluttup) v f" lu") up.




