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Préambule

L’objet de ce cours est de proposer une introduction à l’étude des équations différentielles
ordinaires (EDO) et de certaines équations aux dérivées partielles (EDP). Beaucoup de résultats
existent dans ce domaine : il est possible de trouver des solutions explicites à ces équations, mais
elles ne sont pas nombreuses. La résolution explicite de la plupart des EDO et EDP reste encore
un problème ouvert.
Les mathématiciens se sont alors tournés vers une étude plus théorique qui permettait de trouver
des résultats sur les solutions (existence, unicité par exemple) sans les connaître explicitement.
Ce cours sera un mélange des deux parce qu’il semble nécessaire de savoir non seulement prouver
que des solutions existent et que le cas échéant elles peuvent être unique mais également être ca-
pable de résoudre “à la main” certaines EDO et EDP classiques.
Certaines solutions porteront plus d’attention que d’autres, comme les solutions stationnaires (au-
trement dit indépendantes du temps, si le temps t est la variable impliquée dans l’EDO). Nous
nous intéressons à l’étude analytique de ces solutions, autrement dit la stabilité de ces solutions
par rapport à des perturbations dans les conditions initiales.
Les EDO et EDP ont des applications dans une très grande variété de domaines physiques, chi-
miques et biologiques. Il serait trop long d’en faire un liste exhaustive ici, mais au cours des
exercices ou exemples certains d’entre eux seront évoqués.
Dans ce cours nous ne donnerons que des exemples d’EDO appliquées à la biologie et à l’écolo-
gie. Tous les autres exemples peuvent se trouver dans la littérature foisonnante de ce domaine des
mathématiques.
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Chapitre 1

Equations différentielles : introduction

1.1 Définitions

Introduisons ici quelques définitions essentielles pour la suite de ce cours.

1.1.1 Différents types d’équations

Une équation différentielle ordinaire, également notée EDO, d’ordre n est une relation
entre la variable réelle t, une fonction inconnue t 7→ x(t) et ses dérivées x′, x′′,...,x(n) au
point t définie par

F (t, x, x′′, ..., x(n)) = 0, (1.1)

où F n’est pas indépendante de sa dernière variable x(n). On prendra t dans un intervalle
I de R (I peut être R tout entier).
La solution x en général sera à valeurs dans RN , N ∈ N∗ où N sera le plus souvent égal
à 1, 2 ou 3. On dit que cette équation est scalaire si F est à valeurs dans R.

Définition 1 (EQUATION DIFFERENTIELLE ORDINAIRE)

On appelle équation différentielle normale d’ordre n toute équation de la forme

x(n) = f(t, x, x′′, ..., x(n−1)). (1.2)

Définition 2 (EQUATION DIFFERENTIELLE NORMALE)
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1.1 Définitions Equations différentielles : introduction

(a) Gottfried Wil-
helm Leibniz (1646
- 1716), mathéma-
ticien allemand, Il
est à l’origine du
terme de « fonction
» (1692, de functio :
exécution), de celui
de « coordonnées
», de la notation
du produit de a par
b sous la forme
a.b ou ab, d’une
définition logique de
l’égalité, du terme
de « différentielle
» (qu’Isaac Newton
appelle « fluxion
»), de la notation
différentielle , du

symbole
∫ t

t0

f(s)ds

pour l’intégrale.

(b) Sir Isaac New-
ton (1642–1727),
Newton partage
avec Gottfried
Wilhelm Leibniz
la découverte du
calcul infinitésimal.
Dans l’histoire du
calcul infinitésimal,
le procès de New-
ton contre Leibniz
est resté célèbre.
Newton et Leibniz
avaient trouvé
l’art de lever les
indéterminations
dans le calcul
des tangentes ou
dérivées.

(c) Jacques ou Jakob
Bernoulli (1654-1705)
mathématicien et phy-
sicien suisse, frère de
Jean Bernoulli et oncle
de Daniel Bernoulli
et Nicolas Bernoulli.
Sa correspondance
avec Gottfried Wilhelm
Leibniz le conduit à
étudier le calcul infini-
tésimal en collaboration
avec son frère Jean.
Il fut un des premiers
à comprendre et à
appliquer le calcul
différentiel et intégral,
proposé par Leibniz.

FIGURE 1.1 – Quelques mathématiciens célèbres liés aux dérivées et équations différentielles.
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Equations différentielles : introduction 1.1 Définitions

On appelle équation différentielle autonome d’ordre n toute équation de la forme

x(n) = f(x, x′′, ..., x(n−1)). (1.3)

Autrement dit, f ne dépend pas explicitement de t.

Définition 3 (EQUATION DIFFERENTIELLE AUTONOME)

Remarque
Les équations autonomes sont très importantes quand on cherchera des solutions stationnaires
ainsi que leur stabilité.

Exemple
Equation du premier ordre sous la forme normale :

x′ = f(t, x).

Equation du premier ordre autonome :

x′ = f(x).

1.1.2 Equation linéaire

Donnons maintenant une classification par linéarité.

Une EDO de type (1.1) d’ordre n est linéaire si elle est de la forme

an(t)x(n)(t) + an1(t)x
(n−1)(t) + ...+ a1(t)x

′(t) + a0(t)x(t) = g(t), (1.4)

avec tous les x(i) de degré 1 et tous les coefficients dépendant au plus de t.

Définition 4 (EQUATION DIFFERENTIELLE LINEAIRE)

Exemple
Dire si les équations différentielles suivantes sont linéaires, ou non linéaires, et donner leur ordre
(on justifiera la réponse) :

i. (x− t)dt+ 4tdx = 0 ii. x′′ − 2x′ + x = 0 iii.
d3x

dt3
+ t

dx

dt
− 5x = et

iv. (1− x)x′ + 2x = et v.
d2x

dt2
+ sinx = 0 vi.

d4x

dt4
+ x2 = 0
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1.2 Solutions Equations différentielles : introduction

1.2 Solutions

1.2.1 Définition

On appelle solution (ou intégrale) d’une équation différentielle d’ordre n sur un certain
intervalle I de R, toute fonction x définie sur cet intervalle I , n fois dérivable en tout
point de I et qui vérifie cette équation différentielle sur I .
On notera en général cette solution (x, I).
Si I contient sa borne inférieure notée a (respectivement sa borne supérieure b), ce sont
des dérivées à droite (respectivement à gauche) qui interviennent au point t = a (respec-
tivement t = b).
Intégrer une équation différentielle consiste à déterminer l’ensemble de ses solutions.

Définition 5 (SOLUTION)

On appelle courbe intégrale l’ensemble des points (t, x(t)) où t parcourt I . Autrement
dit, si x est à valeurs dans RN , la courbe intégrale est un ensemble de points de RN+1.
On appelle orbite, l’ensemble des points x(t) où t parcourt I : c’est un ensemble de
points de RN .
L’espace RN où les solutions prennent leurs valeurs s’appelle espace de phases.

Définition 6 (COURBE INTEGRALE-ORBITE)

Interprétation géométrique :

Dans R3 (N = 2) par exemple, une courbe intégrale notée Γ et M un point de cette courbe de
coordonnées x = x1(t), y = x2(t), et z = t. On note X(t) = (x1(t), x2(t))

t. Le vecteur tangent à
Γ en M a pour composante x′1(t), x′2(t), et 1. C’est à dire f1(t,X(t)), f2(t,X(t)) et 1 (en notant
f1 et f2 les composantes de f ici).
Pour une telle équation l’espace des phases est R2, une orbite a pour équation x = x1(t), y = x2(t)
et le vecteur tangent en un point a a pour composantes f1(t,X(t)) et f2(t,X(t)).

Exemple
Voir en cours.

Remarque
Il arrive fréquemment qu’on puisse déterminer les orbites sans pouvoir préciser les courbes inté-
grales.
Dans de nombreuses situations (mais ce n’est pas exclusif), t peut apparaître comme le temps et
les orbites comme des trajectoires (que l’on appelle également chroniques).
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Equations différentielles : introduction 1.3 Réduction à l’ordre 1

1.2.2 Solutions maximales et globales

Soient (x, I) et (x̃, Ĩ) deux solutions d’une même équation différentielle. On dira que
(x̃, Ĩ) est un prolongement de (x, I) si I ⊂ Ĩ et x̃|I = x.

Définition 7 (PROLONGEMENT)

Soient I1 et I2, deux intervalles sur R, tels que I1 ⊂ I2.
On dit qu’une solution (x, I1) est maximale dans I2 si et seulement si x n’admet pas de
prolongement (x̃, Ĩ) solution de l’équation différentielle telle que I1 $ Ĩ ⊂ I2 (on verra
même plus tard que I1 est nécessairement ouvert).

Définition 8 (SOLUTION MAXIMALE)

Soit I un intervalle inclus dans R. Une solution (x, I) est dite globale dans I si elle est
définie sur l’intervalle I tout entier..

Définition 9 (SOLUTION GLOBALE)

Remarque
En reprenant les mêmes notations que dans les définitions précédentes, si une solution (x, I1) peut
se prolonger sur l’intervalle I2 tout entier, alors x est globale dans I2.

1.3 Réduction à l’ordre 1

Avant de commencer à résoudre les équations différentielles d’ordre quelconque, on va se rendre
compte qu’il est possible de réduire l’ordre à 1 en faisant quelques changements de variables. Par
conséquent, la majorité des résultats que l’on donnera dans ce chapitre ne concernera que les EDO
d’ordre 1 (sauf quelques exceptions, comme l’ordre 2 qui n’est pas difficile et rapide à résoudre
(quand on peut le résoudre bien sûr)).
Toutefois, comme nous allons le voir ci-dessous, ce que nous gagnons en simplicité dans l’ordre
de dérivation, nous le perdons dans la dimension de l’espace d’arrivée de la fonction F .
Autrement dit, en abaissant l’ordre de l’EDO, nous augmentons la dimension de l’espace d’arrivée
de F et passons nécessairement à la résolution d’un système d’EDO d’ordre 1 que l’on apprendra
à résoudre que plus tard dans le cours...
Il faut donc être patient, tout en sachant que l’on peut transformer les problèmes difficiles au
premier abord, en des problèmes beaucoup plus simples mais un peu plus techniques.
Voici comment on s’y prend.
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1.4 Quelques techniques de résolution Equations différentielles : introduction

Méthode

Considérons l’EDO d’ordre n (n ≥ 2)suivante :

F (t, x, x′, ..., x(n)) = 0,

où, x est valeurs dans Rm (on prend m = 1 en général) et

F : R× Rm × ...× Rm︸ ︷︷ ︸
n+1 fois

→ Rp.

Nous avons donc p équations, avec m inconnues et d’ordre n.
On fait le changement d’inconnues z = (x, x′, ..., x(n−1)). On a alors z ∈ (Rm)n, et on note
z = (z1, z2, ..., zn), où chacun des zi = y(i−1) ∈ Rm, i = 1, ..., n. On se retrouve alors avec des
relations entre les zi : {

z′i − zi+1 = 0, i = 1, 2, ..., n− 1
F (t, z1, z2, ..., zn, z

′
n) = 0.

On a donc p+m(n− 1) équations, avec m× n inconnues, d’ordre 1.

Exemple
Voir en cours.

1.4 Quelques techniques de résolution
Dans cette section, nous allons nous intéresser à différentes techniques pour intégrer (c’est à dire
résoudre), certains types d’équations différentielles. Il faut cependant garder à l’esprit que la ré-
solution explicite des EDO n’est pas une chose aisée, et la plupart du temps ce sera trop difficile,
voire impossible. Nous devrons alors nous contenter d’une analyse d’existence, unicité, positivité,
etc. des solutions.
Mais attardons nous quelques temps à des cas que nous savons résoudre.
Comme nous l’avons montré à la fin de la section précédente, nous allons rester dans le cadre
d’équations différentielles ordinaires d’ordre 1. Nous resterons toutefois dans le cas scalaire, parce
qu’il est plus facile à manipuler et à comprendre. Le cas où F sera à valeurs dans Rp, p ∈ N∗ sera
traité plus tard.
Commençons alors par un cas assez général, et nous irons vers les cas particuliers ensuite.

1.4.1 Equations à variables séparées
Exemple
Considérons l’EDO d’ordre 1 sous forme normale données par l’équation

x′ = f(t, x).

L’idée est d’exprimer f(t, x) sous la forme g(t)h(x), où g : I → R et h : J ⊂ R → R. Ce qui
permettra de résoudre une équation du type

x′ = g(t)h(x).

12



Equations différentielles : introduction 1.4 Quelques techniques de résolution

Cas particulier :
Les équations les plus simples sont de la forme

x′ = f(t),

avec h ≡ 1 et g(t) = f(t) pour tout t ∈ I . On suppose en outre que x(t0) = xO pour un t0 ∈ I .
Si on suppose que f est continue sur un intervalle I ⊂ R d’intérieur non vide. Les solutions de
cette équation sont données par

x(t) = x0 +

∫ t

t0

f(s)ds,

On appelle de façon générale équation à variables séparées, toute équation de la forme

b(x)x′ = a(t), (1.5)

où a et b sont deux fonctions définies respectivement sur I et K, et où I et K sont des
intervalles de R.

Définition 10 (EQ. A VARIABLES SEPAREES)

Supposons les applications a et b continues respectivement sur I et K, où I est un inter-
valle ouvert de R, et J ⊂ R, alors x est solution de l’équation

b(x)x′ = a(t),

si et seulement si :
1. x est dérivable sur I , ET
2. il existe c ∈ R, constante telle que B(x(t)) = A(t) + c, pour tout t ∈ I , avec, A

est une primitive de a sur J , et B est une primitive de b sur K.

Théorème 1 (VARIABLES SEPAREES)

Si I est un intervalle ouvert de R, toute fonction x continue sur I qui satisfait B(x(t)) =
A(t)+c pour tout t ∈ I pour une certaine valeur de c et qui satisfait la condition b(x(t)) 6=
0 pour tout t ∈ I est dérivable sur I .
Par conséquent, d’après le théorème qui précède on en conclut que x est solution de

b(x)x′ = a(t), sur I.

Théorème 2 (VARIABLES SEPAREES (2))

13



1.4 Quelques techniques de résolution Equations différentielles : introduction

Soit f(t, x, x′) = 0, où t ∈ I , I intervalle de R, une équation différentielle. On dit que
c’est une équation à variables séparables si cette équation peut s’écrire sous la forme

b(x)x′ = a(t), pour t ∈ I, et x ∈ K ⊂ R.

Définition 11 (EQ. A VARIABLES SEPARABLES)

1.4.2 Equations scalaires autonomes
Comme nous l’avons vu un peu plus haut les équations scalaires autonomes sont de la forme

x′ = f(x).

On remarque que x ≡ a avec a racine de f est nécessairement une solution de ce type d’équations.
On a également une propriété importante concernant la monotonie de la fonction f .

Soit f : I → R continue sur I un intervalle de R, alors toute solution non triviale de
l’équation scalaire autonome x′ = f(x) est monotone sur son domaine.

Proposition 1 (AUTONOME ET MONOTONE)

1.4.3 Equations linéaires
Nous restons toujours sur les EDO d’ordre 1. Nous nous intéressons ici aux équations différen-
tielles ordinaires linéaires.

Une équation différentielle du premier ordre est dite linéaire si elle est linéaire par rapport
à la fonction inconnue x et par rapport à sa dérivée x′. Une telle équation peut toujours
s’écrire sous la forme

a(t)x′ + b(t)x = d(t). (1.6)

Dans toute la suite, on supposera que a, b et d sont continues sur un intervalle I ⊂ R.

Définition 12 (EDO LINEAIRE)

EDO linéaire sans second membre

Commençons par résoudre une équation linéaire d’ordre 1 sans second membre. On l’appelle EDO
linéaire du premier ordre homogène. C’est une équation de la forme

a(t)x′ + b(t)x = 0. (1.7)

14



Equations différentielles : introduction 1.4 Quelques techniques de résolution

C’est une équation à variables séparables sur I × J tel que a(t) 6= 0 pour tout t ∈ I .
Il est à noter que x ≡ 0 est une solution de l’équation linéaire homogène ci-dessus. On l’appelle
solution triviale comme dans le cas des équations autonomes.

L’ensemble des solutions de l’équation linéaire homogène

a(t)x′ + b(t)x = 0.

sur le domaine I , avec pour un certain t0 dans I tel que x(t0) = x0 est définie pour tout
t ∈ I par

x(t) = x0e
F (t),

avec F (t) =

∫ t

t0

− b(s)
a(s)

.

Proposition 2 (SOL. EQ. HOMOGENES)

Si une solution de l’équation linéaire homogène s’annule en au-moins un point t0 alors
elle est identiquement nulle (solution triviale).

Proposition 3 (SOLUTION TRIVIALE)

Remarque
La solution x ≡ 0 sur I est appelée intégrale dégénérée de l’équation linéaire homogène.

EDO linéaire avec second membre

Considérons l’équation
a(t)x′ + b(t)x = d(t),

sur l’intervalle I où a ne s’annule pas.
Soit xh une solution particulière non dégénérée de l’équation homogène associée à l’équation ci-
dessus sur I .

La solution générale de l’équation

a(t)x′ + b(t)x = d(t),

sur I avec pour un certain t0 dans I tel que x(t0) = x0 est donnée par

x(t) = exp

(
−
∫ t

t0

b(s)

a(s)
ds

)(
x0 +

∫ t

t0

d(s)

a(s)
exp

(∫ s

t0

b(σ)

a(σ)
dσ

)
ds

)
.

Proposition 4 (SOLUTION GENERALE)
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1.4 Quelques techniques de résolution Equations différentielles : introduction

Remarque
La méthode fréquemment utilisée pour trouver une solution de l’équation linéaire non homogène
à partir de l’équation homogène est appelée méthode de variation de la constante.

Cas particulier

Soient une fonction continue sur un intervalle I de R, α une constante réelle et t0 ∈ I tel
que x(t0) = x0. La solution générale de l’équation scalaire

x′ = αx+ f(t),

est donnée par

x(t) = x0e
α(t−t0) +

∫ t

t0

eα(t−s)f(s)ds,

où c est une constante.

Proposition 5 (FORMULE DE DUHAMEL)

1.4.4 Equations de Bernoulli

Une équation de Bernoulli est une équation différentielle scalaire non linéaire de la forme

x′ + P (t)x+Q(t)xr = 0, (1.8)

où r ∈ R, P et Q sont deux fonctions définies et continues sur un intervalle I de R.

Définition 13 (EQUATION DE BERNOULLI)

Remarque
On peut éliminer les cas r = 0 et r = 1, car l’équation de Bernoulli correspond alors à une
équation que l’on connaît déjà et que l’on a traité dans la section précédente.

Une fonction dérivable strictement positive (au cas où r = 1/2 par exemple, où r ≤ 0) x
sur I est solution de l’équation de Bernoulli si et seulement si u = x1−r est une solution
strictement positive de l’équation linéaire

u′ + (1− r)P (t)u+ (1− r)Q(t) = 0. (1.9)

Théorème 3 (SOLUTION BERNOULLI)
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Equations différentielles : introduction 1.4 Quelques techniques de résolution

Remarque

1. Connaissant la solution u de l’équation linéaire associée à l’équation de Bernoulli, on peut
en déduire les solutions strictement positives de l’équation de Bernoulli.

2. Nous pouvons trouver quelques propriétés sur les solutions suivant les valeurs de r :
a. Si r > 0 l’équation de Bernoulli admet la solution triviale x ≡ 0.
b. Si r > 1 toute solution de l’équation de Bernoulli qui prend la valeur 0 en un point, est

partout nulle.
c. Si 0 < r < 1, la fonction nulle n’est pas nécessairement la seule solution qui prenne la

valeur 0 en un point.
3. L’équation particulière

t2x′ + x+ x2 = 0, (1.10)

est appelée équation de Ricatti.

1.4.5 Eq.de Lagrange et Clairaut

On appelle équation de Lagrange toute équation du premier ordre scalaire non linéaire
de la forme

x = tf(x′) + g(x′), (1.11)

où f et g sont définies, dérivables sur un certain intervalle J de R.

Définition 14 (EQUATION DE LAGRANGE)

On appelle équation de Clairaut toute équation de Lagrange avec f ≡ Id (où Id est la
fonction identité, c’est à dire Id(x) = x), autrement dit elle est de la forme

x = tx′ + g(x′), (1.12)

où g est définie, dérivable sur un certain intervalle J de R.

Définition 15 (EQUATION DE CLAIRAUT)

Les seules solutions affines de l’équation de Lagrange sont les fonctions de la forme

x(t) = mt+ g(m), (1.13)

où m est une racine de l’équation m = f(m) avec m ∈ J .

Proposition 6 (SOLUTIONS LAGRANGE)

Remarque
Si de telles fonctions existent, alors elles sont globales sur R.
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1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

En particulier, pour tout m ∈ J les fonctions t 7→ mt + g(m) sont les seules fonctions affines
solutions de l’équation de Clairaut et elles sont globales sur R.

1.5 Eq. Diff. Totales - Facteurs Intégrants
L’objectif de cette section est voir comment la résolution d’une équation différentielle non -linéaire
du premier ordre peut se résoudre assez facilement à partir de la notion de différentielle de fonction.

1.5.1 Equations aux différentielles totales

On appelle variation infinitésimale de t (respectivement de x), toute fonction définie par

dt : R2 → R, (resp.) dx : R2 → R
(u, v) 7→ dt(u, v) = u, (u, v) 7→ dy(u, v) = v.

Définition 16 (VARIATION INFINITESIMALE)

(voir cours Analyse III) Etant donnée une fonction f : R2 → R, continue sur un ouvert
U de R2, et admettant des dérivées partielles du premier ordre en tout point de U , on
appelle différentielle de f sur U l’application notée df telle que pour tout (t, x) ∈ U et
pour tout (u, v) ∈ R2

df(t, x) : R2 → R

(u, v) 7→ ∂f

∂t
(t, x)(u) +

∂f

∂y
(t, x)(v).

Définition 17 (DIFFERENTIELLE)

Remarque
Avec la notation de la variation infinitésimale, pour tout (t, x) ∈ U et pour tout (u, v) ∈ R2, on a

df(t, x)(u, v) =
∂f

∂t
(t, x)dt(u, v) +

∂f

∂x
(t, x)dx(u, v),

que l’on peut écrire sous la forme

df(t, x) =
∂f

∂t
(t, x)dt+

∂f

∂x
(t, x)dx (1.14)

Opérations utilisées :
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Equations différentielles : introduction 1.5 Eq. Diff. Totales - Facteurs Intégrants

1. df = 0 est équivalent à f(t, x) = c où c est une constante pour tout (t, x) ∈ U , U ou-
vert connexe de R2 (attention, il est important que U soit connexe (voir cours de calcul
différentiel pour cela).

2. d(f + λg = df + λg où λ est une constante.
3. Différentielle du produit : dfg = fdg + gdf
4. Changement de variables :

si on pose t = ϕ(s, h) et x = ψ(s, h)
alors

dt = dϕ(s, h) =
∂ϕ

∂s
ds+

∂ϕ

∂h
dh, et dx = dψ(s, h) =

∂ψ

∂s
ds+

∂ψ

∂h
dh,

et dans ce cas :

df =
∂f

∂t
dt+

∂f

∂x
dx,

=
∂f

∂t
[
∂ϕ

∂s
ds+

∂ϕ

∂h
dh] +

∂f

∂x
[
∂ψ

∂s
ds+

∂ψ

∂h
dh],

= [
∂f

∂t

∂ϕ

∂s
+
∂f

∂x

∂ψ

∂s
]ds+ [

∂f

∂t

∂ϕ

∂h
+
∂f

∂x

∂ψ

∂h
]dh.

On peut également retrouver ce résultat en utilisant un diagramme en arborescence (voir
exemple en cours)

5. Soient f : U → R, et z une fonction dérivable sur I ⊂ R telle que G(z)={(s, z(s)), pour
tout s ∈ I}⊂ U (graphe de z) ; et soit

g : I → R
s 7→ g(s) = f(s, z(s)),

on a alors,

dg =
∂f

∂s
ds+

∂f

∂z
dz(s),

ce qui donne également

g′(s) =
∂f

∂s
+
∂f

∂z
z′(s)

Cette dernière remarque va nous permettre d’écrire l’équation différentielle non linéaire présentée
dans la définition suivante sous forme différentielle.
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1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

Considérons l’équation différentielle suivante

a(t, x) + b(t, x)x′ = 0, (1.15)

que l’on peut écrire plus généralement sous la forme

a(t, x)dt+ b(t, x)dx = 0. (1.16)

Supposons a et b continues sur un ouvert U de R2. On dit que l’équation (1.16) est une
équation aux différentielles totales si et seulement si la fonction

f : (t, x)→ f(t, x) = a(t, x)dt+ b(t, x)dx,

est la différentielle d’une certaine fonction

w :

{
U → R
(t, x) 7→ w(t, x)

Autrement dit, il existe w telle que f = dw.

Définition 18 (EQ. AUX DIFFERENTIELLES TOTALES)

Remarque
Si l’équation (1.16) est une équation aux différentielles totales, alors il existe w telle que dw = f
et alors l’équation (1.16) s’écrit dw(t, x) = 0, c’est dire w(t, x) = c, c constante.
Autrement dit, {(t, x) ∈ U,w(t, x) = c } est l’ensemble de toutes les courbes intégrales de l’équa-
tion (1.15).

Remarque
Parmi les courbes intégrales w(t, x) = c, on cherche les solutions x de l’équation (1.15) en résol-
vant w(t, x) = c par rapport à x pour toutes les valeurs possibles de c.

Grâce au théorème des fonctions implicites (voir cours Analyse III), nous avons le résultat suivant :

Pour tout (t0, x0) ∈ U dans lequel
∂w

∂x
n’est pas nulle, il passe au moins une solution de

l’équation (1.15) et la fonction x correspondante s’obtient en résolvant par rapport x au
voisinage de (t0, x0), l’équation w(t, x) = w(t0, x0).

Proposition 7 (EXISTENCE)

Il existe un moyen classique de reconnaître une différentielle totale. Ce moyen est donné dans le
théorème suivant.
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Equations différentielles : introduction 1.5 Eq. Diff. Totales - Facteurs Intégrants

Soient (t, x) 7→ a(t, x) et (t, x) 7→ b(t, x) deux fonctions continues sur un pavé U =

I × J . Supposons que
∂a

∂x
et
∂b

∂t
existent et sont continues sur U alors f : (t, x) →

(t, x) = a(t, x)dt + b(t, x)dx est une différentielle totale si et seulement si pour tout
(t, x) ∈ U

∂a

∂x
(t, x) =

∂b

∂t
(t, x). (1.17)

Théorème 4 (CNS DIFFERENTIELLE TOTALE)

1.5.2 Equation des facteurs intégrants

Considérons l’équation

a(t, x)dt+ b(t, x)dx = 0 (1.18)

Supposons que a et b sont continues sur un pavé ouvert U = I × J .

On appelle facteur intégrant de l’équation (1.18) une fonction µ : (t, x) 7→ µ(t, x) défi-
nie, continue et sans zéro sur U (c’est à dire que µ(t, x) 6= 0 pour tout (t, x) ∈ U ) telle
que

∂

∂x
(µa) =

∂

∂x
(µb), (1.19)

sur U .

Définition 19 (FACTEURS INTEGRANTS)

Remarque
Si f(t, x) = a(t, x)dt + b(t, x)dx = 0 est une équation aux différentielle totale alors pour tout
µ ≡ k (constante 6= 0), µ est un facteur intégrant de l’équation (1.18).
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1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

Supposons en plus des propriétés spécifiques ci-dessus que les fonctions a, b et µ pos-
sèdent des dérivées partielles du premier ordre continues sur I × J . Dans ce cas µ est un
facteur intégrant de (1.18) si et seulement si

a
∂µ

∂x
+ µ

∂a

∂x
− b∂µ

∂t
− µ∂b

∂t
= 0 sur U

ou bien
a
∂µ

∂x
− b∂µ

∂t
+ (

∂a

∂x
− ∂b

∂t
)µ = 0 sur U.

avec µ(t, x) 6= 0 pour tout (t, x) ∈ U .
C’est l’équation des facteurs intégrants.

Proposition 8 (EQ. FACTEURS INTEGRANTS)
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Chapitre 2

Théorie générale : existence et unicité

L’objectif de ce chapitre est d’étudier l’existence et l’unicité locale et globale des problèmes de
Cauchy (c’est à dire une équation différentielle ordinaire pour laquelle on a donné une condition
initiale) sans connaître explicitement les solutions.
Comme nous l’avons vu dans le chapitre précédent, nous n’aurons pas besoin de traiter les équa-
tions différentielles d’ordre n étant donné que l’on est capable de se ramener à l’ordre 1. Par
conséquent, nous ne donnerons les résultats que pour les EDO d’ordre 1 ici, sous forme normale,
autrement dit, du type

x′ = f(t, x),

où x est la fonction inconnue de la variable réelle t à valeurs dans un espace Rm, et f sera une
fonction donnée sur I × J , ouvert,non vide de R × Rm. Dans certains résultats, on verra même
que l’on peut prendre f définie de façon générale sur un ouvert non vide U ⊂ Rm+1. Nous verrons
qu’il faut faire des hypothèses de régularité sur la fonction f afin d’obtenir des résultats d’existence
et d’unicité des solutions.
Il est possible, mais nous ne l’aborderons pas ici, d’obtenir l’existence de solutions en supposant f
continue (attention on reste en dimension finie ici) en faisant appel au théorème d’Ascoli qui n’est
pas au programme. C’est ce qu’on appelle le théorème de Peano.
Il est même possible de montrer l’existence de solutions généralisées, c’est à dire de fonctions

a priori seulement continues satisfaisant x(t) = x(t0) +

∫ t

t0

f(s, x(s)ds, pour des fonctions f

discontinues. Le premier résultat est attribué à Carathéodory, on a d’ailleurs gardé son nom pour
nommé ces solutions. Ces résultats ont été améliorés par A.F Filipov, et V.V Vilipov.
Tous ces résultats ne seront pas au programme de ce cours, mais peuvent faire l’objet d’étude ap-
profondie pour les lecteurs désireux d’en savoir plus.
L’unicité des solutions quant à elle, pour une donnée initiale fixée nécessite une hypothèse plus
forte que la continuité de f . Des hypothèses plus faibles que celles énoncées dans ce cours sont
exposés dans les travaux de Osgood et Nagumo. Mais nous ne les aborderons pas ici. Nous nous
contenterons de considérer f lipschitzienne par rapport à sa seconde variable. Ce qui sera déà plei-
nement satisfaisant pour nous.
Lors de la preuve de certaines propositions ou théorèmes, nous aurons besoin de résultats prélimi-
naires importants et “classiques” et plus particulièrement du lemme de Gronwall et du théorème
de point fixe de Banach-Picard que nous rappelons dans les sections suivantes.
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2.1 Lemme de Gronwall Théorie générale : existence et unicité

2.1 Lemme de Gronwall

2.1.1 Inéquations différentielle

Supposons qu’une fonction x de classe C 1(I,R), où I est un intervalle de R, vérifie

x′(t) ≤ a(t)x(t) + b(t), (2.1)

où a et b sont des fonctions continues de I dans R, et x(t0) = x0 pour un t0 ∈ I . Alors,
on a l’inégalité

x(t) ≤ x(t0) exp(

(∫ t

t0

a(s)ds

)
+

∫ t

t0

exp(

(∫ t

s

a(σ)dσ

)
b(s)ds (2.2)

Lemme 1 (GRONWALL-INEQUATION DIFFERENTIELLE)

Preuve :
Faite en cours.

2.1.2 Inéquations intégrales

Supposons qu’une fonction x continue de I = [0, T ] sur R+, T ∈ R (attention on ne
s’intéresse qu’aux fonctions à valeurs dans R+), vérifie

x(t) ≤ b(t) +

∫ t

0

a(s)x(s)ds, (2.3)

pour tout t ∈ I , où a est une fonction continue de I dans R+ et b une fonction continue
de I dans R. Alors, on a l’inégalité

x(t) ≤ b(t) +

∫ t

0

exp(

(∫ t

s

a(σ)dσ

)
b(s)a(s)ds, (2.4)

pour tout t ∈ [0, T ].

Lemme 2 (GRONWALL-INEQUATION INTEGRALE)

Preuve :
Faite en cours.

Remarque
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Théorie générale : existence et unicité 2.2 Théorème de Point Fixe de Banach-Picard

1. Si b est une constante dans la formulation intégrale, l’inégalité de Gronwall peut se simpli-
fier et on l’écrit :

x(t) ≤ b exp

(∫ t

0

a(s)ds

)
. (2.5)

2. On peut également écrire une formule analogue avec un point t0 quelconque au lieu de 0.
Mais il faut alors penser à mettre des valeurs absolues si les bornes intégrales ne sont pas
dans l’ordre croissant.
On aurait ainsi, avec b ≥ 0 constante par exemple, si x continue sur I vérifie

x(t) ≤ b+

∣∣∣∣∫ t

t0

a(s)x(s)ds

∣∣∣∣ , (2.6)

pour tout t ∈ I , et t0 ∈ I donné, alors

x(t) ≤ b exp

(∣∣∣∣∫ t

t0

a(s)ds

∣∣∣∣) . (2.7)

3. Si b est dérivable , on peut donner une autre version de l’inégalité de Gronwall en intégrant par
parties, et on obtient (avec les hypothèses du lemme sous formulation intégrale),

x(t) ≤ b(0) exp

(∫ t

0

a(s)ds

)
+

∫ t

0

b′(s) exp

(∫ t

s

a(σ)d(σ)

)
ds, (2.8)

pour tout t ∈ [0, T ].

2.2 Théorème de Point Fixe de Banach-Picard
Nous rappelons ici le théorème de point fixe de Banach-Picard seulement en sur R en sachant

que le résultat est vrai pour un ensemble fermé non vide d’un espace de Banach E.

Soit I un intervalle fermé non vide R et f : I → I est contractante, c’est à dire qu’il
existe k ∈]0, 1[, tel que

|f(t1)− f(t2)| ≤ k|t1 − t2|, (2.9)

pour tous t1 et t2 dans I . Alors il existe un unique t ∈ I tel que f(t) = t.

Théorème 1 (BANACH-PICARD)

Preuve :
Pas faite en cours.
Nous pouvons désormais énoncer des résultats d’existence et d’unicité locale et globale. Nous al-
lons le faire dans le cadre d’une dimension supérieure ou égale à 1 pour deux raisons principales :
- nous éviterons d’être redondants quand nous aborderons la section des systèmes d’équations dif-
férentielles,
- d’autre part, comme dans le chapitre précédent, nous resterons dans l’étude des équations d’ordre
1 étant donné que l’on peut toujours se ramener à cet ordre quitte à augmenter le nombre d’équa-
tions et donc la dimension de l’espace du problème.
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2.3 Théorème de Cauchy-Lipschitz Théorie générale : existence et unicité

2.3 Théorème de Cauchy-Lipschitz

2.3.1 Problème de Cauchy

Soit U un ouvert de R× Rm et f : U → Rm une fonction. On note ‖.‖ une norme quelconque sur
Rm (on a vu en analyse III que toutes les normes sont équivalentes sur Rm.

Etant donnée une équation différentielle du premier ordre sous forme normale

x′ = f(t, x), (2.10)

pour (t, x(t)) ∈ U , et un point (t0, x0) ∈ U , le problème de Cauchy correspondant est la
recherche des solutions x telles que

x(t0) = x0. (2.11)

Définition 1 (PROBLEME DE CAUCHY)

Notation :
On note le problème de Cauchy de la façon suivante

{
x′ = f(t, x),
x(t0) = x0.

. (2.12)

Une solution du problème de Cauchy (2.12) sur un intervalle ouvert I de R avec la
condition initiale (t0, x0) ∈ U et t0 ∈ I est une fonction dérivable x : I → Rm telle que

i. pour tout t ∈ I , (t, x(t)) ∈ U ,
ii. pour tout t ∈ I , x′(t) = f(t, x(t)),
iii. x(t0) = x0.

Définition 2 (SOLUTION DU PROBLEME DE CAUCHY)
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Théorie générale : existence et unicité 2.4 Existence et unicité locale

Supposons f : U → Rm continue. Soit (t0, x0) ∈ U et x une fonction définie sur un
intervalle ouvert I contenant t0 et à valeurs dans Rm.
Une fonction x est solution de (2.12) sur I si et seulement si

i. pour tout t ∈ I , (t, x(t)) ∈ U ,
ii. x est continue sur I ,

iii. pour tout t ∈ I , x(t) = x0 +

∫ t

t0

f(s, x(s))ds.

Théorème 2 (SOLUTIONS DE (2.12))

Preuve :
Faite en cours.

2.4 Existence et unicité locale
Enonçons tout d’abord un résultat local d’existence et d’unicité .

Soient f ∈ C (U ;RN) où U est un ouvert de R × Rm, et (t0, x0) ∈ U . On suppose f
lipschitzienne par rapport à sa variable x sur un voisinage de (t0, x0), c’est à dire qu’il
existe un voisinage de (t0, x0) dans U et L > 0 tel que pour tous (t, x) et (t, y) dans ce
voisinage

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖. (2.13)

Alors on a les propriétés suivantes.
Existence : Il existe T > 0 et x ∈ C 1([t0 − T, t0 + T ]; J) solution du problème de

Cauchy {
x′ = f(t, x),
x(t0) = x0.

.

Unicité : Si y est une autre solution du problème de Cauchy ci-dessus, elle coïncide
avec x sur un intervalle d’intérieur non vide inclus dans [t0 − T, t0 + T ].

Régularité Si de plus f est de classe C r, r ≥ 1, alors x est de classe C r+1.

Théorème 3 (CAUCHY LIPSCHITZ)

Preuve :
Faite en cours.

Remarque
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2.5 Unicité globale Théorie générale : existence et unicité

1. Dès que f est de classe C 1 elle est localement lipschitzienne (ce résultat découle du théo-
rème des accroissements finis). C’est un résultat connu découlant du théorème des accrois-
sements finis.

2. A partir de maintenant, on considère un cas, légèrement plus particulier (pour simplifier les
énoncés des propriétés), où f est définie sur I × J , avec I un intervalle ouvert non vide de
R et J un intervalle ouvert non vide de Rm et non plus sur un domaine ouvert quelconque
U inclus dans R× Rm.

2.5 Unicité globale
Le résultat précédent donne seulement un résultat d’unicité local. On peut en déduire un résultat

d’unicité globale grâce à l’énoncé suivant.

Soient f ∈ C (I × J ;Rm) où I est un intervalle ouvert de R et J est un ouvert d’un
espace Rm, et (t0, x0) ∈ I × J . On dit que fonction f est localement lipschitzienne par
rapport à sa variable x si pour tout (t1, x1) ∈ I × J , il existe un voisinage de ce point
dans I × J et L > 0 tel que pour tous (t, x) et (t, y) dans ce voisinage ,

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖. (2.14)

Définition 3 (LOCALEMENT LIPSCHITZIEN)

Soient f ∈ C (I×J ;Rn) où I est un intervalle ouvert de R et J est un ouvert d’un espace
Rn, et (t0, x0) ∈ I × J . On suppose f localement lipschitzienne par rapport à sa variable
x. Si x1 ∈ C 1(I1; J) et x2 ∈ C 1(I2; J) sont deux solutions sur des intervalles I1 et I2
respectivement, et s’il existe t0 ∈ I1∩I2 tel que x1(t0) = x2(t0) alors x1(t) = x2(t) pour
tout t ∈ I1 ∩ I2.

Lemme 3 (UNICITE GLOBALE)

Remarque
Une conséquence de ce lemme est qu’il existe un plus grand intervalle Ĩ sur lequel le problème
de Cauchy (2.12) admet une solution. Cette unique solution sur l’intervalle Ĩ est une solution
maximale (dans le sens de sa définition dans le chapitre précédent), autrement dit on ne peut pas
la prolonger sur I \ Ĩ .
Par suite Ĩ est nécessairement ouvert, sinon en appliquant le théorème de Cauchy-Lipschitz à son
extrémité, on prolongerait la solution.
On remarque enfin que lorsque Ĩ = I cette solution sera globale.

Le lemme suivant permet de prouver le “théorème des bouts” que nous énonçons juste après.
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Théorie générale : existence et unicité 2.6 Existence Globale

Supposons que f soit continue, bornée et lipschitzienne par rapport à x dans [t− 2T , t+
2T ]×B(x, 2R) pour tout T > 0 et R > 0.
Alors il existe T ∈]0, T ] tel que pour tout (t0, x0) ∈ [t− T , t+ T ]×B(x,R), la solution
maximale du problème de Cauchy (2.12) soit définie sur un intervalle contenant [t0 −
T, t0 + T ].

Lemme 4

Sous les hypothèses du théorème de Cauchy Lipschitz (3), soit x ∈ C 1(Ĩ; J) une solution
maximale de

x′ = f(t, x).

On note b la borne supérieure supérieure de I et β ≤ b la borne supérieure de Ĩ . Alors
ou bien β = b ou bien x sort de tout compact de J , c’est à dire que pour tout compact
K ⊂ J , il existe η < β tel que

x(t) ∈ J \K, pour t ≥ η avec t ∈ Ĩ .

De même si inf Ĩ > inf I alors x sort de tout compact lorsque t tend vers inf Ĩ par la
droite.

Théorème 4 (DES BOUTS)

2.6 Existence Globale
Lorsque J = Rm et f est globalement lipschitzienne, c’est à dire qu’il existe L > 0 tel que pour
tous (t, x) et (t, y) dans I × J ,

‖f(t, x)− f(t, y)‖ ≤ ‖x− y‖, (2.15)

il n’y a pas de risque de sortir de son domaine de définition ni du domaine de validité de sa
constante de Lipschitz.
En reprenant la preuve du théorème de Cauchy-Lipschitz (3) on peut donc construire, quels que
soient a et b tels que t0 ∈ [a, b] ⊂ I , une suite de solutions approchées (xn) qui soit de Cauchy
dans C ([a, b];Rm). On en déduit alors le résultat global suivant.

On suppose f ∈ C (I × Rm;Rm) et globalement lipschitzienne par rapport à x.
Alors, quel que soit (t0, x0) ∈ I × Rm, il existe un unique x ∈ C 1(I;Rm) solution de
(2.12).

Théorème 5 (EXISTENCE ET UNICITE GLOBALE)
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Si b ∈ C (I;Rm) et A est continue, définie sur I alors toutes les solutions maximales de

x′(t) = A(t)x+ b(t),

sont globales.

Théorème 6 (EXIST. ET UNICITE GLOBALE (AFFINE))

Les résultats précédents restent également valable lorsque x est à valeurs dans un ouvert d’un
espace de Banach de dimension finie ou infinie.
Par contre le résultat suivant n’est valable que lorsque x est à valeurs dans une espace de dimension
finie (tout le programme de ce cours de toute façon est défini sur les espaces de dimension finie
Rm ).

Si f est uniformément bornée sur I×Rm, toutes les solutions maximales de x′ = f(t, x)
sont globales.

Théorème 7 (EXIST. ET UNICITE GLOBALE (DIM. FINIE))
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Théorie générale : existence et unicité 2.6 Existence Globale

(a) Thomas Hakon
Grönwall ou (Gron-
wall) (1877-1932),
mathématicien sué-
dois, c’est lui qui
démontra en 1919 le
lemme (sous sa forme
différentielle) qui porte
désormais son nom.
La démonstration de
la forme intégrale de
ce lemme sera montrée
par Richard Bellman
en 1943.

(b) Augustin
Louis, baron Cau-
chy, (1789-1857),
mathématicien
français, dans son
cours de Polytech-
nique, “Leçon de
calcul différentiel
et intégral”, il
étudie les résolu-
tions des équations
différentielles
linéaire d’ordre
un et s’intéresse
aux équations au
dérivées partielles.

(c) Rudolph Otto
Sigismund Lipschitz
(1832-1903), mathé-
maticien allemand,
son travail sur les
équations différen-
tielles vient préciser
les résultats obtenus
par Cauchy.

FIGURE 2.1 – Quelques mathématiciens célèbres liés à l’existence et l’unicité des EDO.
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Chapitre 3

Systèmes différentiels linéaires

Dans ce chapitre nous allons nous intéresser aux systèmes d’équations différentielles, que l’on
peut obtenir directement par la modélisation d’un problème à plusieurs fonctions inconnues, mais
également lorsque l’on passe d’une EDO d’ordre n à un système de plusieurs EDO d’ordre 1 (voir
la section (1.3)). Nous ne le faisons ici que pour le cas particulier des systèmes linéaires.

3.1 Théorie préliminaire
Soient un intervalle I un intervalle de R, n ∈ N∗, ai,j : I → R, i, j = 1, ..., n et fi : I → R des
fonctions continues.
L’objectif est de trouver des fonctions x1, ..., xn : I → R, n fonctions de classe C 1 sur I telles que

x′1 = a11(t)x1 + ...+ a1n(t)xn + f1(t),
...

x′n = an1(t)x1 + ...+ ann(t)xn + fn(t).

(3.1)

On peut écrire ce système sous la forme matricielle

X ′(t) = A(t)X(t) + F (t), (3.2)

où

X(t) =

 x1(t)
...

xn(t)

 , A(t) =

 a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 et F (t) =

 f1(t)
...

fn(t)

 .

En général il peut y avoir une infinité de solutions de cette équation.
Soient t0 ∈ I et X0 ∈ Rn données, avec

X0 =

 x01(t)
...

x0n(t)

 . (3.3)
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3.2 Systèmes homogènes Systèmes différentiels linéaires

Le but est de trouver X solution de l’équation (3.1) satisfaisant la condition initiale (3.3). Autre-
ment dit, existe-t-il X fonction dérivable définie sur I à valeurs dans Rn tel que{

X ′(t) = A(t)X(t) + F (t),
X(t0) = X0,

(3.4)

pour tout t ∈ I ? Le théorème suivant est une adaptation du théorème (6) du chapitre précédent.
Autrement dit, les solutions du problèmes de Cauchy (3.4) sont globales.

Si A : I →M (R) et F : I → Rn sont continues, autrement dit t → aij(t) est continue
pour tous i, j = 1, ..., n et t → fi(t) est continue pour tout i = 1, ..., n, alors pour tout
t0 ∈ I et pour tout X0 ∈ Rn, il existe une solution unique au problème de Cauchy (3.4).

Théorème 1 (EXISTENCE ET UNICITE GLOBALE)

Preuve :
Faite en cours.

3.2 Systèmes homogènes
Le système (3.1) est dit homogène si F ≡ 0, c’est à dire

X ′(t) = A(t)X(t), (3.5)

et nous avons l’existence et l’unicité des solutions de ce système dans le théorème suivant.

L’ensemble H des solutions d’un système homogène est un espace vectoriel de dimen-
sion n.

Théorème 2 (SOLUTIONS ESP.VECTORIEL)

Preuve :
Faite en cours.

Remarque
Il suffit alors d’avoir n solutions indépendantes de (3.5) qui formeront une base de H .

Rappel 3.1 Soient n fonctions X1, X2, ..., Xn : I → Rn, elles sont dites indépendantes si pour
tous c1, ..., cn ∈ R on a

n∑
i=1

ciX
i(t) = 0, pour tout t ∈ I ⇒ c1 = c2 = ... = cn = 0.
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Systèmes différentiels linéaires 3.2 Systèmes homogènes

Soient X1, .., Xn : I → Rn des solutions de (3.5), alors les trois propositions sont
équivalentes :

1. Les X1, .., Xn sont indépendantes,
2. il existe t0 ∈ I tel que la matrice définie par(

X1(t0)|...|Xn(t0)
)
, (3.6)

est inversible,
3. la matrice (

X1(t)|...|Xn(t)
)
, (3.7)

est inversible pour tout t ∈ I .

Lemme 1 (WRONSKIEN)

Notation :
Le déterminant de la matrice (3.7) est appelé Wronskien

Soient X1, .., Xn : I → R des solutions de (3.5). Si les n fonctions sont indépendantes,
on dit qu’ils forment un ensemble fondamental de solution de (3.5). On notera alors

M(t) =
(
X1(t)|...|Xn(t)

)
, (3.8)

la matrice n× n qu’on appellera matrice fondamentale du système (3.5).

Définition 1 (MATRICE FONDAMENTALE)

Remarque

1. On sait d’après le lemme précédent que M(t) est inversible pour tout t ∈ I .
2. On sait également d’après le théorème (1) que les X1(t), ..., Xn(t) forment une base dans
H qui est l’espace vectoriel des solutions de (3.5).

3. On observe aussi que

M ′(t) = A(t)M(t), (3.9)

pour tout t ∈ I .
Donc une matrice M(t) est fondamentale si et seulement si M ′ = AM et M(t) est inver-
sible au moins pour un t ∈ I (car alors elle est inversible pour tout t ∈ I).

On a alors le théorème suivant
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3.3 Systèmes non homogènes Systèmes différentiels linéaires

Soient X1, .., Xn un ensemble fondamental de solutions de (3.5). Alors toute solution X
de (3.5) est de la forme

X(t) =
n∑
i=1

ciX
i(t), (3.10)

avec c1, ..., cn ∈ R.

Théorème 3 (SOLUTIONS SYST. HOMOGENE )

Remarque
Si on parvient à trouver n solutions indépendantes de (3.5) alors on connait toutes les solutions de
(3.5). Mais attention, ça ne marche que parce que (3.5) est linéaire et homogène !

3.3 Systèmes non homogènes
Revenons au système non homogène (3.2) avec F non identiquement nulle.

Soient X1, .., Xn un ensemble fondamental de solutions du problème homogène (3.5) et
Xp une solution particulière de (3.2). Alors toute solution X de (3.2) est de la forme

X(t) = Xp +
n∑
i=1

ciX
i(t), (3.11)

avec c1, ..., cn ∈ R.

Théorème 4 (SOLUTIONS SYST.NON HOMOGENE)

Remarque
Comment trouver une solution particulière Xp alors? Comme pour les chapitre 1 par la méthode
de variation de la constante.
On va chercher un Xp sous la forme

Xp(t) =
n∑
i=1

X i(t)γi(t),

où γi : I → R est à trouver.
On obtient

X ′p = Mγ′A+Xp,

d’une part, et d’autre part on aimerait que Xp satisfasse le système non-homogène

X ′p = MAXp + F,
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Systèmes différentiels linéaires 3.4 Systèmes linéaires à coefficients constants

En identifiant, cela revient à chercher γ solution de

Mγ′ = F,

et comme M est inversible, on doit donc trouver γ telle que

γ′ = M−1F

Par conséquent, un choix possible pour Xp sera

Xp = Mγ = M

∫ t

t0

M−1(s)F (s)ds, (3.12)

pour un t0 ∈ I fixé.
On déduit alors du théorème (4) que les solutions du problème non-homogène sont de la forme

X = Xp +XF = M(t)

∫ t

t0

M−1(s)F (s)ds+M(t)C, (3.13)

avec C ∈ Rn.
Si en plus, on fixe t0 ∈ I et X0 ∈ Rn et on cherche la solution du problème de Cauchy, le vecteur
C ∈ Rn est donné par

C = M−1(t0)X
0.

Alors l’unique solution du problème est donnée par‘

X(t) = M(t)M−1(t0)X
0 +M(t)

∫ t

t0

M−1(s)F (s)ds. (3.14)

Remarque
Toute la difficulté consistera donc à trouver une matrice fondamentale M(t).
Une telle matrice n’est pas unique. En effet, si M(t) est une matrice fondamentale, alors pour
toute matrice E ∈Mn(R) constante, M(t).E est encore une matrice fondamentale.

3.4 Systèmes linéaires à coefficients constants
Nous allons dans cette section considérer un cas particulier de la section précédente. Nous allons
étudier le problème (3.2) avec A constante.

3.4.1 Exponentielle de A
Le but est de se concentrer sur la recherche d’une matrice fondamentale M(t) ∈Mn(R) de (3.5),
autrement dit, telle que M(t) soit inversible au moins pour un t ∈ I et telle que M ′(t) = AM(t)
pour tout t ∈ I .
Nous allons nous servir dans la suite de la notion d’exponentielle de matrice que nous exposons
ici.
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3.4 Systèmes linéaires à coefficients constants Systèmes différentiels linéaires

Rappelons que si n = 1, alors M1(R) peut s’identifier à R et A ∈ R. Donc on cherche M : I → R
telle que M ′ = AM . Et une matrice inversible sous la forme M(t) = eAt est une solution de cette
équation.
Question : peut-on étendre ce résultat lorsque n ≥ 2?
On rappelle également qu’une définition de l’exponentielle et où t ∈ R est

et =
∑
n≥0

tn

n!
. (3.15)

Nous allons voir que cela marche également pour les exponentielles de matrice.

Pour toute matrice carrée A ∈Mn(R) on définit la matrice carée eA ∈Mn(R) par

eA = I + A+
A2

2!
+
A3

3!
+ ... =

∑
n≥0

An

n!
. (3.16)

Définition 2 (EXPONENTIELLE DE MATRICE)

Remarque
Cette série est absolument convergente en Mn(R) muni de la norme subordonnée

|‖A‖| = sup
X∈Rn,X 6=0

‖AX‖
‖X‖

, (3.17)

où ‖.‖ est une norme vectorielle quelconque sur Rn.

La matrice M(t) = etA =
∑
n≥0

tn

n!
An est une solution fondamentale de (3.5). Elle est

donc inversible et satisfait M ′(t) = A(t)M(t).

Théorème 5 (SOLUTION FONDAMENTALE)

Rappel 3.2
Rappelons la formule suivante : si E et F sont des éléments de Mn(R), et si E et F commutent
(c’est à dire E.F = F.E) alors

eE+F = eE.eF = eF .eE. (3.18)

On en déduit alors les deux résultats suivants :
1. e(λ1+λ2)A = eλ1A.eλ2A pour tous λ1, λ2 ∈ R et pour tout A ∈Mn(R),
2. (eA)−1 = e−A pour tout A ∈Mn(R).

On peut alors donner le résultat suivant.
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Si A est constante alors la solution de (3.2) est donnée par

X(t) = eA(t−t0)X0 +

∫ t

t0

eA(t−s)F (s)ds. (3.19)

Théorème 6 (SOLUTION SYST. NON HOMOGENE)

La question qui se pose alors est la suivante : comment trouver eAt sans nécessairement passer par
un calcul éventuellement fastidieux d’une série.
L’idée est la suivante :
nous allons chercher X(t) ∈ Rn une solution de l’équation (3.5)

X ′ = AX,

sous la forme
X(t) = eλtV,

avec λ ∈ R et V ∈ Rn − {0}. Lorsqu’on remplace cette valeur dans (3.5) on obtient

AV = λV.

Donc, X(t) = eλtV sera solution si λ ∈ R est une valeur propre de A, de vecteur propre corres-
pondant V ∈ Rn − {0}. Il est à noter que le résultat marche également sur C.

3.4.2 Dimension 2

Avant de généraliser à la dimension n quelconque, nous allons commencer par les solutions des
systèmes de deux équations et les portraits de phase associés, c’est à dire l’allure des courbes
décrites par ces solutions dans le plan R2. Trois cas peuvent se distinguer.

a. Deux valeurs propres réelles distinctes

Soient λ et µ deux valeurs propres réelles de A, avec A diagonalisable.
Si P est une matrice de passage composée d’une base de vecteurs propres, on a

P−1etAP =

(
eλ1t 0
0 eλ2t

)
, (3.20)

et les solutions de l’EDO homogène sont de la forme

X(t) = c1e
λ1tP1 + c2e

λ2tP2, (3.21)

où c1 et c2 sont des constantes de R trouvées à partir des conditions initiales.
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b. Une valeur propre double

Deux sous-cas sont alors possibles.
i. Si A est diagonalisable, on a P une matrice de passage composée d’une base de vecteurs

propres, et

P−1etAP =

(
eλ0t 0
0 eλ0t

)
, (3.22)

et les solutions de l’EDO homogène sont de la forme

X(t) = c1e
λ0tP1 + c2e

λ0tP2, (3.23)

où c1 et c2 sont des constantes de R trouvées à partir des conditions initiales.
ii. La matrice A admet une valeur propre réelle double λ0, mais un seul vecteur propre lui est

associé. Si P est une matrice de passage à une base de Jordan, alors

P−1etAP =

(
eλ0t teλ0t

0 eλ0t

)
. (3.24)

Si on note P1 un vecteur associé à la valeur propre λ0 alors on peut trouver un ensemble
fondamental X1, X2 tels que

X1 = eλ0tP1, X2 = eλ0t (tP1 +K) , (3.25)

où K est un vecteur de Rn à identifier.
les solutions de l’EDO homogène, sont alors données par X = c1X1(t) + c2X2(t), où c1 et
c2 sont des constantes de R trouvées à partir des conditions initiales.

c. Deux valeurs propres conjuguées

Les valeurs propres λ1 et λ2 de A sont complexes conjuguées, i.e. λ2 = λ1, où λ1 = α+ βi. Alors
A est semblable à (

α β
−β α

)
, (3.26)

avec α = Re(λ) et β = Im(λ) et

P−1etAP = eαt
(

cos(βt) t sin(βt)
− sin(βt) cos(βt)

)
. (3.27)

Si on note P1 et P1 deux vecteurs propres associées aux valeurs propres, on peut alors écrire un
ensemble fondamental de deux façons.

i. X1(t) = eλ1t, et son conjugué. Les solutions de l’EDO homogène sont de la forme X =
c1X1 + c2X1.

ii. Si on note B1 = Re(P1) et B2 = Im(P1) on a

X1 = (B1 cos(βt)−B2 sin(βt)) eαt, X2 = (B2 cos(βt)−B1 sin(βt)) eαt. (3.28)

Et les solutions sont données par une combinaison linéaire de X1 et X2.
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3.4.3 Dimension n : cas où A est diagonalisable
On pose K = R ou C.

A ∈Mn(R) est diagonalisable dans K s’il existe λ1, ..., λn ∈ K et il existe P ∈Mn(K)
inversible telle que

A = PDP−1,

avec D = diag(λ1, ..., λn) ∈Mn(K).

Définition 3 (MATRICE DIAGONALISABLE)

On obtient alors le résultat suivant.

Si A est diagonalisable, alors, en utilisant les notations qui précèdent, on a

eAt = PeDtP
−1 (3.29)

avec
eDt = diag

(
eλ1t, ..., eλnt

)
(3.30)

et comme les Pi sont linéairement indépendants on a une base fondamentale

M(t) =
(
elambda1tP1|...|eλntPn

)
. (3.31)

Proposition 1 (EXPONENTIELLE ET VAL. PROPRES)

Remarque :
On remarque que si A est diagonalisable, M(t) qui est la matrice fondamentale peut s’écrire

M(t) = PeDt,

mais comme eAtP = PeDt, alors
eAt = M(t).P−1

Remarque :
On peut avoir des valeurs propres multiples même si A est diagonalisable. En fait, A est diago-
nalisable sur R si toutes les valeurs propres sont réelles et s’il existe une base réelle de vecteurs
propres. C’est le cas par exemple quand la matrice A est symétrique, ou si les valeurs propres de
A sont distinctes, chacune de multiplicité 1.

3.4.4 Dimension n : cas A non diagonalisable
Rappel 3.3 MULTIPLICITE DE VALEURS PROPRES
On rappelle que λ ∈ C est vecteur propre de A si et seulement si λ est racine complexe du
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3.4 Systèmes linéaires à coefficients constants Systèmes différentiels linéaires

polynôme caractéristique de A,
PA(λ) = det(λI − A).

En général PA(λ) s’écrit sous la forme

PA(λ) = (λ− λ1)d1(λ− λ2)d2 ...(λ− λk)dk , (3.32)

avec λ1, ..., λk ∈ C les valeurs propres de A, d1, ..., dk ∈ N∗, k ∈ N∗, et d1 + ... + dk = n. Alors
la multiplicité de λj est dj , j = 1, ..., k. On appelle dj s’appelle multiplicité algébrique.
On voit de façon assez claire, que si k = n et d1 = ... = dn = 1 et λ1, ..., λn ∈ R alors A est
diagonalisable sur R. Il n’est cependant pas nécessaire que les valeurs propres soient simples pour
avoir A diagonalisable.

Exemple
A = Idn, PIn(λ) = (λ− 1)n, une seule valeur propre de multiplicité 1 et pourtant In est diagona-
lisable sur R.

Remarque
Si µ = α + βi ∈ C avec α, β ∈ R, β 6= 0 est valeur propre de A de multiplicité m alors son
complexe conjugué l’est aussi (µ = α− βi) est valeur propre de A de multiplicité m.
En fait pour toute valeur propre λj ∈ C deA on notemj ∈ N∗ la dimension de vecteur propre deA
associée à λj . Le nombre mj est appelé multiplicité géométrique. On a 1 ≤ mj ≤ dj , j = 1, ..., k
alors la matrice est diagonalisable. S’il existe j tel que βj < αj alors la matrice A n’est pas
diagonalisable.

Question : comment procéder quand A n’est pas diagonalisable?
La méthode consiste à trigonaliser A de manière convenable. D’après le cours d’algèbre linéaire,
on sait qu’il existe P ∈Mn(C) inversible et S ∈Mn(C) triangulaire supérieure telle que

A = PSP−1, (3.33)

avec S qui s’écrit par blocs de la manière suivante

S =


S1 0 · · · 0
0 S2 · · · 0
...

...
0 0 · · · Sk

 (3.34)

avec les blocs Sj ∈Mdj(R) qui sont des matrices carrées de taille dj de la forme

Sj =


λj sj12 · · · sj1dj
0 λj · · · sj2dj
... . . . ...
0 0 · · · λj

 (3.35)

Sj est triangulaire supérieure avec les λj sur la diagonale.
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Si on peut écrireA sous la forme tridiagonale grâce à la formule (3.33) précédente avec P
inversible et T donnée par (3.34) et (3.35) alors eAt s’écrit par blocs de la façon suivante

eAt = P


eS1t 0 · · · 0

0 eS2t · · · 0
...

...
0 0 · · · eSkt

P−1 (3.36)

avec eSit ∈Mαj
(C) donnée par

eSit = eλjt
[
I + tMj +

1

2
t2M2

j + ...+
1

(αj − 1)
tαj−1M

αj−1
j

]
(3.37)

où Sj = λjI +Mj

Théorème 7 (EXPONENTIELLE-TRIDIAGONALE)

Un système fondamental de solutions de

X ′ = AX (3.38)

qui est de la forme

X1,1, ..., X1,α1 , X2,1, ..., X2,α2 , ..., Xk,1, ..., Xk,αk ,

avec
Xj,1 = eλjtQj,1, Xj,2 = eλjtQj,2,

...Xj,αj = eλjtQj,αj ,

et les Qj,l sont des vecteurs polynômes de degré inférieur à l − 1, l = 1, ..., αj

Théorème 8 (SYSTEME FONDAMENTAL)
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Chapitre 4

Equations autonomes-Etude qualitative

Dans ce chapitre, nous allons nous intéresser aux EDO linéaires ou non linéaires autonomes
données dans la définition (3) mais seulement à l’ordre 1 étant donné que nous pouvons nous ra-
mener à cet ordre, comme nous l’avons vu dans le chapitre 1. Autrement dit, nous nous intéressons
aux équations de la forme

x′ = f(x), (4.1)

où f est une fonction définie sur un ouvert J de Rm à valeurs dans Rm. Afin de satisfaire le
problème de Cauchy-Lipschitz (3), nous supposerons dans tout ce chapitre que f est localement
lipschitzienne.
Même si le problème a l’air simple pour les EDO autonomes, il y a très peu de cas où nous savons
trouver des solutions explicites. Il est donc intéressant de faire une analyse qualitative (par oppo-
sition à une étude quantitative) des solutions pour nous donner une idée du comportement de ces
dernières autour de solutions "spéciales" que l’on précisera plus bas.
Avant cela nous allons voir dans un premier temps, comment on construit graphiquement des so-
lutions sans en connaître leur formulation explicite. Puis nous ferons une étude qualitative des
solutions de l’équation autonome, en dimension 1 dans un premier temps, pour les cas linéaires,
puis non-linéaires. Nous le ferons également en dimension 2 (qui est peut être intéressant graphi-
quement) et nous généraliserons à la dimension n.

4.1 Dimension 1

4.1.1 Préambule : construction graphique des solutions
Avant de commencer à étudier qualitativement les solutions, rappelons comment il est possible
d’interpréter graphiquement les solutions d’EDO du premier ordre sous forme normale

x′ = f(t, x),

où t ∈ I et x est à valeurs dans R.
En chaque point (t0, x0) la valeur f(t0, x0) donne la pente des solutions qui passent par ce point.
Il est donc possible de trouver l’allure de la courbe représentative de la solution de l’EDO passant
par (t0, x0) grâce aux tangentes en chaque point de la courbe.
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Exemple
Trouver l’allure des courbes solutions de l’EDO x′ = t, passant par un point (t0, x0) que vous
choisirez.

On appelle isocline K de l’équation x′ = f(t, x), l’ensemble des points (t, x) ∈ R2 tels
que f(t, x) = K.

Définition 1 (ISOCLINES)

Exemple

1. Tracer quelques isoclines correspondant à l’équation x′ = t. En déduire l’allure des tra-
jectoires solutions de l’exemple précédent.

2. Tracer quelques isoclines correspondant à l’équation x′ = x2 − t. En déduire l’allure des
trajectoires représentant les solutions de cette équation.

3. Même question avec l’équation x′ = x(1− x).

Remarque
Le dernier exemple représente un cas où l’équation différentielle est autonome. On voit bien
qu’alors les isoclines présentent des particularités spécifiques, de même pour l’allure des tra-
jectoires. C’est ce que nous allons voir dans la section suivante.

4.1.2 Equations autonomes en dimension 1

Dans cette section nous ne nous intéresserons qu’aux équations autonomes dont les solutions sont
définies sur un intervalle I ⊂ R à valeurs dans R.
Nous avons dans la section (1.4.2) que les solutions des EDO autonomes sont monotones. Cette
propriété importante permettra de déduire plus facilement le comportement des solutions.

Si t 7→ x(t) est solution de l’EDO autonome

x′ = f(x), (4.2)

sur un intervalle I ⊂ R alors pour tout c ∈ R, la fonction t 7→ y(t) := x(t+ c) est aussi
solution.

Théorème 1 (INVARIANCE PAR TRANSLATION)

Remarque
Grâce à cette invariance par translation, on peut choisir de représenter le comportement des so-
lutions de l’EDO autonome sur un axe vertical.
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Cette représentation sur un axe verticale est appelée portrait de phase de x′ = f(x) sur
I ⊂ R.

Définition 2 (PORTRAIT DE PHASE)

Remarque
Attention, on ne le fait que lorsque f est lipschitzienne, sinon on pas existence et unicité des
solutions.

Exemple
Tracer le portrait de phase de l’équation suivante

x′ = x(1− x).

On remarque que le portrait de phase s’articule autour de points spéciaux : des poins pour lesquels
la fonction f s’annule. Or, dans l’EDO autonome x′ = f(x), si f s’annule pour une fonction x∗,
sur un intervalle I ⊂ R, cela signifie que x∗(t) = Constante pour tout t ∈ I . Autrement dit, la
fonction f n’a pas d’action sur x∗ dans le temps. On dit que la solution est stationnaire.

On appelle solution stationnaire (ou également point d’équilibre ou point critique), une
solution constante x∗ telle que f(x∗) = 0.

Définition 3 (SOLUTION STATIONNAIRE)

Tracer le portrait de phase consiste donc à :
a. Tracer l’axe des ordonnées
b. Reporter les points où f s’annule (points d’équilibre)
c. Entre deux points d’équilibre, f ne change pas de signe. Reporter alors ce signe sous forme

de flèches.

Remarque

a. Sous les hypothèses de Cauchy-Lipschitz si pour un t0 la solution x(t0) est située au-dessus
d’un point d’équilibre x∗, elle le sera pour tout t ∈ I où elle est définie.

b. Même chose avec au-dessous.
c. Comme les solutions sont monotones, on ne peut pas observer d’oscillations.

4.1.3 Stabilité des équilibres
Une fois les équilibres des solutions trouvés, il est intéressant de savoir s’ils sont stables ou non
dans le sens où, si on perturbe légèrement un équilibre, est-ce que la solution perturbée reviendra
vers l’équilibre (stable) ou est-ce qu’il s’en éloignera (instable) ?
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Soit x∗ un équilibre d’une EDO autonome.
1. S’il existe au-moins une perturbation de x∗ qui est amplifiée par le système on dit

que l’équilibre est instable
2. Si toutes les perturbations tendent vers 0 quand t tends vers l’infini, on dit que

l’équilibre est asymptotiquement stable
3. Si les perturbations ne sont ni amplifiées, ni amorties, l’équilibre est neutralement

stable.

Définition 4 (EQUILIBRES STABLES, INSTABLES)

Remarque
Ici, “légèrement perturbé” signifie que l’on ne s’intéresse qu’à des petites perturbations, on parle
alors de stabilité locale (par opposition à stabilité globale) que l’on verra plus tard.

1. Lorsqu’un équilibre est stable on dit que c’est un puits ou un point attractif
2. Lorsqu’un équilibre est instable on dit que c’est une source ou un point répulsif
3. Lorsqu’un équilibre est attractif pour une perturbation inférieure à cet équilibre

et répulsif pour une perturbation supérieure, on dit que c’est un shunt positif
4. Lorsqu’un équilibre est attractif pour une perturbation supérieure à cet équilibre

et répulsif pour une perturbation inférieure, on dit que c’est un shunt négatif.

Définition 5 (CLASSIFICATION DES EQUILIBRES)

On dit que deux EDO autonomes sont qualitativement équivalentes si et seulement si
elles ont le même nombre d’équilibres et que ceux-ci sont de même nature.

Définition 6 (QUALITATIVEMENT EQUIVALENT)

4.1.4 Etude analytique de la stabilité
1. Cas linéaire x′ = λx

Le seul équilibre de cette EDO est x∗ ≡ 0. On rappelle également que si une solution
s’annule pour un point t0 ∈ I ⊂ R alors cette solution est partout identiquement nulle.
Considérons un problème de Cauchy d’équation différentielle x′ = λx où λ ∈ R ayant
pour condition initiale x(0) 6= 0. Les solutions sont de la forme

x(t) = x(0)eλt.

Trois cas se présentent alors :

(a) Si λ > 0, lim
t→+∞

|x(t)| = +∞. L’équilibre x∗ ≡ 0 est appelé source : c’est un équilibre

instable,
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(b) Si λ < 0, lim
t→+∞

|x(t)| = 0. L’équilibre x∗ ≡ 0 est appelé puits : c’est un équilibre

asymptotiquement stable,

(c) Si λ = 0, x(t) ≡ x(0). Tous les points sont des équilibres neutralement stables.

2. Cas non-linéaire x′ = f(x)
Considérons l’équation différentielle non-linéaire x′ = f(x) où f est une application non
linéaire qui vérifie les hypothèses du théorème de Cauchy-Lipschitz. On suppose que cette
équation possède au-moins un équilibre noté x∗. Autrement dit, la solution constante x∗ vé-
rifie l’équation f(x∗) = 0. L’objectif de cette section est de nous ramener au cas précédent
en linéarisant autour de x∗.
Méthode :
-on pose x(t) = x∗+xp(t) pour tout t ∈ I où xp est une perturbation supposée petite (dans
le voisinage de 0),
-on injecte ce x(t) dans l’équation différentielle x′ = f(x) et on obtient :

x′ = f(x∗ + xp). (4.3)

Le problème provient de la non-linéarité de l’application f . Nous allons alors linéariser
f autour de x∗ ou pour être plus précis entre x∗ et xp. En supposant que f soit dérivable
dans un voisinage de x∗, et en faisant un développement de Taylor à l’ordre 1 on obtient
l’approximation suivante :

f(x∗ + xp)− f(x∗)

xp
' f ′(x∗). (4.4)

Rappelons que nous sommes dans un voisinage de x∗, c’est à dire que notre perturbation
xp est “suffisamment petite”.
-Nous obtenons alors, à partir de (4.3) et (4.4) l’équation linéaire, qui est en fait une ap-
proximation mais que par abus nous poserons comme une équation,

x′p = f ′(x∗)xp. (4.5)

On se ramène ainsi au cas linéaire de la section précédente. Les solutions de l’équation
(4.5) sont données par

xp(t) = cef
′(x∗)t, (4.6)

où c est une constante donnée par la condition initiale, et l’on conclut comme dans la sec-
tion précédente :

(a) Si f ′(x∗) > 0, nous avons lim
t→+∞

|xp(t)| = +∞, et alors x∗ sera instable.

(b) Si f ′(x∗) < 0, nous avons lim
t→+∞

|xp(t)| = 0, et alors x∗ sera localement asymptotique-

ment stable.

(c) Si f ′(x∗) = 0, l’équation linéarisée ne permet pas de conclure tout de suite.

Pour ce dernier cas, il faut
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