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Préambule

L’objet de ce cours est de proposer une introduction a 1’étude des équations différentielles
ordinaires (EDO) et de certaines équations aux dérivées partielles (EDP). Beaucoup de résultats
existent dans ce domaine : il est possible de trouver des solutions explicites a ces équations, mais
elles ne sont pas nombreuses. La résolution explicite de la plupart des EDO et EDP reste encore
un probléme ouvert.

Les mathématiciens se sont alors tournés vers une étude plus théorique qui permettait de trouver
des résultats sur les solutions (existence, unicité par exemple) sans les connaitre explicitement.
Ce cours sera un mélange des deux parce qu’il semble nécessaire de savoir non seulement prouver
que des solutions existent et que le cas échéant elles peuvent étre unique mais également étre ca-
pable de résoudre “a la main” certaines EDO et EDP classiques.

Certaines solutions porteront plus d’attention que d’autres, comme les solutions stationnaires (au-
trement dit indépendantes du temps, si le temps ¢ est la variable impliquée dans ’EDO). Nous
nous intéressons a 1’étude analytique de ces solutions, autrement dit la stabilité de ces solutions
par rapport a des perturbations dans les conditions initiales.

Les EDO et EDP ont des applications dans une tres grande variété de domaines physiques, chi-
miques et biologiques. Il serait trop long d’en faire un liste exhaustive ici, mais au cours des
exercices ou exemples certains d’entre eux seront évoqués.

Dans ce cours nous ne donnerons que des exemples d’EDO appliquées a la biologie et a 1’écolo-
gie. Tous les autres exemples peuvent se trouver dans la littérature foisonnante de ce domaine des
mathématiques.
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Chapitre 1

Equations différentielles : introduction

1.1 Définitions

Introduisons ici quelques définitions essentielles pour la suite de ce cours.

1.1.1 Différents types d’équations

Définition 1 (EQUATION DIFFERENTIELLE ORDINAIRE)

Une équation différentielle ordinaire, également notée EDO, d’ordre n est une relation
entre la variable réelle ¢, une fonction inconnue ¢ +— z(t) et ses dérivées 2, 2”,...,u(™ au
point ¢ définie par

F(t,z,z",...,z™) =0, (1.1)

ol F n’est pas indépendante de sa derniére variable (™. On prendra ¢ dans un intervalle
I de R (I peut étre R tout entier).

La solution z en général sera a valeurs dans R, N € N* ot NV sera le plus souvent égal
a 1, 2 ou 3. On dit que cette équation est scalaire si [ est a valeurs dans R.

Définition 2 (EQUATION DIFFERENTIELLE NORMALE)
On appelle équation différentielle normale d’ordre n toute équation de la forme

™ = f(t,z, 2", .., z™D). (1.2)
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—

(a) Gottfried Wil- (b) Sir Isaac New- (c) Jacques ou Jakob
helm Leibniz (1646 ton (1642-1727), Bernoulli (1654-1705)
- 1716), mathéma- Newton partage mathématicien et phy-
ticien allemand, Il avec Gottfried sicien suisse, frere de
est a lorigine du Wilhelm Leibniz Jean Bernoulli et oncle
terme de « fonction la découverte dude Daniel Bernoulli
» (1692, de functio : calcul infinitésimal. et Nicolas Bernoulli.
exécution), de celui Dans T’histoire du Sa correspondance
de « coordonnées calcul infinitésimal, avec Gottfried Wilhelm
», ~de la notation le proces de New- Leibniz le conduit a
du produit de a par ton contre Leibniz étudier le calcul infini-
b sous la forme est resté célebre. tésimal en collaboration
ab ou ab, d’une Newton et Leibniz avec son frére Jean.
définition logique de avaient trouvé Il fut un des premiers
I’égalité, du terme l’art de lever lesa comprendre et a
de « différentielle indéterminations  appliquer le calcul
» (qu'lsaac Newton dans le  calcul différentiel et intégral,
appelle « fluxion des tangentes ou proposé par Leibniz.
»), de la notation dérivées.

différentielle , du
t
symbole / f(s)ds

t0
pour I'intégrale.

FIGURE 1.1 — Quelques mathématiciens célebres liés aux dérivées et équations différentielles.
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Définition 3 (EQUATION DIFFERENTIELLE AUTONOME)
On appelle équation différentielle autonome d’ordre n toute équation de la forme
™ = f(z, 2", ..., D). (1.3)

Autrement dit, f ne dépend pas explicitement de ¢.

Remarque
Les équations autonomes sont tres importantes quand on cherchera des solutions stationnaires

ainsi que leur stabilité.

Exemple
Equation du premier ordre sous la forme normale :
¥ = f(t,z).
Equation du premier ordre autonome :
o' = f(z)

1.1.2 Equation linéaire

Donnons maintenant une classification par linéarité.

Définition 4 (EQUATION DIFFERENTIELLE LINEAIRE)
Une EDO de type (1.1) d’ordre n est linéaire si elle est de la forme
an ()™ (1) + apn, )@V () 4+ ... + ay ()2 (t) + ao(t)z(t) = g(t), (1.4)

avec tous les 29 de degré 1 et tous les coefficients dépendant au plus de ¢.

Exemple
Dire si les équations différentielles suivantes sont linéaires, ou non linéaires, et donner leur ordre

(on justifiera la réponse) :

dr  dx
. (x —t)dt + 4tdx =0 1. 2" — 22/ =0 i — +t— —br =¢
i. (z —t)dt + 4tdx ii. x ol iii dt3+ o T hr=e
d> d*
. (1 —z)x’ + 2z =€ v.d—g—ksinxzo vi.d—j—i-xZ:O

9
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1.2 Solutions

1.2.1 Définition
~ Définition 5 (SOLUTION) .

On appelle solution (ou intégrale) d’une équation différentielle d’ordre n sur un certain
intervalle [ de R, toute fonction x définie sur cet intervalle I, n fois dérivable en tout
point de [ et qui vérifie cette équation différentielle sur /.

On notera en général cette solution (z, I).

Si [ contient sa borne inférieure notée a (respectivement sa borne supérieure b), ce sont
des dérivées a droite (respectivement a gauche) qui interviennent au point ¢ = a (respec-
tivement ¢ = b).

Intégrer une équation différentielle consiste a déterminer I’ensemble de ses solutions.

~ Définition 6 (COURBE INTEGRALE-ORBITE) .

On appelle courbe intégrale I’ensemble des points (¢, z(t)) ou ¢ parcourt /. Autrement
dit, si « est a valeurs dans R”, la courbe intégrale est un ensemble de points de RV 1,
On appelle orbite, I’ensemble des points x(¢) ou ¢ parcourt I : c’est un ensemble de
points de RY.

L’espace RY ot les solutions prennent leurs valeurs s appelle espace de phases.

Interprétation géométrique :

Dans R? (N = 2) par exemple, une courbe intégrale notée T' et M un point de cette courbe de
coordonnées x = x1(t), y = 22(t), et 2 = t. On note X (t) = (x1(t), x2(t))". Le vecteur tangent a
[ en M a pour composante x| (t), x4 (t), et 1. C’est a dire fi(t, X (t)), f2(t, X(t)) et 1 (en notant
f1 et fo les composantes de f ici).

Pour une telle équation I’espace des phases est R?, une orbite a pour équation x = 1 (t), y = z»(t)
et le vecteur tangent en un point a a pour composantes f(t, X (¢)) et fo(t, X (t)).

Exemple
Voir en cours.

Remarque

1l arrive fréquemment qu’on puisse déterminer les orbites sans pouvoir préciser les courbes inté-
grales.

Dans de nombreuses situations (mais ce n’est pas exclusif), t peut apparaitre comme le temps et
les orbites comme des trajectoires (que I’on appelle également chroniques).

10
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1.2.2 Solutions maximales et globales

Définition 7 (PROLONGEMENT)

Soient (x, I) et (Z, I) deux solutions d’une méme équation différentielle. On dira que
(z,I) est un prolongement de (z,[) si [ C [ et Z|; = x.

Définition 8 (SOLUTION MAXIMALE)

Soient /; et I5, deux intervalles sur R, tels que I; C Is.

On dit qu’une solution (z, I;) est maximale dans /5 si et seulement si  n’admet pas de
prolongement (&, I ) solution de 1’équation différentielle telle que ;Cé I C I, (on verra
méme plus tard que /; est nécessairement ouvert).

Définition 9 (SOLUTION GLOBALE)

Soit [ un intervalle inclus dans R. Une solution (x, I) est dite globale dans [ si elle est
définie sur I'intervalle / tout entier..

Remarque
En reprenant les mémes notations que dans les définitions précédentes, si une solution (x, I1) peut
se prolonger sur l'intervalle I, tout entier, alors x est globale dans 1.

1.3 Réduction a ’ordre 1

Avant de commencer a résoudre les équations différentielles d’ordre quelconque, on va se rendre
compte qu’il est possible de réduire ’ordre a 1 en faisant quelques changements de variables. Par
conséquent, la majorité des résultats que 1’on donnera dans ce chapitre ne concernera que les EDO
d’ordre 1 (sauf quelques exceptions, comme 1’ordre 2 qui n’est pas difficile et rapide a résoudre
(quand on peut le résoudre bien sir)).

Toutefois, comme nous allons le voir ci-dessous, ce que nous gagnons en simplicité dans 1’ordre
de dérivation, nous le perdons dans la dimension de I’espace d’arrivée de la fonction F'.
Autrement dit, en abaissant 1’ordre de I’EDO, nous augmentons la dimension de 1’espace d’arrivée
de F' et passons nécessairement a la résolution d’un systeme d’EDO d’ordre 1 que I’on apprendra
a résoudre que plus tard dans le cours...

Il faut donc étre patient, tout en sachant que I’on peut transformer les problemes difficiles au
premier abord, en des problemes beaucoup plus simples mais un peu plus techniques.

Voici comment on s’y prend.

11
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Méthode

Considérons I’EDO d’ordre n (n > 2)suivante :
F(t,z,o,...,z™) =0,

ou, x est valeurs dans R (on prend m = 1 en général) et

F:RxR™x..xR"™— RP.
~—_———
n+1 fois

Nous avons donc p équations, avec m inconnues et d’ordre n.

On fait le changement d’inconnues z = (x,2’,...,2""V). On a alors z € (R™)", et on note
z = (21, 22, ..., 2 ), OU chacun des z; = y=1) € R™ i = 1,...,n. On se retrouve alors avec des
relations entre les z; :

Zz/'_zi+1 = O, i:1,2,...,n—1
F( 0.

/ _
by 21, 22,y ooy Zny 20) =

On a donc p + m(n — 1) équations, avec m X n inconnues, d’ordre 1.

Exemple
Voir en cours.

1.4 Quelques techniques de résolution

Dans cette section, nous allons nous intéresser a différentes techniques pour intégrer (c’est a dire
résoudre), certains types d’équations différentielles. Il faut cependant garder a I’esprit que la ré-
solution explicite des EDO n’est pas une chose aisé€e, et la plupart du temps ce sera trop difficile,
voire impossible. Nous devrons alors nous contenter d’une analyse d’existence, unicité, positivité,
etc. des solutions.

Mais attardons nous quelques temps a des cas que nous savons résoudre.

Comme nous I’avons montré a la fin de la section précédente, nous allons rester dans le cadre
d’équations différentielles ordinaires d’ordre 1. Nous resterons toutefois dans le cas scalaire, parce
qu’il est plus facile a manipuler et a comprendre. Le cas ou F’ sera a valeurs dans R?, p € N* sera
traité plus tard.

Commencons alors par un cas assez général, et nous irons vers les cas particuliers ensuite.

1.4.1 Equations a variables séparées

Exemple
Considérons ’EDO d’ordre 1 sous forme normale données par I’ équation

¥ = f(t,z).

L’idée est d’exprimer f(t,x) sous la forme g(t)h(z), o g : I — Reth : J C R — R. Ce qui
permettra de résoudre une équation du type
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Cas particulier :
Les équations les plus simples sont de la forme

avec h = 1 et g(t) = f(t) pour tout t € I. On suppose en outre que x(ty) = xo pour un ty € I.
Si on suppose que [ est continue sur un intervalle I C R d’intérieur non vide. Les solutions de
cette équation sont données par

x(t) = xo + /t:f(s)ds,

,—[Déﬁnition 10 (EQ. A VARIABLES SEPAREES)}

On appelle de facon générale équation a variables séparées, toute équation de la forme
b(z)x' = a(t), (1.5)

ou a et b sont deux fonctions définies respectivement sur / et K, et ot / et K sont des
intervalles de R.

,—[Théoréme 1 (VARIABLES SEPAREES)}

Supposons les applications a et b continues respectivement sur / et /', ou [ est un inter-
valle ouvert de R, et J C R, alors x est solution de I’équation

si et seulement si :
1. x est dérivable sur I, ET
2. il existe ¢ € R, constante telle que B(z(t)) = A(t) + ¢, pour tout t € I, avec, A
est une primitive de a sur J, et B est une primitive de b sur K.

,{The’oréme 2 (VARIABLES SEPAREES (2))}

Si I est un intervalle ouvert de R, toute fonction = continue sur I qui satisfait B(z(t)) =
A(t)+c pour tout t € I pour une certaine valeur de c et qui satisfait la condition b(x(t)) #
0 pour tout ¢t € I est dérivable sur /.

Par conséquent, d’apres le théoreme qui précede on en conclut que x est solution de

b(z)x" = a(t), sur I.

13



1.4 Quelques techniques de résolution Equations différentielles : introduction

Définition 11 (EQ. A VARIABLES SEPARABLES)

Soit f(t,z,2') = 0,0t t € I, I intervalle de R, une équation différentielle. On dit que
c’est une équation a variables séparables si cette équation peut s’écrire sous la forme

b(z)x" = a(t), pour te€l, et z € K CR.

1.4.2 Equations scalaires autonomes

Comme nous 1’avons vu un peu plus haut les équations scalaires autonomes sont de la forme

On remarque que x = a avec a racine de f est nécessairement une solution de ce type d’équations.
On a également une propriété importante concernant la monotonie de la fonction f.

Proposition 1 (AUTONOME ET MONOTONE)

Soit f : I — R continue sur / un intervalle de R, alors toute solution non triviale de
I’équation scalaire autonome 2’ = f(x) est monotone sur son domaine.

1.4.3 Equations linéaires

Nous restons toujours sur les EDO d’ordre 1. Nous nous intéressons ici aux équations différen-
tielles ordinaires linéaires.

Définition 12 (EDO LINEAIRE)

Une équation différentielle du premier ordre est dite linéaire si elle est linéaire par rapport
a la fonction inconnue x et par rapport a sa dérivée z’. Une telle équation peut toujours
s’écrire sous la forme

a(t)x + b(t)x = d(t). (1.6)

Dans toute la suite, on supposera que a, b et d sont continues sur un intervalle / C R.

EDO linéaire sans second membre

Commencgons par résoudre une équation linéaire d’ordre 1 sans second membre. On I’appelle EDO
linéaire du premier ordre homogene. C’est une équation de la forme

a(t)x’ + b(t)x = 0. (1.7)
14



Equations différentielles : introduction 1.4 Quelques techniques de résolution

C’est une équation a variables séparables sur I x J tel que a(t) # 0 pour tout t € I.
Il est a noter que = = 0 est une solution de I’équation linéaire homogene ci-dessus. On I’appelle
solution triviale comme dans le cas des équations autonomes.

Proposition 2 (SOL. EQ. HOMOGENES)
L’ensemble des solutions de 1’équation linéaire homogene
a(t)x’ + b(t)x = 0.

sur le domaine 7, avec pour un certain ¢, dans I tel que x(ty) = xq est définie pour tout
t € I par

_ [ b
avecF(t)—/t0 (s

z(t) = zoef®,

Proposition 3 (SOLUTION TRIVIALE)

Si une solution de 1’équation linéaire homogene s’annule en au-moins un point ¢, alors
elle est identiquement nulle (solution triviale).

Remarque
La solution x = 0 sur I est appelée intégrale dégénérée de I’équation linéaire homogene.
EDO linéaire avec second membre

Considérons 1I’équation
a(t)x’ + b(t)x = d(t),

sur I'intervalle I ou a ne s’annule pas.
Soit z;, une solution particuliere non dégénérée de I’équation homogene associée a 1’équation ci-
dessus sur /.

Proposition 4 (SOLUTION GENERALE)
La solution générale de 1’équation
a(t)x + b(t)x = d(t),

sur / avec pour un certain ¢, dans [ tel que x(ty) = z est donnée par

w0 oo (= [ 250) (o [ oo ([ 55%) %)

15



1.4 Quelques techniques de résolution Equations différentielles : introduction

Remarque
La méthode fréquemment utilisée pour trouver une solution de I’équation linéaire non homogeéne

a partir de I’équation homogene est appelée méthode de variation de la constante.

Cas particulier

,—[Proposition 5 (FORMULE DE DUHAMEL)}

Soient une fonction continue sur un intervalle I de R, o une constante réelle et t, € I tel
que z(ty) = xo. La solution générale de I’équation scalaire

ZE, - Oé[l?—f—f(t),

est donnée par
t
z(t) = ze*t) —I—/ e?t=2) £(s)ds,

to

ou ¢ est une constante.

1.4.4 Equations de Bernoulli

~ Définition 13 (EQUATION DE BERNOULLI)

Une équation de Bernoulli est une équation différentielle scalaire non linéaire de la forme
'+ P(t)r+ Q(t)z" =0, (1.8)

our € R, P et () sont deux fonctions définies et continues sur un intervalle / de R.

Remarque
On peut éliminer les cas r = 0 et r = 1, car I’équation de Bernoulli correspond alors a une

équation que l’on connait déja et que [’on a traité dans la section précédente.

,—[Théoréme 3 (SOLUTION BERNOULLI)} \

Une fonction dérivable strictement positive (au cas ol 7 = 1/2 par exemple, ot 7 < 0) x
sur I est solution de 1’équation de Bernoulli si et seulement si u = 2'~" est une solution
strictement positive de I’équation linéaire

W+ (1= )P+ (1 - r)Q(t) = 0. (1.9)

16
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Remarque

1. Connaissant la solution u de I’équation linéaire associée a l’équation de Bernoulli, on peut
en déduire les solutions strictement positives de I’équation de Bernoulli.
2. Nous pouvons trouver quelques propriétés sur les solutions suivant les valeurs de r :
a. Sir > 0 [’équation de Bernoulli admet la solution triviale x = 0.
b. Sir > 1 toute solution de I’équation de Bernoulli qui prend la valeur 0 en un point, est
partout nulle.
c. Si0 < r <1, lafonction nulle n’est pas nécessairement la seule solution qui prenne la
valeur () en un point.
3. L’équation particuliere
22 + x4+ 2% =0, (1.10)

est appelée équation de Ricatti.

1.4.5 Eq.de Lagrange et Clairaut

Définition 14 (EQUATION DE LAGRANGE)

On appelle équation de Lagrange toute équation du premier ordre scalaire non linéaire
de la forme

r=tf(z") + g(x'), (1.11)

ou f et g sont définies, dérivables sur un certain intervalle J de R.

Définition 15 (EQUATION DE CLAIRAUT)

On appelle équation de Clairaut toute équation de Lagrange avec f = Id (ou Id est la
fonction identité, c’est a dire /d(x) = z), autrement dit elle est de la forme

x =tz + g(2), (1.12)

ou g est définie, dérivable sur un certain intervalle J de R.

Proposition 6 (SOLUTIONS LAGRANGE)
Les seules solutions affines de I’équation de Lagrange sont les fonctions de la forme
z(t) = mt + g(m), (1.13)

ol m est une racine de I’équation m = f(m) avec m € J.

Remarque
Si de telles fonctions existent, alors elles sont globales sur R.

17



1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

En particulier, pour tout m € J les fonctions t — mt + g(m) sont les seules fonctions affines
solutions de I’équation de Clairaut et elles sont globales sur R.

1.5 Eq. Diff. Totales - Facteurs Intégrants

L’ objectif de cette section est voir comment la résolution d’une équation différentielle non -linéaire
du premier ordre peut se résoudre assez facilement a partir de la notion de différentielle de fonction.

1.5.1 Equations aux différentielles totales
Définition 16 (VARIATION INFINITESIMALE)
On appelle variation infinitésimale de ¢ (respectivement de x), toute fonction définie par

dt : R2 — R, (resp.) dr: R2 - R
(u,v) +— dt(u,v) = u, (u,v) — dy(u,v) =w.

Définition 17 (DIFFERENTIELLE)

(voir cours Analyse III) Etant donnée une fonction f : R? — R, continue sur un ouvert
U de R?, et admettant des dérivées partielles du premier ordre en tout point de U, on
appelle différentielle de f sur U 1’application notée df telle que pour tout (¢,z) € U et
pour tout (u,v) € R?

df (t,z) : R? — R

0 0
(u,v) dj(t,x)(u)+d§(t,m)(v).

Remarque
Avec la notation de la variation infinitésimale, pour tout (t,z) € U et pour tout (u,v) € R? ona

df (t,x)(u,v) = g—{(t,x)dt(u, v) + g—i(t, x)dz(u,v),

que ’on peut écrire sous la forme

df (t,z) = %(t,x)dt + z—i(t,x)dx (1.14)

Opérations utilisées :
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Equations différentielles : introduction 1.5 Eq. Dift. Totales - Facteurs Intégrants

1. df = 0 est équivalent & f(¢,2) = ¢ ol ¢ est une constante pour tout (¢,x2) € U, U ou-
vert connexe de R? (attention, il est important que U soit connexe (voir cours de calcul
différentiel pour cela).

2. d(f 4+ A\g = df + Ag ol X est une constante.

3. Différentielle du produit : df g = fdg + gdf

4. Changement de variables :
sionposet = (s, h) etz =1(s, h)

alors
_ _ Oy, Oy o I
dt = dp(s, h) = 83d8+ ahdh etdr = dip(s,h) = s ——ds + 8hdh
et dans ce cas :
df = gfdt+a—f
x
_ f[a‘pd ‘;“Odh] a_f[a_wd + ),
O &+w&ﬁ [fﬁ a%w
ot s Oz Os t Oh ' Ox ah

On peut également retrouver ce résultat en utilisant un diagramme en arborescence (voir
exemple en cours)

5. Soient f : U — R, et z une fonction dérivable sur I C R telle que G(z)={(s, z(s)), pour
tout s € I}C U (graphe de z2); et soit

g: I - R
s = g(s) = f(s,z2(s)),
on a alors, of f
dg = E)sd +E 2(s),

ce qui donne également

0 0
gy = 2 o)

Cette dernicre remarque va nous permettre d’écrire 1’équation différentielle non linéaire présentée
dans la définition suivante sous forme différentielle.
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1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

,—( Définition 18 (EQ. AUX DIFFERENTIELLES TOTALES)

Considérons I’équation différentielle suivante
a(t,z) + b(t,z)x’ =0, (1.15)
que I’on peut écrire plus généralement sous la forme
a(t,x)dt + b(t, z)dz = 0. (1.16)

Supposons a et b continues sur un ouvert U de R%. On dit que I’équation (1.16) est une
équation aux différentielles totales si et seulement si la fonction

f:(t,x) = f(t,x) = a(t,x)dt + b(t, z)dx,

est la différentielle d’une certaine fonction

w‘{ U — R
| () — w(t )

Autrement dit, il existe w telle que f = dw.

Remarque

Si I’équation (1.16) est une équation aux différentielles totales, alors il existe w telle que dw = f
et alors I’équation (1.16) s’écrit dw(t, x) = 0, ¢’est dire w(t, x) = ¢, ¢ constante.

Autrement dit, {(t,z) € U, w(t,x) = c } est ’ensemble de toutes les courbes intégrales de I’équa-
tion (1.15).

Remarque
Parmi les courbes intégrales w(t, x) = c, on cherche les solutions x de I’équation (1.15) en résol-
vant w(t, ) = ¢ par rapport a x pour toutes les valeurs possibles de c.

Grace au théoreme des fonctions implicites (voir cours Analyse III), nous avons le résultat suivant :

— Proposition 7 (EXISTENCE) | .

ow ) . )
Pour tout (o, x9) € U dans lequel £ n’est pas nulle, il passe au moins une solution de
i

I’équation (1.15) et la fonction = correspondante s’obtient en résolvant par rapport = au
voisinage de (g, zo), I’équation w(t, ) = w(tg, o).

Il existe un moyen classique de reconnaitre une différentielle totale. Ce moyen est donné dans le
théoreme suivant.
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Equations différentielles : introduction 1.5 Eq. Diftf. Totales - Facteurs Intégrants

,—[The’oréme 4 (CNS DIFFERENTIELLE TOTALE)}

Soient (¢, z) +— a(t,x) et (t,z) — b(t,x) deux fonctions continues sur un pavé U =

oa . .
I x J. Supposons que — et — existent et sont continues sur U alors f : (¢,z) —

95
(t,z) = a(t,x)dt + b(t, x)dx est une différentielle totale si et seulement si pour tout
(t,z) eU
da 0b

1.5.2 Equation des facteurs intégrants

Considérons I’équation

a(t,z)dt + b(t, z)dx = 0 (1.18)

Supposons que a et b sont continues sur un pavé ouvert U = [ x J.

,—[Déﬁnition 19 (FACTEURS INTEGRANTS)}

On appelle facteur intégrant de 1’équation (1.18) une fonction p : (t,z) — pu(t, z) défi-
nie, continue et sans zéro sur U (c’est a dire que u(t, z) # 0 pour tout (¢,z) € U) telle

que
0 0
= (1) = - (b), (1.19)
sur U.
Remarque

Si f(t,x) = a(t,z)dt + b(t,z)dx = 0 est une équation aux différentielle totale alors pour tout
1 = k (constante # 0), | est un facteur intégrant de I’équation (1.18).
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1.5 Eq. Diff. Totales - Facteurs Intégrants Equations différentielles : introduction

,—[Proposition 8 (EQ. FACTEURS INTEGRANTS)}

Supposons en plus des propriétés spécifiques ci-dessus que les fonctions a, b et p pos-
sedent des dérivées partielles du premier ordre continues sur / X J. Dans ce cas p est un
facteur intégrant de (1.18) si et seulement si

ou oa ou ob

a%—l—ua— E—,uazo sur U

ou bien 9 5 9 9
L N I S A
as b8t+(8x at)u 0 sur U.
avec pu(t, z) # 0 pour tout (¢, z) € U.

C’est I’équation des facteurs intégrants.
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Chapitre 2

Théorie générale : existence et unicité

L’ objectif de ce chapitre est d’étudier I’existence et I’unicité locale et globale des problemes de
Cauchy (c’est a dire une équation différentielle ordinaire pour laquelle on a donné une condition
initiale) sans connaitre explicitement les solutions.

Comme nous I’avons vu dans le chapitre précédent, nous n’aurons pas besoin de traiter les équa-
tions différentielles d’ordre n étant donné que 1’on est capable de se ramener a ’ordre 1. Par
conséquent, nous ne donnerons les résultats que pour les EDO d’ordre 1 ici, sous forme normale,
autrement dit, du type

x' = f (tv (ﬂ),
ou z est la fonction inconnue de la variable réelle ¢ a valeurs dans un espace R™, et f sera une
fonction donnée sur I x J, ouvert,non vide de R x R™. Dans certains résultats, on verra méme
que I’on peut prendre f définie de fagon générale sur un ouvert non vide U C R™"!. Nous verrons
qu’il faut faire des hypotheses de régularité sur la fonction f afin d’obtenir des résultats d’existence
et d’unicité des solutions.
Il est possible, mais nous ne 1’aborderons pas ici, d’obtenir I’existence de solutions en supposant f
continue (attention on reste en dimension finie ici) en faisant appel au théoreme d’ Ascoli qui n’est
pas au programme. C’est ce qu’on appelle le théoréme de Peano.
Il est méme possible de montrer 1’existence de solutions généralisées c’est a dire de fonctions

a priori seulement continues satisfaisant x(t) = x(to) + / f(s,z(s)ds, pour des fonctions f

discontinues. Le premier résultat est attribué a Carathéodory, on a d’ailleurs gardé son nom pour
nommé ces solutions. Ces résultats ont ét€¢ améliorés par A.F Filipov, et V.V Vilipov.

Tous ces résultats ne seront pas au programme de ce cours, mais peuvent faire 1’objet d’étude ap-
profondie pour les lecteurs désireux d’en savoir plus.

L’unicité des solutions quant a elle, pour une donnée initiale fixée nécessite une hypothese plus
forte que la continuité de f. Des hypotheses plus faibles que celles énoncées dans ce cours sont
exposés dans les travaux de Osgood et Nagumo. Mais nous ne les aborderons pas ici. Nous nous
contenterons de considérer f lipschitzienne par rapport a sa seconde variable. Ce qui sera déa plei-
nement satisfaisant pour nous.

Lors de la preuve de certaines propositions ou théoréemes, nous aurons besoin de résultats prélimi-
naires importants et “classiques” et plus particulierement du lemme de Gronwall et du théoreme
de point fixe de Banach-Picard que nous rappelons dans les sections suivantes.
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2.1 Lemme de Gronwall Théorie générale : existence et unicité

2.1 Lemme de Gronwall

2.1.1 Inéquations différentielle

~ Lemme 1 (GRONWALL-INEQUATION DIFFERENTIELLE)

Supposons qu’une fonction z de classe € (I, R), ou I est un intervalle de R, vérifie
2'(t) < a(t)a(t) + b(t), @.1)

ol a et b sont des fonctions continues de [ dans R, et z(ty) = x pour un ty € I. Alors,
on a I’inégalité

2(t) < x(to)exp(( /t:a(s)ds> + /t: exp(( / ta(a)da) bs)ds  (22)

Preuve :
Faite en cours.

2.1.2 Inéquations intégrales

,—[ Lemme 2 (GRONWALL-INEQUATION INTEGRALE)\}

Supposons qu’une fonction z continue de I = [0,7] sur R, 7' € R (attention on ne
s’intéresse qu’aux fonctions a valeurs dans R™), vérifie

x(t) < b(t) + /Ot a(s)z(s)ds, (2.3)

pour tout ¢ € I, ol a est une fonction continue de / dans R et b une fonction continue
de I dans R. Alors, on a I’inégalité

() < b(t) + /0 t exp(( / ta(a)da) b(s)a(s)ds, 2.4)

pour tout ¢ € [0, 7.

Preuve :
Faite en cours.

Remarque
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Théorie générale : existence et unicité 2.2 Théoreme de Point Fixe de Banach-Picard

1. Sib est une constante dans la formulation intégrale, I'inégalité de Gronwall peut se simpli-
fier et on ’écrit :

2(t) < bexp ( /0 t a(s)ds) . 2.5)

2. On peut également écrire une formule analogue avec un point t, quelconque au lieu de 0.
Mais il faut alors penser a mettre des valeurs absolues si les bornes intégrales ne sont pas
dans I’ordre croissant.

On aurait ainsi, avec b > 0 constante par exemple, si x continue sur I vérifie

/ " a(s)x(s)ds

to
t
/ a(s)ds ) : (2.7)
to

3. Si b est dérivable , on peut donner une autre version de 1’inégalité de Gronwall en intégrant par
parties, et on obtient (avec les hypotheses du lemme sous formulation intégrale),

() < b(0) exp ( /0 ta(s)ds) + /0 "b(s) exp ( / ta(o)d(a)) ds, 2.8)

pour tout t € [0,T.

x(t) < b+

) (2.6)

pourtoutt € I, et ty € I donné, alors

of0) < vesp

2.2 Théoreme de Point Fixe de Banach-Picard

Nous rappelons ici le théoréme de point fixe de Banach-Picard seulement en sur R en sachant
que le résultat est vrai pour un ensemble fermé non vide d’un espace de Banach E.

Théoreme 1 (BANACH-PICARD)

Soit I un intervalle fermé non vide R et f : I — [ est contractante, c’est a dire qu’il
existe k €]0, 1], tel que
|f(t1) = f(E2)| < Klt — 2o, (2.9)

pour tous t; et £, dans /. Alors il existe un unique ¢ € I tel que f(t) = ¢.

Preuve :

Pas faite en cours.

Nous pouvons désormais énoncer des résultats d’existence et d’unicité locale et globale. Nous al-
lons le faire dans le cadre d’une dimension supérieure ou égale a 1 pour deux raisons principales :
- nous éviterons d’étre redondants quand nous aborderons la section des systemes d’équations dif-
férentielles,

- d’autre part, comme dans le chapitre précédent, nous resterons dans I’étude des équations d’ordre
1 étant donné que 1’on peut toujours se ramener a cet ordre quitte a augmenter le nombre d’équa-
tions et donc la dimension de 1’espace du probleme.
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2.3 Théoreme de Cauchy-Lipschitz Théorie générale : existence et unicité

2.3 Théoreme de Cauchy-Lipschitz

2.3.1 Probleme de Cauchy

Soit U un ouvert de R x R™ et f : U — R™ une fonction. On note ||.|| une norme quelconque sur
R™ (on a vu en analyse III que toutes les normes sont équivalentes sur R™.

,—t Définition 1 (PROBLEME DE CAUCHY)

Etant donnée une équation différentielle du premier ordre sous forme normale
¥ = f(t,x), (2.10)

pour (t,z(t)) € U, et un point (¢y, o) € U, le probleme de Cauchy correspondant est la
recherche des solutions x telles que

Notation :
On note le probleme de Cauchy de la facon suivante

{I/ = [{ta), (2.12)

z(ty) = xo.

~ Définition 2 (SOLUTION DU PROBLEME DE CAUCHY)

Une solution du probleme de Cauchy (2.12) sur un intervalle ouvert / de R avec la
condition initiale (to,z) € U et ty € I est une fonction dérivable = : I — R™ telle que

i. pourtoutt € I, (t,x(t)) € U,
ii. pourtoutt € I, 2'(t) = f(t,z(t)),
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Théorie générale : existence et unicité 2.4 Existence et unicité locale

,—[The’oréme 2 (SOLUTIONS DE (2.12))}

Supposons f : U — R™ continue. Soit (t9, z9) € U et x une fonction définie sur un
intervalle ouvert I contenant ¢, et a valeurs dans R".
Une fonction x est solution de (2.12) sur [ si et seulement si

i. pourtoutt € I, (t,z(t)) € U,
1i. x est continue sur /,
t
iii. pourtoutt € I, z(t) = —|—/ f(s,z(s))ds.

to

Preuve :
Faite en cours.

2.4 Existence et unicité locale

Enoncons tout d’abord un résultat local d’existence et d’unicité .

,—[Théoréme 3 (CAUCHY LIPSCHITZ)}

Soient f € € (U;RY) ot U est un ouvert de R x R™, et (ty, 29) € U. On suppose f
lipschitzienne par rapport a sa variable x sur un voisinage de (¢, z), ¢’est a dire qu’il
existe un voisinage de (o, o) dans U et L > 0 tel que pour tous (¢, x) et (¢,y) dans ce
voisinage
I (¢ x) = fEy)ll < Lijz —yll. (2.13)
Alors on a les propriétés suivantes.
Existence : Il existe T > O etz € €' ([to — T, to + T}; J) solution du probleme de

Cauchy
{ o = f(t),
I(to) = X9- '
Unicité : Si y est une autre solution du probleme de Cauchy ci-dessus, elle coincide

avec x sur un intervalle d’intérieur non vide inclus dans [t — T', ¢y + 7.
Régularité Si de plus f est de classe €, r > 1, alors x est de classe 6" 1.

Preuve :
Faite en cours.

Remarque
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2.5 Unicité globale Théorie générale : existence et unicité

1. Dés que f est de classe € elle est localement lipschitzienne (ce résultat découle du théo-
reme des accroissements finis). C’est un résultat connu découlant du théoreme des accrois-
sements finis.

2. A partir de maintenant, on considere un cas, légérement plus particulier (pour simplifier les
énoncés des propriétés), ou f est définie sur I X J, avec I un intervalle ouvert non vide de
R et J un intervalle ouvert non vide de R™ et non plus sur un domaine ouvert quelconque
U inclus dans R x R™.

2.5 Unicité globale

Le résultat précédent donne seulement un résultat d’unicité local. On peut en déduire un résultat
d’unicité globale grace a I’énoncé suivant.

Définition 3 (LOCALEMENT LIPSCHITZIEN)

Soient f € € (I x J;R™) ou [ est un intervalle ouvert de R et .J est un ouvert d’un
espace R™, et (to,z9) € I x J. On dit que fonction f est localement lipschitzienne par
rapport a sa variable x si pour tout (¢1,21) € I x J, il existe un voisinage de ce point
dans I x J et L > 0 tel que pour tous (¢, x) et (¢,y) dans ce voisinage ,

1t 2) = f& o)l < Lijz =yl (2.14)

Lemme 3 (UNICITE GLOBALE)

Soient f € €' (I x J; R™) ou [ est un intervalle ouvert de R et J est un ouvert d’un espace
R™, et (tp, xo) € I x J. On suppose f localement lipschitzienne par rapport a sa variable
x.Siz, € € (1;J) et zo € € (I5; J) sont deux solutions sur des intervalles I; et I,
respectivement, et s’il existe ty € I; N[5 tel que x4 (ty) = xo(to) alors xq(t) = x5(t) pour
toutt € I; N Is.

Remarque

Une conséquence de ce lemme est qu’il existe un plus grand intervalle I sur lequel le probléeme
de Cauchy (2.12) admet une solution. Cette unique solution sur Uintervalle I est une solution
maximale (dans le sens de sa définition dans le chapitre précédent), autrement dit on ne peut pas
la prolonger sur I\ I.

Par suite I est nécessairement ouvert, sinon en appliquant le théoréme de Cauchy-Lipschitz a son
extrémité, on prolongerait la solution.

On remarque enfin que lorsque I = I cette solution sera globale.

Le lemme suivant permet de prouver le “théoreme des bouts” que nous énongons juste apres.
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Théorie générale : existence et unicité 2.6 Existence Globale

— Lemme 4

Supposons que f soit continue, bornée et lipschitzienne par rapport a = dans [t — 27", ¢ +
2T] x B(z,2R) pour tout T > 0 et R > 0.

Alors il existe T €]0, T tel que pour tout (¢, 7o) € [t —T,t+T] x B(z, R), 1a solution
maximale du probleme de Cauchy (2.12) soit définie sur un intervalle contenant [t, —
T to+T].

,—[Théoréme 4 (DES BOUTS)

Sous les hypothéses du théoréme de Cauchy Lipschitz (3), soit x € € (1: ; J) une solution
maximale de

¥ = f(t,x).
On note b la borne supérieure supérieure de [ et 5 < b la borne supérieure de I. Alors
ou bien J = b ou bien x sort de tout compact de .J, c’est a dire que pour tout compact
K C J,il existe n < [ tel que

x(t) € J\K,pourtznavectef.

De méme si inf I > inf I alors x sort de tout compact lorsque ¢ tend vers inf I par la
droite.

2.6 Existence Globale

Lorsque J = R™ et f est globalement lipschitzienne, c’est a dire qu’il existe L > 0 tel que pour
tous (¢, x) et (¢,y) dans I x J,

1f () = fE o)l < llz =yl (2.15)

il n’y a pas de risque de sortir de son domaine de définition ni du domaine de validité de sa
constante de Lipschitz.

En reprenant la preuve du théoréme de Cauchy-Lipschitz (3) on peut donc construire, quels que
soient a et b tels que ¢y € [a,b] C I, une suite de solutions approchées (z™) qui soit de Cauchy
dans €'([a, b]; R™). On en déduit alors le résultat global suivant.

,—[Théoréme S (EXISTENCE ET UNICITE GLOBALE)}

On suppose f € €' (I x R™;R™) et globalement lipschitzienne par rapport a .
Alors, quel que soit (fg, 7o) € I x R™, il existe un unique x € € (I; R™) solution de
(2.12).
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2.6 Existence Globale Théorie générale : existence et unicité

Théoreme 6 (EXIST. ET UNICITE GLOBALE (AFFINE))
Sibe €(I;R™) et A est continue, définie sur / alors toutes les solutions maximales de
2'(t) = A(t)x + b(t),

sont globales.

Les résultats précédents restent également valable lorsque x est a valeurs dans un ouvert d’un
espace de Banach de dimension finie ou infinie.
Par contre le résultat suivant n’est valable que lorsque x est a valeurs dans une espace de dimension
finie (tout le programme de ce cours de toute fagon est défini sur les espaces de dimension finie
R™).

Théoreme 7 (EXIST. ET UNICITE GLOBALE (DIM. FINIE))

Si f est uniformément bornée sur / x R™, toutes les solutions maximales de =’ = f(¢, x)
sont globales.
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Théorie générale : existence et unicité 2.6 Existence Globale

(a) Thomas Hakon (b) Augustin (c) Rudolph  Otto
Gronwall ou (Gron- Louis, baron Cau- Sigismund Lipschitz
wall) (1877-1932), chy, (1789-1857), (1832-1903), mathé-
mathématicien sué- mathématicien maticien  allemand,
dois, c’est lui qui frangais, dans son son travail sur les
démontra en 1919 le cours de Polytech- équations  différen-
lemme (sous sa forme nique, “Lecon de tielles vient préciser
différentielle) qui porte calcul différentiel les résultats obtenus
désormais son nom. et intégral”, il par Cauchy.
La démonstration de étudie les résolu-
la forme intégrale de tions des équations
ce lemme sera montrée différentielles
par Richard Bellman linéaire d’ordre
en 1943. un et s’intéresse

aux équations au

dérivées partielles.

FIGURE 2.1 — Quelques mathématiciens célebres liés a I’existence et 1’unicité des EDO.
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Chapitre 3

Systemes différentiels linéaires

Dans ce chapitre nous allons nous intéresser aux systemes d’équations différentielles, que 1’on
peut obtenir directement par la modélisation d’un probléme a plusieurs fonctions inconnues, mais
également lorsque I’on passe d’une EDO d’ordre n a un systeme de plusieurs EDO d’ordre 1 (voir
la section (1.3)). Nous ne le faisons ici que pour le cas particulier des systemes linéaires.

3.1 Théorie préliminaire
Soient un intervalle / un intervalle de R, n € N*, q;; : I — R, 4,5 =1,....,net f; : I — R des

fonctions continues.
L’ objectif est de trouver des fonctions z1, ..., z,, : I — R, n fonctions de classe 6 sur [ telles que

= an(t)rr + ... + a (), + f1(),
: (3.1)
= am(t)r) + o+ app ()T, + fo(t).
On peut écrire ce systeme sous la forme matricielle
X'(t) =A@)X(t) + F(t), (3.2)
ou
(1) an(t) -+ a(t) fi(t)
Xt =1 : |, AB= : : ot F(t)=1|
xn(t) anl(t> T ann(t) fn(t)
En général il peut y avoir une infinité de solutions de cette équation.
Soient ¢ty € I et X° € R” données, avec
2(t)
X0 = : . (3.3)
n(t)



3.2 Systemes homogenes Systemes ditférentiels linéaires

Le but est de trouver X solution de I’équation (3.1) satisfaisant la condition initiale (3.3). Autre-
ment dit, existe-t-il X fonction dérivable définie sur I a valeurs dans R" tel que

{X’(t) = A@)X(t)+ F(t),

X(tg) = X G4

pour tout t € I? Le théoreme suivant est une adaptation du théoreme (6) du chapitre précédent.
Autrement dit, les solutions du problemes de Cauchy (3.4) sont globales.

Théoreme 1 (EXISTENCE ET UNICITE GLOBALE)

SiA:I— #(R)etF: 1 — R”sontcontinues, autrement dit ¢ — a;;(¢) est continue
pour tous i, 7 = 1,...,nett — f;(t) est continue pour tout i = 1, ..., n, alors pour tout
to € I et pour tout X° € R”, il existe une solution unique au probléme de Cauchy (3.4).

Preuve :
Faite en cours.

3.2 Systemes homogenes
Le systeme (3.1) est dit homogene si F' = 0, c’est a dire

X'(t) = A(t)X(t), (3.5)
et nous avons I’existence et I'unicité des solutions de ce systeme dans le théoréme suivant.

Théoreme 2 (SOLUTIONS ESP.VECTORIEL)

L’ensemble [ des solutions d’un systeme homogene est un espace vectoriel de dimen-
sion n.

Preuve :
Faite en cours.

Remarque
11 suffit alors d’avoir n solutions indépendantes de (3.5) qui formeront une base de H.

Rappel 3.1 Soient n fonctions X', X2, ..., X" : I — R", elles sont dites indépendantes si pour
tous ¢y, ...,c, € Rona

ZciXi(t) =0, pourtoutt €l =ci=co=..=¢,=0.
i=1
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,—[Lemme 1 (WRONSKIEN)}

Soient X!, .., X™ : I — R" des solutions de (3.5), alors les trois propositions sont
équivalentes :

1. Les X!, .., X" sont indépendantes,

2. il existe ¢y € [ tel que la matrice définie par

(X" (to)]..| X" (t)) , (3.6)

est inversible,
3. la matrice

(XM (@)1 X" (1)) (3.7)

est inversible pour tout ¢ € 1.

Notation :
Le déterminant de la matrice (3.7) est appelé Wronskien

F[Déﬁnition 1 (MATRICE FONDAMENTALE)}

Soient X!, .., X™ : I — R des solutions de (3.5). Si les n fonctions sont indépendantes,
on dit qu’ils forment un ensemble fondamental de solution de (3.5). On notera alors

M(t) = (X'(t)]..]X"(t)), (3.8)

la matrice n X n qu’on appellera matrice fondamentale du systeme (3.5).

Remarque

1. On sait d’aprés le lemme précédent que M (t) est inversible pour tout t € I.

2. On sait également d’apres le théoréme (1) que les X' (t), ..., X"(t) forment une base dans
H qui est ’espace vectoriel des solutions de (3.5).

3. On observe aussi que

M'(t) = A(t)M(¢), (3.9)

pour toutt € 1.
Donc une matrice M (t) est fondamentale si et seulement si M' = AM et M (t) est inver-
sible au moins pour unt € I (car alors elle est inversible pour tout t € I).

On a alors le théoréme suivant
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Théoreme 3 (SOLUTIONS SYST. HOMOGENE )

Soient X!, .., X™ un ensemble fondamental de solutions de (3.5). Alors toute solution X
de (3.5) est de la forme

n

X(t) =) aXi(t), (3.10)

=1

avec cq, ..., ¢, € R.

Remarque
Si on parvient a trouver n solutions indépendantes de (3.5) alors on connait toutes les solutions de
(3.5). Mais attention, ¢ca ne marche que parce que (3.5) est linéaire et homogene!

3.3 Systemes non homogenes
Revenons au systeme non homogene (3.2) avec F' non identiquement nulle.
Théoreme 4 (SOLUTIONS SYST.NON HOMOGENE)

Soient X, .., X™ un ensemble fondamental de solutions du probléme homogene (3.5) et
X, une solution particuliere de (3.2). Alors toute solution X de (3.2) est de la forme

X(t)=X,+ ) aX'(t), (3.11)

=1

avec cq, ..., ¢, € R.

Remarque

Comment trouver une solution particuliere X, alors ? Comme pour les chapitre 1 par la méthode
de variation de la constante.
On va chercher un X,, sous la forme

ouy; : I — Rest atrouver.
On obtient

X, =MyA+X,,
d’une part, et d’autre part on aimerait que X, satisfasse le systéme non-homogéne
X, = MAX, + F,
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En identifiant, cela revient a chercher -y solution de
M~ =F,
et comme M est inversible, on doit donc trouver y telle que
Y =M'F

Par conséquent, un choix possible pour X, sera
t
X, =My= M/ M~(s)F(s)ds, (3.12)
to

pour un ty € I fixé.
On déduit alors du théoreme (4) que les solutions du probleme non-homogene sont de la forme

t
X=X,+Xp= M(t)/ MY (s)F(s)ds + M(t)C, (3.13)
to

avec C' € R™.
Si en plus, on fixe ty € I et X° € R™ et on cherche la solution du probleme de Cauchy, le vecteur
C € R" est donné par

C =M "(t)) X",

Alors l'unique solution du probleme est donnée par*
t
X(t) = ME)M(tg) X%+ M(t) / MY (s)F(s)ds. (3.14)
to

Remarque

Toute la difficulté consistera donc a trouver une matrice fondamentale M (t).

Une telle matrice n’est pas unique. En effet, si M (t) est une matrice fondamentale, alors pour
toute matrice E € M, (R) constante, M (t).E est encore une matrice fondamentale.

3.4 Systeémes linéaires a coefficients constants

Nous allons dans cette section considérer un cas particulier de la section précédente. Nous allons
étudier le probléme (3.2) avec A constante.

3.4.1 Exponentielle de A

Le but est de se concentrer sur la recherche d’une matrice fondamentale M (t) € .#,(R) de (3.5),
autrement dit, telle que M (t) soit inversible au moins pour un ¢t € [ et telle que M'(t) = AM ()
pour tout ¢t € 1.

Nous allons nous servir dans la suite de la notion d’exponentielle de matrice que nous exposons
ici.
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Rappelons que si n = 1, alors . (R) peut s’identifier a R et A € R. Donc on cherche M : I — R
telle que M’ = AM. Et une matrice inversible sous la forme M (t) = e est une solution de cette
équation.

Question : peut-on étendre ce résultat lorsque n > 2?

On rappelle également qu’une définition de I’exponentielle ¢’ o ¢ € R est

t’rb
el = —. (3.15)
n%% n!

Nous allons voir que cela marche également pour les exponentielles de matrice.

Définition 2 (EXPONENTIELLE DE MATRICE)

Pour toute matrice carrée A € .#,,(IR) on définit la matrice carée e € ., (R) par

AP AR A"
A _
e I+A+2!+3!+...§>0 T (3.16)

Remarque
Cette série est absolument convergente en M, (R) muni de la norme subordonnée

[AX]]

xernxzo0 || X7

ANl = (3.17)

ou ||.|| est une norme vectorielle quelconque sur R".

Théoreme 5 (SOLUTION FONDAMENTALE)

tﬁ,
La matrice M(t) = e = Z —'A” est une solution fondamentale de (3.5). Elle est
n!
n>0

donc inversible et satisfait M'(t) = A(t)M(t).

Rappel 3.2
Rappelons la formule suivante : si E et F' sont des éléments de #,,(R), et si E et F' commutent
(c’estadire E.F = F.FE) alors

e =P el = el e, (3.18)

On en déduit alors les deux résultats suivants :
1. eMr)A — eMA oA boyr tous My, Ay € R et pour tout A € M,(R),
2. (eM)~t = e A pour tout A € M, (R).

On peut alors donner le résultat suivant.
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Théoreme 6 (SOLUTION SYST. NON HOMOGENE)

Si A est constante alors la solution de (3.2) est donnée par

t
X(t) = eAt-t0 X0 4 / eAt=) F(s)ds. (3.19)

to

La question qui se pose alors est la suivante : comment trouver e sans nécessairement passer par
un calcul éventuellement fastidieux d’une série.

L’idée est la suivante :

nous allons chercher X (t) € R™ une solution de 1’équation (3.5)

X' = AX,

sous la forme
X(t) =MV,

avec A € RetV € R™ — {0}. Lorsqu’on remplace cette valeur dans (3.5) on obtient
AV = V.

Donc, X (t) = eMV sera solution si A € R est une valeur propre de A, de vecteur propre corres-
pondant V' € R™ — {0}. Il est a noter que le résultat marche également sur C.

3.4.2 Dimension 2

Avant de généraliser a la dimension n quelconque, nous allons commencer par les solutions des
systtmes de deux équations et les portraits de phase associés, c’est a dire 1’allure des courbes
décrites par ces solutions dans le plan R?. Trois cas peuvent se distinguer.

a. Deux valeurs propres réelles distinctes

Soient A et i deux valeurs propres réelles de A, avec A diagonalisable.
Si P est une matrice de passage composée d’une base de vecteurs propres, on a

A1t
1 tA et 0
P letAp — ( 0 ot ) , (3.20)

et les solutions de I’EDO homogene sont de la forme
X (t) = c1eM Py + cpe™' Py, (3.21)

ol c; et ¢y sont des constantes de R trouvées a partir des conditions initiales.
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b. Une valeur propre double

Deux sous-cas sont alors possibles.
i. Si A est diagonalisable, on a P une matrice de passage composée d’une base de vecteurs
propres, et

_ et
P letAp = ( 0 ot ) ; (3.22)

et les solutions de I’EDO homogene sont de la forme
X(t) = 1™ Py + 26" Py, (3.23)

ou c; et ¢y sont des constantes de R trouvées a partir des conditions initiales.
ii. La matrice A admet une valeur propre réelle double )y, mais un seul vecteur propre lui est

associé. Si P est une matrice de passage a une base de Jordan, alors
e)\()t te)\()t )

(3.24)

P_letAP = ( 0 e)\()t

Si on note P, un vecteur associé a la valeur propre )y alors on peut trouver un ensemble
fondamental X!, X2 tels que

Xt =eMp, X, =M (tP + K), (3.25)

ol K estun vecteur de R" a identifier.
les solutions de I’EDO homogene, sont alors données par X = ¢; X (t) + co X5(t), oli ¢; et
co sont des constantes de R trouvées a partir des conditions initiales.

¢. Deux valeurs propres conjuguées

Les valeurs propres \; et A, de A sont complexes conjuguées, i.e. Ao = Ay, ot \; = « + (i. Alors
A est semblable a

( _O‘ﬁ g) (3.26)
avec a = Re(\) et § = Im()\) et
1 iAp ot [ cos(Bt)  tsin(ft)
P lepP=e ( —sin(Bt) cos(Bt) ) (3.27)

Si on note P, et P, deux vecteurs propres associées aux valeurs propres, on peut alors écrire un
ensemble fondamental de deux facons.
i. X;(t) = M, et son conjugué. Les solutions de ’EDO homogene sont de la forme X =
ClX 1+ CQE.
ii. Sionnote By = Re(P;) et By =Im(P,)ona

X, = (By cos(Bt) — Bysin(Bt)) e, Xy = (Bycos(Bt) — By sin(ft)) e, (3.28)
Et les solutions sont données par une combinaison linéaire de X et Xs.
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3.4.3 Dimension n : cas ou A est diagonalisable

On pose K = R ou C.
Définition 3 (MATRICE DIAGONALISABLE)

A € M, (R) est diagonalisable dans K s’il existe A, ..., A, € Ketil existe P € .#,,(K)
inversible telle que
A=PDP!,

avec D = diag(\y, ..., \n) € M,,(K).

On obtient alors le résultat suivant.
Proposition 1 (EXPONENTIELLE ET VAL. PROPRES)
Si A est diagonalisable, alors, en utilisant les notations qui précedent, on a
et = peP'p ! (3.29)
avec
ePt = diag (e’\lt, o eA”'t) (3.30)

et comme les P; sont linéairement indépendants on a une base fondamentale

M(t) = (et pl...|e*'P,) . (3.31)

Remarque :
On remarque que si A est diagonalisable, M (¢) qui est la matrice fondamentale peut s’écrire

M(t) = PePt,
mais comme e P = PeP? alors
et = M(t).P!

Remarque :

On peut avoir des valeurs propres multiples méme si A est diagonalisable. En fait, A est diago-
nalisable sur R si toutes les valeurs propres sont réelles et s’il existe une base réelle de vecteurs
propres. C’est le cas par exemple quand la matrice A est symétrique, ou si les valeurs propres de
A sont distinctes, chacune de multiplicité 1.

3.4.4 Dimension n : cas A non diagonalisable

Rappel 3.3 MULTIPLICITE DE VALEURS PROPRES
On rappelle que N € C est vecteur propre de A si et seulement si \ est racine complexe du
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polynéme caractéristique de A,

Ps(N\) = det(\ — A).
En général P4(\) s’écrit sous la forme
Pa(N) = (A = AP (A = X)) (A = )%, (3.32)

avec M1, ..., \p € C les valeurs propres de A, dy, ...,d;, € N*, k € N*, etdy + ... + d, = n. Alors
la multiplicité de \j est dj, j = 1, ..., k. On appelle d; s’appelle multiplicité algébrique.

On voit de facon assez claire, que sik = netd; = ... = d, = 1l et A\1,....,\, € Ralors A est
diagonalisable sur R. Il n’est cependant pas nécessaire que les valeurs propres soient simples pour
avoir A diagonalisable.

Exemple
A =1d,, P;,(\) = (A—1)", une seule valeur propre de multiplicité 1 et pourtant I,, est diagona-
lisable sur R.

Remarque

Sip=a+p1 € Cavec o, € R, B # 0 est valeur propre de A de multiplicité m alors son
complexe conjugué I’est aussi (i = o — [31) est valeur propre de A de multiplicité m.

En fait pour toute valeur propre \; € C de A on note m; € N* la dimension de vecteur propre de A
associée a \;. Le nombre m; est appelé multiplicité géométrigue. Onal < m; < d;, j =1,....k
alors la matrice est diagonalisable. S’il existe j tel que ; < o alors la matrice A n’est pas
diagonalisable.

Question : comment procéder quand A n’est pas diagonalisable ?
La méthode consiste a trigonaliser A de maniére convenable. D’apres le cours d’algebre linéaire,
on sait qu’il existe P € .#,(C) inversible et S € .#,,(C) triangulaire supérieure telle que

A=PSP, (3.33)

avec S qui s’écrit par blocs de la maniere suivante

S, 0 - 0
0 Sy -+ 0
= . . (3.34)
0 0 - S
avec les blocs S; € .#,,(R) qui sont des matrices carrées de taille d; de la forme
A sty e Sjl:dj
0 A - s
S (3.35)
0 0 - A

S; est triangulaire supérieure avec les \; sur la diagonale.
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F{Théoréme 7 (EXPONENTIELLE-TRIDIAGONALE)}

Si on peut écrire A sous la forme tridiagonale grace a la formule (3.33) précédente avec P
inversible et 7" donnée par (3.34) et (3.35) alors e s’écrit par blocs de la facon suivante

et 0 0
0 €S2t .. 0
edt = p , ) p! (3.36)
b 0 eé’@t

avec e € ./, (C) donnée par

1

1 _
Sit At 2 2 a;—1 &
P =M [ +tM; + =t°M: + ...+ ———t*% " M.” 3.37
e e M+ M+ +(aj_1) ; (3.37)
ou Sj = )\]I I Mj
~ Théoréme 8 (SYSTEME FONDAMENTAL)
Un systeme fondamental de solutions de
X'=AX (3.38)

qui est de la forme
1,1 1,« 2,1 2,a k,1 k,a
X L, X X5t X0 XL Xk

avec
Xj,l _ e)\thJ,l’Xj,Q — €>\th]’2, EX]’aj —_ ez\jtc‘?],ocj7

et les Q7' sont des vecteurs polynomes de degré inférieura l — 1,1 =1, ..., a;
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Chapitre 4

Equations autonomes-Etude qualitative

Dans ce chapitre, nous allons nous intéresser aux EDO linéaires ou non linéaires autonomes
données dans la définition (3) mais seulement a I’ordre 1 étant donné que nous pouvons nous ra-
mener a cet ordre, comme nous 1’avons vu dans le chapitre 1. Autrement dit, nous nous intéressons
aux équations de la forme

o' = f(z), 4.1

ou f est une fonction définie sur un ouvert J de R™ a valeurs dans R™. Afin de satisfaire le
probléeme de Cauchy-Lipschitz (3), nous supposerons dans tout ce chapitre que f est localement
lipschitzienne.

Méme si le probleme a I’air simple pour les EDO autonomes, il y a treés peu de cas oll nous savons
trouver des solutions explicites. Il est donc intéressant de faire une analyse qualitative (par oppo-
sition a une étude quantitative) des solutions pour nous donner une idée du comportement de ces
dernieres autour de solutions "spéciales” que 1’on précisera plus bas.

Avant cela nous allons voir dans un premier temps, comment on construit graphiquement des so-
lutions sans en connaitre leur formulation explicite. Puis nous ferons une étude qualitative des
solutions de 1’équation autonome, en dimension 1 dans un premier temps, pour les cas linéaires,
puis non-linéaires. Nous le ferons également en dimension 2 (qui est peut étre intéressant graphi-
quement) et nous généraliserons a la dimension n.

4.1 Dimension 1

4.1.1 Préambule : construction graphique des solutions

Avant de commencer a étudier qualitativement les solutions, rappelons comment il est possible
d’interpréter graphiquement les solutions d’EDO du premier ordre sous forme normale

r’ = f(t>x>7

out € [ et x est a valeurs dans R.

En chaque point (%o, x¢) la valeur f(to,zo) donne la pente des solutions qui passent par ce point.
Il est donc possible de trouver 1’allure de la courbe représentative de la solution de I’EDO passant
par (%o, o) grice aux tangentes en chaque point de la courbe.
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Exemple
Trouver ’allure des courbes solutions de I’EDO ' = t, passant par un point (to, o) que vous
choisirez.

Définition 1 (ISOCLINES)

On appelle isocline K de I’équation 2’ = f(¢, ), ’ensemble des points (¢, ) € R? tels
que f(t,x) = K.

Exemple

1. Tracer quelques isoclines correspondant a I’équation ' = t. En déduire I’allure des tra-
Jjectoires solutions de I’exemple précédent.

2. Tracer quelques isoclines correspondant a I’équation x' = x> — t. En déduire I’allure des
trajectoires représentant les solutions de cette équation.

3. Méme question avec I'équation ' = x(1 — z).

Remarque

Le dernier exemple représente un cas ou l’équation différentielle est autonome. On voit bien
qu’alors les isoclines présentent des particularités spécifiques, de méme pour [’allure des tra-
Jjectoires. C’est ce que nous allons voir dans la section suivante.

4.1.2 Equations autonomes en dimension 1

Dans cette section nous ne nous intéresserons qu’aux équations autonomes dont les solutions sont
définies sur un intervalle / C R a valeurs dans R.

Nous avons dans la section (1.4.2) que les solutions des EDO autonomes sont monotones. Cette
propriété importante permettra de déduire plus facilement le comportement des solutions.

Théoreme 1 (INVARIANCE PAR TRANSLATION)

Si ¢t — z(t) est solution de 'EDO autonome

' = f(x), 4.2)
sur un intervalle / C R alors pour tout ¢ € R, la fonction ¢ — y(t) := z(t + ¢) est aussi
solution.

Remarque

Grdce a cette invariance par translation, on peut choisir de représenter le comportement des so-
lutions de I’EDO autonome sur un axe vertical.
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Définition 2 (PORTRAIT DE PHASE)

Cette représentation sur un axe verticale est appelée portrait de phase de ' = f(x) sur
I CR

Remarque
Attention, on ne le fait que lorsque f est lipschitzienne, sinon on pas existence et unicité des
solutions.

Exemple
Tracer le portrait de phase de I’équation suivante

¥ =xz(l—x).

On remarque que le portrait de phase s’articule autour de points spéciaux : des poins pour lesquels
la fonction f s’annule. Or, dans ’EDO autonome 2’ = f(x), si f s’annule pour une fonction x*,
sur un intervalle I C R, cela signifie que z*(t) = Constante pour tout t € I. Autrement dit, la
fonction f n’a pas d’action sur x* dans le temps. On dit que la solution est stationnaire.

Définition 3 (SOLUTION STATIONNAIRE)

On appelle solution stationnaire (ou également point d’équilibre ou point critique), une
solution constante x* telle que f(x*) = 0.

Tracer le portrait de phase consiste donc a :
a. Tracer I’axe des ordonnées
b. Reporter les points ou f s’annule (points d’équilibre)
c. Entre deux points d’équilibre, f ne change pas de signe. Reporter alors ce signe sous forme
de fleches.

Remarque

a. Sous les hypothéses de Cauchy-Lipschitz si pour un tq la solution x(ty) est située au-dessus
d’un point d’équilibre x*, elle le sera pour tout t € I ou elle est définie.

b. Méme chose avec au-dessous.

c. Comme les solutions sont monotones, on ne peut pas observer d’oscillations.

4.1.3 Stabilité des équilibres

Une fois les équilibres des solutions trouvés, il est intéressant de savoir s’ils sont stables ou non
dans le sens ou, si on perturbe 1égerement un équilibre, est-ce que la solution perturbée reviendra
vers 1’équilibre (stable) ou est-ce qu’il s’en éloignera (instable) ?
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,—( Définition 4 (EQUILIBRES STABLES, INSTABLES) |

Soit * un équilibre d’une EDO autonome.
1. S’il existe au-moins une perturbation de x* qui est amplifiée par le systeme on dit
que I’équilibre est instable
2. Si toutes les perturbations tendent vers 0 quand ¢ tends vers I'infini, on dit que
I’équilibre est asymptotiquement stable
3. Si les perturbations ne sont ni amplifi€es, ni amorties, 1’équilibre est neutralement
stable.

Remarque
Ici, “légerement perturbé” signifie que ’on ne s’intéresse qu’a des petites perturbations, on parle
alors de stabilité locale (par opposition a stabilité globale) que I’on verra plus tard.

~ Définition 5 (CLASSIFICATION DES EQUILIBRES)

1. Lorsqu’un équilibre est stable on dit que c’est un puits ou un point attractif

2. Lorsqu’un équilibre est instable on dit que c’est une source ou un point répulsif

3. Lorsqu’un équilibre est attractif pour une perturbation inférieure a cet équilibre
et répulsif pour une perturbation supérieure, on dit que ¢’est un shunt positif

4. Lorsqu’un équilibre est attractif pour une perturbation supérieure a cet équilibre
et répulsif pour une perturbation inférieure, on dit que c’est un shunt négatif.

— Définition 6 (QUALITATIVEMENT EQUIVALENT) .

On dit que deux EDO autonomes sont qualitativement équivalentes si et seulement si
elles ont le méme nombre d’équilibres et que ceux-ci sont de méme nature.

4.1.4 Etude analytique de la stabilité

1. Cas linéaire z' = \x
Le seul équilibre de cette EDO est z* = (. On rappelle également que si une solution
s’annule pour un point ¢y € I C R alors cette solution est partout identiquement nulle.
Considérons un probleme de Cauchy d’équation différentielle '’ = Az ou A € R ayant
pour condition initiale 2:(0) # 0. Les solutions sont de la forme

Trois cas se présentent alors :
(@ SiA>0, tli+m |z(t)| = +o00. L’équilibre z* = 0 est appelé source : ¢’est un équilibre
—+00
instable,
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(b) Si A < 0, tli+m |z(t)| = 0. L’équilibre z* = 0 est appelé puits : c’est un équilibre
— 400
asymptotiquement stable,
(c) Si A =0, z(t) = x(0). Tous les points sont des équilibres neutralement stables.

2. Cas non-linéaire 2’ = f(x)
Considérons I’équation différentielle non-linéaire =’ = f(x) o f est une application non
linéaire qui vérifie les hypotheses du théoreme de Cauchy-Lipschitz. On suppose que cette
équation possede au-moins un équilibre noté x*. Autrement dit, la solution constante z* vé-
rifie I’équation f(x*) = 0. L’objectif de cette section est de nous ramener au cas précédent
en linéarisant autour de z*.
Meéthode :
-on pose (t) = x* + x,(t) pour tout ¢ € I ol z,, est une perturbation supposée petite (dans
le voisinage de 0),
-on injecte ce x(t) dans 1’équation différentielle 2’ = f(x) et on obtient :

= f(z* + x,). (4.3)

Le probleme provient de la non-linéarité de I’application f. Nous allons alors linéariser
f autour de z* ou pour étre plus précis entre z* et x,,. En supposant que f soit dérivable
dans un voisinage de x*, et en faisant un développement de Taylor a ’ordre 1 on obtient
I’approximation suivante :

fla™ +a) — f(27)

Lp

~ f'(z7). (4.4)

Rappelons que nous sommes dans un voisinage de z*, c’est a dire que notre perturbation
x,, est “suffisamment petite”.

-Nous obtenons alors, a partir de (4.3) et (4.4) I’équation linéaire, qui est en fait une ap-
proximation mais que par abus nous poserons comme une équation,

x, = f'(z")zp. 4.5)

On se ramene ainsi au cas linéaire de la section précédente. Les solutions de I’équation
(4.5) sont données par
2, (t) = cel" @ (4.6)

ou c est une constante donnée par la condition initiale, et I’on conclut comme dans la sec-
tion précédente :

(a) Si f'(z*) > 0, nous avons tliin |z, (t)] = 400, et alors z* sera instable.
—+o0

(b) Si f'(z*) < 0, nous avons tlgnoo |z, ()] = 0, et alors 2* sera localement asymptotique-
ment stable.
(c) Si f'(z*) = 0, I’équation linéarisée ne permet pas de conclure tout de suite.

Pour ce dernier cas, il faut
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