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Abstract

We propose a new mathematical model of erythropoiesis that takes a positive feedback of erythrocytes on progenitor apoptosis into

account, and incorporates a negative feedback of erythrocytes on progenitor self-renewal. The resulting model is a system of age-

structured equations that reduces to a system of delay differential equations where the delays account for progenitor compartment

duration and cell cycle length. We compare this model with experimental data on an induced-anemia in mice that exhibit damped

oscillations of the hematocrit before it returns to equilibrium. When we assume no self-renewal of progenitors, we obtain an inaccurate

fitting of the model with experimental data. Adding self-renewal in the progenitor compartment gives better approximations, with the

main features of experimental data correctly fitted. Our results indicate the importance of progenitor self-renewal in the modelling of

erythropoiesis. Moreover, the model makes testable predictions on the lifespan of erythrocytes confronted to a severe anemia, and on the

progenitors behavior.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Hematopoiesis is the process through which all func-
tional mature blood cells are generated. Homeostasis—that
is the regulation of the production of different cell types to
maintain stable populations—in the hematopoietic system
is required in all vertebrates throughout life and needs a
tight and constant regulation of decisions between pro-
liferation, apoptosis and differentiation of hematopoietic
cells.

All blood cells originate from hematopoietic stem cells
(HSCs) (Weissman, 2000) entering differentiation path-
e front matter r 2007 Elsevier Ltd. All rights reserved.
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ways through successive divisions. Differentiated HSC
form burst forming units (BFUs) and colony forming units
(CFUs), known as progenitors. These latter can be
separated in distinct lineages such as: white cells, platelets,
or red blood cells. For example, differentiation of BFU-E
and CFU-E can lead to the production of erythrocytes (red
blood cells). Finally, after several divisions, progenitors
become precursors. These latter go through a finite number
of divisions before reaching the bloodstream as mature
cells.
Self-renewal (Watt and Hogan, 2000) is the ability of a

cell to divide and give two daughter cells that retain the
same maturity as the mother cell, while keeping at all time
the ability to engage in a differentiation process (i.e. to give
two daughter cells, one of which at least being more mature
than the mother cell). In the hematopoietic system, self-
renewal is generally considered to be a specific property of
the HSC (Weissman, 2000). However, neither the daily
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generation of 200� 109 red blood cells nor stress erythropoi-
esis (Bauer et al., 1999) can easily be explained by the idea
that only HSC can self-renew. Thus the hypothesis that
immature progenitors can also self-renew has been proposed
and has been supported by experimental evidences (Bauer
et al., 1999; Gandrillon et al., 1999; Pain et al., 1991).

We focus our work here on erythropoiesis, the process
through which red blood cells are produced. We explore
the putative role of self-renewal at the progenitor level,
through a mathematical modelling of erythropoiesis that
can be confronted with real life data.

Numerous mathematical models of hematopoiesis or
hematopoiesis lineages have been proposed (for a recent
review, see Roeder, 2006). Among these, let us point out
the work of Mackey (1978), who in 1978 published one of
the pioneering paper in the field of physiological models for
oscillating phenomena within the hematopoietic system.
Mackey’s model was based on publications by Lajtha
(1959) and Burns and Tannock (1970).

Mackey’s model has been developed then by many
authors, including Mackey and co-workers, to describe
differentiation and maturation processes involved in
hematopoiesis more precisely. Bernard et al. (2003a,
2004) focused on the white blood cell production to bring
an explanation to oscillatory behaviors observed in
patients with cyclical neutropenia. Pujo-Menjouet and
Mackey (2004) used a similar model to investigate the
appearance of oscillations in blood cell counts within
patients with chronic myelogenous leukemia. A global
model was proposed by Colijn and Mackey (2005a, b),
derived by combining sub-models of the various lineages,
to explain some cases of periodic hematological diseases
(see Haurie et al., 1998, 1999 for a review of periodic
hematological diseases). The reader interested in the
mathematical modelling of stem cells dynamics applied to
blood diseases can consult Adimy and Crauste (2003),
Adimy and Pujo-Menjouet (2003), Adimy et al. (2005a, b,
2006b), Mackey and Rudnicki (1994, 1999), Pujo-Men-
jouet et al. (2005) and the references therein.

In 1995, Bélair et al. (1995) proposed a modification of
Mackey’s model to consider the influence of growth factors
on stem cell differentiation. The authors focused on
erythropoiesis and assumed that erythropoietin (EPO)—a
growth factor known to play a crucial role in erythropoiesis
regulation—acted only on introduction of HSC in cycle.
Their model was improved in 1998 by Mahaffy et al.
(1998), and recently analyzed in detail by Ackleh et al.
(2002, 2006) and Banks et al. (2004). Another erythropoi-
esis model, inspired by the same article, was introduced in
Adimy et al. (2006a). In these works, EPO is the only
growth factor supposed to act during erythropoiesis, and
its action is always located at the introduction of HSCs in
cell cycle. Recently, Adimy and Crauste (2007) considered
a modification of the model in Bélair et al. (1995) to take
the influence of erythropoietin on HSC apoptosis into
account (Koury and Bondurant, 1990), but they only
performed a theoretical study of the model.
An important contribution to mathematical modelling of
erythropoiesis also appears in the works of Loeffler and his
collaborators (Loeffler and Wichmann, 1980; Loeffler et
al., 1989; Pantel et al., 1990; Wichmann and Loeffler, 1985;
Wichmann et al., 1985, 1989; Wulff et al., 1989), mainly
published between 1980 and 1990, but also recently
(Roeder and Loeffler, 2002; Roeder, 2006). Throughout a
collection of papers, Loeffler et al. investigate mathema-
tical models of erythropoiesis and granulopoiesis, taking
into account feedback controls from progenitors at the
stem cell level and from mature cells (mainly assimilated to
precursors) on progenitors. Their model also consider self-
renewal of HSC. This is detailed in Wichmann and Loeffler
(1985), where the authors investigated the behavior of this
model, and fitted it to various experiments (including
irradiations, bleeding, and phenylhydrazine treatments of
mice). Application of their model to phenylhydrazine
treatments can be compared to the results presented in
Section 2, even though our experiments are closer to
Wichmann and Loeffler experiments of bleeding on mice.
However, all these works were performed, in particular,
before the importance of EPO on the regulation of
apoptosis was proved (Koury and Bondurant, 1990), and
assumptions on erythroid progenitor self-renewal appeared
(Bauer et al., 1999; Gandrillon et al., 1999; Pain et al.,
1991). Moreover, the dynamics observed by the authors in
their series of erythropoiesis–granulopoiesis modelling works
is mainly concerned with hematopoietic stem cells properties
and their regulation, and this latter problem is still only
partially known at the molecular level (Krause, 2002).
In this work, we modify the erythropoiesis part of Colijn

and Mackey’s 2005a model in order to focus ourselves on
the influence of EPO upon progenitor apoptosis (Koury
and Bondurant, 1990) and of glucocorticoids upon
progenitor self-renewal (Bauer et al., 1999). Indeed, Colijn
and Mackey (2005a) only considered feedback of the
erythrocyte population on the rate of differentiation of
HSCs, and no self-renewal appears elsewhere but in the
HSCs compartment. To the best of our knowledge, the
latter assumption on the feedback control of erythrocytes
on HSCs differentiation is no longer believed to hold
amongst biologists (see Krause, 2002). We first present
some experimental results that seem to indicate the
importance of self-renewal for progenitors. Then, we
propose a new model for erythropoiesis, which is an age-
structured model, that we reduce to a system of delay
differential equations (similarly to what has been done by
Bélair et al., 1995). We then analyze this model without
taking self-renewal into account, in Section 5, and show
that, even though theoretical results display interesting
properties, the model does not fit experimental data well.
After carrying out numerical simulations on the complete
model, we conclude in Section 6 that progenitor self-
renewal in erythropoiesis is important, as expected from
experimental data. In the last section, a discussion stresses
out the limits of this model and rises new questions
concerning erythropoiesis modelling.
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2. Experimental evidence of feedback controls

In order to study the kinetics of erythrocyte populations,
we performed a series of experiments (in the Centre de
Génétique Moléculaire et Cellulaire Laboratory, O. Gan-
drillon’s team) to measure hematocrit in mice. Hematocrit
is a test that measures the volume of red blood cells in a
blood sample. It gives a percentage of erythrocyte volume
found in the whole blood system. It can be considered that
a blood sample is mainly composed with erythrocytes and
plasma, since platelets and white cells volumes can be easily
neglected. Our approach consisted in destabilizing the
steady state hematocrit by creating an anemia, and
observing the return to equilibrium.

The hematocrit values were taken from two different
batches of adult outbred Hsd-ICR mice. Each batch
consisted of six males and six females. One batch was
rendered anemic by two intraperitoneal phenylhydrazine
injections (60mg/kg body weight) at 24 h intervals. The
control batch was not injected. Blood was collected from
the peri-orbital sinus of the mouse directly in microhema-
tocrit tubes at the indicated time intervals (that is daily
intervals excluding Sundays for 2 weeks and then at 2–3
days intervals for the rest of the period, for the anemic
batch, and at 2–3 days intervals for the control batch).
Fig. 1 shows the results of this experiment.

The hematocrit of the control batch stays at its steady
value, between 45% and 50% (Panel B), whereas the
hematocrit of the injected batch (Panel A) displays very
clear features: following the anemia, that makes the
hematocrit fall to very low values (about 23� 3%), the
hematocrit rapidly increases to reach a high value (about
55� 3%), and then returns to the equilibrium, but not in a
very smooth manner.

In both cases, it seems that the hematocrit oscillates
about its steady value. However, the standard deviation
lines in the hematocrit of the control batch (Fig. 1B) seem
to indicate that what could be thought as oscillations
corresponds in fact to perturbations about the mean. For
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Fig. 1. Hematocrit values from two different batches of adult outbred Hsd-IC

deviation lines on either side of the mean. Panel A: Hematocrit of the anemic

batch (not injected).
the anemia-induced batch, however, anemia seems to
trigger damped oscillations before the hematocrit returns
to the equilibrium.
A simple way to determine periodicity in unevenly

distributed data samples is to use the Lomb periodogram
(Lomb, 1976). If a periodicity exists in a data sample, then
it corresponds to a peak in the periodogram curve. We
computed the Lomb periodogram for the data in Fig. 1
(data not shown here), and they tend to corroborate the
above remark on the damped oscillations. However, since
we do not really look for any periodicity in our data, but
rather for damped oscillations, the use of the Lomb
periodogram can be discussed. One can however keep in
mind that the Lomb periodogram confirms that a normal
hematocrit does not oscillate.
In the next section, we propose a new model for

erythropoiesis, that incorporates nonlinear apoptosis and
self-renewal rates of progenitors. This model will be
confronted to the above experimental data corresponding
to a severe anemia, in order to stress the importance of
erythroid progenitors self-renewal in erythropoiesis.

3. An age-structured model of erythropoiesis

As described in the introduction, one can basically
consider that erythropoiesis involves three types of cell
populations. HSCs, considered as the root of the process,
progenitors also known as committed stem cells coming
from differentiated HSCs, and erythrocytes, or red blood
cells, which are the final state of cells in erythropoiesis.
The question of the control of HSC differentiation into

given lineages is open (see e.g. Krause, 2002 for a review).
It is especially unclear to see whether this cell fate decision
is controlled by a purely stochastic mechanism or is the
result of environmental cues mediated at least in part
through specific receptor ligand interactions. Since this part
of the process is mostly unknown, and since we are
interested in modelling the erythroid progenitor compart-
ment, we decided not to incorporate the control of HSC
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differentiation in the model, but to model the flow from
HSC into erythroid progenitor as a constant. Hence, in our
model, we do not consider the HSC population but rather
the influx of HSC becoming progenitors, denoted by K.

Then, let us consider three different cell populations,
self-renewing progenitors, non-self-renewing progenitors
and erythrocytes, with densities respectively denoted by
psrðt; aÞ, pðt; aÞ and eðt; aÞ. These quantities represent the
densities of cell populations formed by progenitors (for
psrðt; aÞ and pðt; aÞ) or erythrocytes (for eðt; aÞ) with age a at
time t. For progenitors, age corresponds to the time spent
between two successive divisions. It can be noted that all
cells age with unitary velocity, that is

da

dt
¼ 1.

Dynamics of these populations are as follows. The
progenitor compartment is supplied at a constant rate K

with HSCs. Progenitors die by apoptosis with a rate b and
they self-renew with a rate s. We denote by tc the time
needed by a progenitor to self-renew, and by tp the
progenitor compartment duration, that is the time needed
by a progenitor cell to become mature and enter the last
part of its differentiation process. Self-renewing progeni-
tors can also die by apoptosis. After maturing and
differentiating, progenitors become erythrocytes—we do
not explicitly take progenitor differentiation through
divisions into account, but we suppose that the cell
population entering the erythrocyte compartment corre-
sponds to the progenitors at the end of their compartment
(that is when t ¼ tp), multiplied by an amplification
parameter A which describes the successive divisions of
progenitors (about 7–8 divisions). Erythrocytes are as-
sumed to die with a constant rate g, equal to 1 over the
average lifespan of an erythrocyte. They modulate apop-
tosis and self-renewal of progenitors through control loops.
Erythrocytes are assumed to positively control apoptosis of
progenitors, and negatively control their self-renewal. A
schematic representation of this model is provided in Fig. 2.

Then, densities pðt; aÞ, psrðt; aÞ and eðt; aÞ satisfy the
following evolution equations for t; a40:

qp

qt
ðt; aÞ þ

qp

qa
ðt; aÞ ¼ �bpðt; aÞ � spðt; aÞ,
Fig. 2. Schematic representation of the model. Progenitors have an ability

to self-renew. A negative feedback of erythrocytes on this self-renewal is

incorporated, as well as a positive feedback on progenitor apoptosis.

Dashed lines indicate feedback controls.
qpsr

qt
ðt; aÞ þ

qpsr

qa
ðt; aÞ ¼ �bpsrðt; aÞ,

qe

qt
ðt; aÞ þ

qe

qa
ðt; aÞ ¼ �geðt; aÞ. ð1Þ

This system must be completed by boundary conditions,
describing the cell flux between the three compartments
(progenitors, self-renewing progenitors and erythrocytes),
and initial conditions representing an initial distribution of
populations in the system. We do not pay too much
attention to initial conditions because our next step will be
to reduce system (1) to a delay differential system with
different initial conditions.
Boundary conditions for system (1) are given by

pðt; 0Þ ¼ K þ 2psrðt; tcÞ,

psrðt; 0Þ ¼

Z tp

0

spðt; aÞda,

eðt; 0Þ ¼ Apðt; tpÞ. ð2Þ

The first condition in (2) describes the input of progenitors.
Cells entering the progenitor compartment come from
HSCs (that is K) and from self-renewing progenitors that
have completed a cell cycle ð2psrðt; tcÞÞ. The second
equation represents progenitors entering self-renewal. The
third equation describes new erythrocytes coming from the
progenitor compartment.
We do not impose a maximal age for erythrocytes, but

we assume

lim
a!þ1

eðt; aÞ ¼ 0

fast enough for the total density of erythrocytesRþ1
0 eðt; aÞda to be finite for all time t.
We assume that erythrocytes apply a positive feedback

on progenitor apoptosis, and a negative feedback on
progenitor self-renewal. In fact, progenitor apoptosis is
mainly mediated by EPO, whose production is in turn
dependent on the number of circulating erythrocytes. We
do not want, for the moment, to complicate our
erythropoiesis modelling by adding EPO concentration.
So we implicitly describe its influence on apoptosis by
considering that apoptosis depends on the total number of
erythrocytes. In the same way, self-renewal seems to be
mainly mediated by glucocorticoids (cortisol), but we
suppose that self-renewal depends only on the total number
of erythrocytes. That is, we assume

b ¼ b
Z þ1
0

eðt; aÞda

� �
and s ¼ s

Z þ1
0

eðt; aÞda

� �
,

where b is a positive, continuous and increasing function,
with

bð0Þ ¼ 0 and lim
E!þ1

bðEÞ ¼ b140,

and s a positive, continuous and decreasing function, with

sð0Þ ¼ s040 and lim
E!þ1

sðEÞ ¼ 0.
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Under these assumptions, system (1)–(2) is nonlinear, with
positive and negative controls. In the next section, we show
that this model can be easily reduced to a system of two
nonlinear differential equations with delays.
4. Reduction to a system of delay differential equations

Let us define the total densities of non-self-renewing
progenitors, self-renewing progenitors and erythrocytes at
time t, denoted by PðtÞ, PsrðtÞ and EðtÞ, respectively, as

PðtÞ ¼

Z tp

0

pðt; aÞda,

PsrðtÞ ¼

Z tc

0

psrðt; aÞda and EðtÞ ¼

Z þ1
0

eðt; aÞda.

Integrating system (1) over the age (between a ¼ 0 and a ¼

tp for pðt; aÞ, a ¼ 0 and a ¼ tc for psrðt; aÞ, and a ¼ 0 and
a ¼ þ1 for eðt; aÞ), one obtains

dP

dt
ðtÞ ¼ �½bðEðtÞÞ þ sðEðtÞÞ�PðtÞ þ pðt; 0Þ � pðt; tpÞ,

dPsr

dt
ðtÞ ¼ �bðEðtÞÞPsrðtÞ þ psrðt; 0Þ � psrðt; tcÞ,

dE

dt
ðtÞ ¼ �gEðtÞ þ eðt; 0Þ,

which becomes, using (2),

dP

dt
ðtÞ ¼ � ½bðEðtÞÞ þ sðEðtÞÞ�PðtÞ

þ K þ 2psrðt; tcÞ � pðt; tpÞ,

dPsr

dt
ðtÞ ¼ � bðEðtÞÞPsrðtÞ

þ sðEðtÞÞPðtÞ � psrðt; tcÞ,

dE

dt
ðtÞ ¼ � gEðtÞ þ Apðt; tpÞ. ð3Þ

One needs to determine psrðt; tcÞ and pðt; tpÞ to obtain a
clear expression for system (3). To that aim, we use the
method of the characteristics (see Appendix A for details).
We thus obtain, for t4tp þ tc, the reduced model

dP

dt
ðtÞ ¼ � ½bðEðtÞÞ þ sðEðtÞÞ�PðtÞ

þ K þ 2sðEðt� tcÞÞPðt� tcÞ

� exp �

Z t

t�tc

bðEðsÞÞds

� �

� K þ 2sðEðt� tp � tcÞÞPðt� tp � tcÞ

"

� exp �

Z t�tp

t�tp�tc

bðEðsÞÞds

 !#

� exp �

Z t

t�tp

ðbðEðsÞÞ þ sðEðsÞÞÞds

 !
,

dE

dt
ðtÞ ¼ � gEðtÞ þ A exp �

Z t

t�tp

ðbðEðsÞÞ þ sðEðsÞÞÞds

 !

� K þ 2sðEðt� tp � tcÞÞPðt� tp � tcÞ

"

� exp �

Z t�tp

t�tp�tc

bðEðsÞÞds

 !#
, ð4Þ

where the equation for Psr is omitted since it has no impact
on other equations of (4). However, introducing the
population of self-renewing progenitors was convenient
to obtain system (4) as shown in Appendix A.
Let us briefly explain the role of each term in system (4).
The first equation describes the evolution of the

total density of progenitors. The first terms on the right-
hand side of the first equation account for cell loss
due to apoptosis and cells entering self-renewal. The
second term represents the amount of cells entering the
progenitor compartment, one part from the HSC compart-
ment and the other one from cells that have completed a
cell cycle and re-entered the progenitor compartment (self-
renewal), after division (that is why there is a coefficient 2).
Finally, the last term is for progenitors that become
erythrocytes (one can note that some of these cells directly
derive from HSCs that have survived the progenitor
compartment).
The second equation determines the evolution of the

erythrocyte density. Erythrocytes can only die, with a
constant rate g, and the second term in the right-hand side
of the second equation is for progenitors that enter the
erythrocyte compartment, as described above.
In the next sections, we investigate this model, first

without self-renewal and then with it. Then we point out
the main differences between these two cases.
5. Is it necessary to take self-renewal of progenitors into

account to reproduce experimental results?

Before investigating the dynamics of system (4) and the
consequences of apoptosis and self-renewal, let us first
consider the case where progenitors do not self-renew.
Then the erythropoiesis process, as described in Fig. 2,
becomes simpler as shown in Fig. 3.
In this case, system (4) becomes

dP

dt
ðtÞ ¼ �bðEðtÞÞPðtÞ þ K 1� exp �

Z t

t�tp

bðEðsÞÞds

 !" #
,

ð5Þ

dE

dt
ðtÞ ¼ �gEðtÞ þ AK exp �

Z t

t�tp

bðEðsÞÞds

 !
. ð6Þ

This is an uncoupled system of nonlinear differential
equations with a single delay tp. The important point is
that Eq. (6) does not depend on the progenitor population
PðtÞ. Hence, it is sufficient to focus on the dynamics of the



ARTICLE IN PRESS

p

Fig. 3. A schematic representation of erythropoiesis without progenitor

self-renewal. We consider two cell populations, progenitors PðtÞ and

erythrocytes EðtÞ. Details of the considered mechanisms describing the

dynamics of progenitor and erythrocyte populations are given in Section 3,

except that there is no progenitor self-renewal in the present case.

Erythrocytes positively control progenitor apoptosis (dashed line).
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solutions of Eq. (6). In particular, one only needs to
determine a steady state of (6) and its asymptotic behavior
to deduce the asymptotic behavior of the entire system
(5)–(6).

Even though self-renewal of erythroid progenitors can be
considered as the main feature of system (4), it is not the
only novelty incorporated in this system. In particular, the
feedback control of erythrocytes (via EPO, even in an
implicit way) on progenitors apoptosis has never been used
in erythropoiesis modelling (the only feedback on apopto-
sis considered in previous studies used to have an influence
on the HSC population, see Adimy and Crauste, 2007), so
system (5)–(6) does not reduce to any previously published
model of erythropoiesis.

We recall that the apoptosis function E 7!bðEÞ is
assumed to be increasing with

bð0Þ ¼ 0 and lim
E!1

bðEÞ ¼ b140.

We first concentrate on the existence of steady states for
system (5)–(6). We investigate then the stability of this
steady state and we focus on numerical simulations.
5.1. Existence of steady states

We recall that ðP�;E�Þ is a steady state of system (5)–(6)
if P� and E� are solutions of (5)–(6) satisfying

dP�

dt
ðtÞ ¼

dE�

dt
ðtÞ ¼ 0 for t40.

Consequently, a steady state of system (5)–(6), also called a
stationary solution or equilibrium, is a constant solution of
(5)–(6).

Thus, a steady state ðP�;E�Þ of system (5)–(6) satisfies

bðE�ÞP� ¼ K ½1� e�tpbðE�Þ�, ð7Þ

gE� ¼ AKe�tpbðE�Þ. ð8Þ

Eq. (8) gives the existence of a unique E�40 satisfying (8).
Indeed, since b is a positive and increasing function, the
mapping z 7!AKe�tpbðzÞ is decreasing for zX0, and ranges
from AK to AKe�tpb1 . The function z 7!gz is strictly
increasing and ranges from 0 to þ1. Therefore, we deduce
the existence of a unique E�40 verifying (8).
From the expression of E� one easily deduces P� using
(7), that is

P� ¼ K
1� e�tpbðE�Þ

bðE�Þ
¼

AK � gE�

AbðE�Þ
.

Thus we claim the existence of a unique steady state
ðP�;E�Þ of system (5)–(6) defined by (7)–(8), and satisfying

AKe�tpb1

g
oE�o

AK

g
and 0oP�oK

1� e�tpb1

bðAKe�tpb1=gÞ
.

(9)

From a biological point of view, the quantity AK=g
corresponds to the steady state value of the erythrocyte
density in the absence of progenitor apoptosis (it is easily
seen from (8) with b ¼ 0), and similarly AKe�tpb1=g
corresponds to the steady state value when apoptosis is
at its maximum. Thus the above inequality on E� only
gives bounds for E� that correspond to extreme situations
in system (7)–(8), these bounds describing absolutely
virtual erythrocyte densities.

5.2. Asymptotic stability and existence of periodic solutions

We analyze the asymptotic behavior of the unique steady
state of system (5)–(6) by linearizing it about its steady
state. Since the behavior of system (5)–(6) is entirely given
by the behavior of the solution EðtÞ, we only linearize Eq.
(6) about E�.
We set zðtÞ ¼ EðtÞ � E�. Then Eq. (6) linearized about

E� is

dz

dt
ðtÞ ¼ �gzðtÞ � x

Z 0

�tp

zðtþ sÞds, (10)

where, from (8),

x ¼ AKb0ðE�Þe�tpbðE�Þ ¼ gE�b0ðE�Þ40. (11)

From Eq. (10) we can deduce the characteristic equation of
(6), defined by

lþ gþ x
Z 0

�tp

els ds ¼ 0; l 2 C. (12)

By studying the complex roots of (12), that are called
characteristic roots of (10) or eigenvalues, we can
determine whether E� is asymptotically stable or unstable.
The asymptotic stability of E� is determined by the sign

of the real parts of eigenvalues of (10), that is of roots of
(12). If all eigenvalues of (10) have negative real parts, then
E� is locally asymptotically stable. If there exist eigenvalues
of (10) with positive real parts, then E� is unstable.
Moreover, the stability of E� can only be lost if purely
imaginary eigenvalues appear.
We first check (see Appendix B for details) that l ¼ 0 is

not an eigenvalue of (10), so the integral in (12) can be
computed and (12) is equivalent to

l2 þ glþ x� x e�ltp ¼ 0 and la0.
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The study of complex roots of (12) is then equivalent to the
study of non-zero complex roots of

l2 þ glþ x� x e�ltp ¼ 0. (13)

It is straightforward (see Appendix B) to obtain that all
non-zero roots of (13) have negative real parts when tp ¼ 0,
that is E� is locally asymptotically stable in this case.

Consequently, we check if there could exist a critical
value of tp40 that destabilizes the steady state E�.
Actually, we are going to prove that the steady state may
be destabilized through a Hopf bifurcation (see details in
Appendix B).

Assuming tp40, and looking for eigenvalues of the form
l ¼ io, with o 2 R, we first obtain that (10) has no purely
imaginary characteristic roots if 2xpg2, and so the stability
of the steady state E� cannot be modified. Since it is locally
asymptotically stable when tp ¼ 0, then it is locally
asymptotically stable for tpX0 under condition 2xpg2.

Then, studying the case 2x4g2, using simple techniques
(see, for example, Kuang, 1993) one obtains the existence
of simple purely imaginary roots �io of (10), with

o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
, for

tp ¼ t�p :¼
arccos

g2

x
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p .

Moreover, these characteristic roots satisfy the so-called
transversality condition, that is real parts of the branch of

eigenvalues that passes through �i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
cross the

horizontal axis. This property is necessary to establish the
existence of a Hopf bifurcation at the steady state for
tp ¼ t�p.

We can then conclude to the following proposition,
which summarizes the behavior of the unique steady state
of system (5)–(6).

Proposition 1. If 2x4g2, then for 0ptpot�p, the steady state

E� is locally asymptotically stable and, for tpXt�p it is

unstable. When tp ¼ t�p a Hopf bifurcation occurs at E� and

periodic solutions appear.

If 2xpg2, the steady state E� is locally asymptotically

stable for all tpX0.

According to the result in Proposition 1, the erythropoi-
esis process can theoretically lead to the appearance of
periodic solutions of the circulating erythrocyte number—
through a Hopf bifurcation—and therefore damped
oscillations should be observed before the bifurcation,
when the steady state is about to be destabilized.

5.3. Numerical simulations

We are interested in modelling the rapid recovery of the
level of erythrocytes observed after acute anemia (see
Section 2). To that aim, we compute the solution EðtÞ of
(6), using the MATLAB solver dde23 which allows the nume-
rical resolution of delay differential equations (Shampine
and Thompson, 2001), and we use this solution to draw the
hematocrit corresponding to our simulation.
The hematocrit HðtÞ is defined by

HðtÞ ¼
vEðtÞ

vEðtÞ þ plasma volume
,

where v is the considered volume per mass density unit of
the erythrocytes. Assuming plasma volume is not modified
by our experimental induction of anemia, we relate it to the
steady hematocrit, denoted by H� (with H� about 45–50%,
see Fig. 1), and the steady state E�. Since, at the steady
state,

HðtÞ ¼ H� ¼
vE�

vE� þ plasma volume
,

we deduce that

plasma volume ¼
1�H�

H�
vE�.

Consequently, in the following, we assume that the
hematocrit is given by

HðtÞ ¼
EðtÞ

EðtÞ þ ð1�H�ÞE�=H�
.

Taking the inverse function, we have

EðtÞ ¼
HðtÞ

1�HðtÞ

1�H�

H�
E�. (14)

We compute E� from Eq. (6), and H� from the experi-
mental curve in Fig. 1.
Since EðtÞ is the solution of a delay differential equation,

an initial condition for Eq. (6) must be supplied on the
interval ½�tp; 0�. We consider, as an initial condition for
our problem, the function that describes a strong decay of
the hematocrit from H� to Hmin, on the interval ½�tin; 0�
(here, according to Fig. 1, tin ¼ 3 days). It follows that the
initial condition for HðtÞ in this case is

H0ðtÞ ¼

H�; for t 2 ½�tp;�tin�;

H� �Hmin

t�in
tþHmin; for t 2 ½�tin; 0�:

8><
>:

Using (14), we choose as initial condition for Eq. (6)

E0ðtÞ ¼ E�
1�H�

H�
�

H0ðtÞ

1�H0ðtÞ
,

for t 2 ½�tp; 0�. ð15Þ

Using this initial condition for Eq. (6), we hope to obtain a
description of the rapid increase of the hematocrit, with a
significant peak and damped oscillations before a steady
hematocrit.
In Table 1, values of the parameters used in the

simulations are listed. We discuss hereafter these values.
The hematopoietic stem cell influx is known to be, in

mammals, about 104 cells ðgdÞ�1, at maximum. We suppose
here that K ¼ 104 cells ðgdÞ�1, even if it can be varied
between 103 and 104 cells ðgdÞ�1. The death rate of
erythrocytes, estimated by considering that the average
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Table 1

Table of parameters

Parameters Values used Range

g Erythrocytes mortality rate ðd�1Þ 0.025 –

A Amplification parameter 28 24 – 28

K HSC population density entering the progenitor compartment per day ðcells ðgdÞ�1Þ 104 1032104

tp Progenitor compartment duration (days) 4 –

tc Self-renewal cycle duration (days) 1 –

b1 Maximum apoptosis rate ðd�1Þ 1 0.5 – 1

b Threshold value of the apoptosis rate ðcells d�1Þ 107 a, 108 1072109

n Sensitivity of the apoptosis rate 8 –

s0 Maximum self-renewal rate ðd�1Þ 0:5 –

s Threshold value of the self-renewal rate ðcells d�1Þ 109 10621010

m Sensitivity of the self-renewal rate 5 –

Values of the different parameters involved in system (4) are listed in two columns: in the first one, values used in simulations with and without taking self-

renewal into account, and in the second column a range for each parameter, when available.
aThis value is only used in the absence of self-renewal.
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erythrocyte life in mice is 40 days, is taken to be
g ¼ 1=40 ¼ 0:025 d�1. The amplification parameter A

should correspond to a range of 4–8 divisions, with
mortality of some cells. We consider that A varies between
24 and 28, and we usually use the value A ¼ 28. The
progenitor compartment duration tp is chosen by con-
sidering that progenitors need about four divisions to
differentiate into precursor cells. Therefore we choose tp ¼

4 days.
The apoptosis rate bðEÞ is chosen as a Michaelis–Menten

function,

bðEÞ ¼ b1
En

En þ b
n .

The parameter n describes the sensitivity of the apoptosis
rate, b1 is the maximum apoptosis rate, and b the value of
erythrocyte density for which the apoptosis rate attains half
of its maximum.

The shape of the apoptosis rate function can be deduced
from Chappell et al. (1997), where the viability dose
response of cells to EPO is presented, and Sakata et al.
(1985), where the relation between EPO concentration and
mature erythrocytes density (via hemoglobin concentra-
tion) is described. This led to the Michaelis–Menten
function given above to describe the implicit dependence
of apoptosis on mature erythrocytes. It can be noted that,
to our knowledge, only one work (Adimy and Crauste,
2007) considered an erythropoiesis model with a feedback
control of apoptosis, but the feedback function was
different, since EPO concentration was explicitly incorpo-
rated in the model, which is not the case in the present
study.

All the coefficients of the apoptosis function b are rather
difficult to estimate. Usually, apoptosis in mice varies
between 2% and 50%. So we could be tempted to take b1
equals to 0:5. However, since b1 represents the maximum
apoptosis rate, and since it is a limit value in the function
bðEÞ, we could also take b1 ¼ 1. It is difficult to choose a
good value for b. Since the maximum apoptosis rate is not
exactly known, it is not easy to determine the value for
which half of this maximum is reached. We decided to fix b
in the range of the erythrocyte density level at equilibrium,
that is between 107 and 109 cells g�1. In our simulations, we
choose b1 ¼ 1, which allows strong cell mortality by
apoptosis, and b ¼ 107 and 108 cells g�1. Finally the value
of the sensitivity parameter n has almost no influence, as
soon as it is large enough. In the simulations, we choose
n ¼ 8.
With values indicated in the second column of Table 1,

we simulate Eq. (6) and the corresponding hematocrit, for
the initial condition given by (15), and for b ¼ 107 and
108 cells g�1. This is displayed in Fig. 4.
First note that when b ¼ 108 cells g�1, the simulation

gives very bad results, the curve does not fit experimental
data at all, although this value of b would have been close
to a realistic value. In fact, from (9) we know that the
steady state E� of the erythrocyte density verifies
E�oAK=g. With values in Table 1, the quantity AK=g
equals 1:024� 108 cells g�1. Consequently, the erythrocyte
density steady state E� is almost always strictly less than
b ¼ 108 cells g�1 (in fact as soon as tp40:05 days, and more
precisely for tp ¼ 4 days, E� ¼ 7:39� 107 cells g�1), and
progenitor apoptosis is thus strictly less than 50%. We are
then in the presence of a slow behavior, the hematocrit
reaching very slowly and smoothly its equilibrium value.
When b ¼ 107 cells g�1, it appears that the hematocrit

rapidly increases, as observed in experiments, but it does
not reach very large values (the observed peak is about
52%, which does not belong to the acceptable range of
values, determined by the standard deviation lines), and
then the hematocrit smoothly reaches the steady state with
no damped oscillations. Moreover, it is noticeable that the
simulated peak occurs 6 days after the lowest hematocrit,
whereas it occurs after 4–5 days in experiments. One can
notice that the steady state of Eq. (6) equals, in this case,
1:03� 107 cells g�1, which is a rather low value (erythrocyte
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Fig. 4. Evolution of hematocrit over 44 days (Panel A), with values given in Table 1. The solid line corresponds to the simulation of Eq. (6) for

b ¼ 107 cells g�1, the dash-dotted one to the simulation of Eq. (6) for b ¼ 108 cells g�1, and the dashed one to experimental results (average hematocrit,

Fig. 1.A). Panel B: The solution EðtÞ of Eq. (6) corresponding to the simulated hematocrit represented in A for b ¼ 107 cells g�1. One can observe that the

erythrocyte density converges quickly to the equilibrium E� ¼ 1:03� 107 cells g�1. In both figures, simulations start at time t ¼ 0, and initial conditions are

drawn for to0, as given in (15).
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Fig. 5. The solution EðtÞ of Eq. (6) when the Hopf bifurcation occurs, that

is all parameters are given in Table 1 except tp ¼ 14 days. The erythrocyte

number periodically oscillates with a period of about 26 days.
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density in mice is usually considered to range between 108

and 3� 108 cells g�1). Due to (9) and the above remark, we
know that the steady state E� of the erythrocyte density
cannot be very large in this model without self-renewal
and, furthermore, with values in Table 1 it is less than
1:024� 108 cells g�1. Consequently, with this model, the
estimated value of the erythrocyte density cannot be really
biologically relevant since it will always be strictly less than
108 cells g�1.

In Fig. 5, we have shown the solution EðtÞ of Eq. (6),
that is the erythrocyte evolution over time, when the Hopf
bifurcation described by Proposition 1 occurs. The steady
state is unstable in this case, which means that solutions of
(6) oscillate about it. The steady state, at the bifurcation,
equals 8:27� 106 cells g�1, which is still rather low. The
erythrocyte density exhibits very long periods, of the order
of 26 days.

One can also note that the Hopf bifurcation occurs for a
large value of tp, so there is no hope to obtain damped
oscillations for small—and so biologically relevant—values
of tp. Thus it appeared to us that using apoptosis control as
the only regulator of erythropoiesis results in a modelling
unable to reasonably account for reality.
6. Influence of self-renewal

We now return to the analysis of system (4), that is we
take progenitor self-renewal in erythropoiesis into con-
sideration. Since glucocorticoids negatively mediate self-
renewal, we choose the rate of self-renewal s as a Hill
function, that is a smooth decreasing function of the
erythrocyte density E,

sðEÞ ¼ s0
sm

sm þ Em , (16)

with s040 the maximum self-renewal rate, s40 the
threshold value for which s reaches half of its maximum
value, and m40 the sensitivity of the self-renewal rate.
It can be noticed that no data are available in the
literature to determine the shape of the self-renewal
function (even though one would like to make this rate
directly dependent on glucocorticoid concentrations).
Hence, we chose to model it with a Hill function for one
main reason. This kind of function is usually used in
modelling kinase cascades reactions (Ferrell, 1996,1997),
these latter being hidden behind our modelling approach.
Hill functions have been used several times to model
negative feedbacks at the stem cell level (Mackey, 1978;
Pujo-Menjouet and Mackey, 2004). As explained below,
coefficients of the self-renewal function (16) are then
determined by trying to obtain the best fitting with
experimental data.
A theoretical analysis of system (4) would be rather

difficult and remains an open question, due to the presence
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of multiple delays and nonlinearities. Hence, we focus our
study on a numerical analysis of (4), trying to fit the data in
Fig. 1.

Our first comment deals with parameters values used in
the simulations of Eq. (6). As mentioned in the previous
section, in order to finely fit experimental data, we
sometimes chose unrealistic values of some parameters
for the simulations of the model without self-renewal. For
example, the value of b can be considered too small, when
b ¼ 107 cells g�1, in comparison with the expected value of
the erythrocyte steady state E� (about 108 cells g�1). One
consequence was then an underestimation of the value of
E� in the model without self-renewal.

Consequently, we try here to adjust values of the
parameters to experimentally known data of erythropoi-
esis. In particular (see Table 1), we only consider
b ¼ 108 cells g�1.

All values we use in numerical simulations of system (4)
are listed in Table 1, second column. In particular, we
assume progenitors self-renew within one day (so tc ¼ 1
day). Values of coefficients that appear in the model
without self-renewal are not modified, so we refer the
reader to the previous section for our choices. Let us then
focus ourselves on the values of the self-renewal rate.

Let us assume a maximum self-renewal rate of about
0:5 d�1. This may seem small in comparison with the
maximum apoptosis rate. Yet numerical simulations
indicate that larger rates lead to overproduction of
erythrocytes, self-renewal being more powerful than
apoptosis in this case (this is not shown here). To maintain
some balance between apoptosis and self-renewal, the value
of s must be chosen larger than b. Note that this balance
seems to be necessary because if one of the two controls
was always more important than the other, then this latter
would be useless in the model. We have observed in the last
section that taking only apoptosis into account as a control
for erythropoiesis gave not satisfactory results. The same
conclusions occur if self-renewal is the only control. It
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Fig. 6. Evolution of hematocrit over 44 days (Panel A), with values given in

equation in system (4), and the dashed one to experimental results. Panel B: T

represented in A. One can observe that the erythrocyte density oscillates about

at time t ¼ 0, and initial conditions are drawn for to0, as given in (15).
seems that this condition adjusts, in some sense, the fact
that the maximum apoptosis rate b1 is larger than the
maximum self-renewal rate s0. So we choose
s ¼ 109 cells g�1. The sensitivity m of the self-renewal rate
(16) is set to be m ¼ 5. Similarly to the sensitivity of the
apoptosis rate, it has almost no influence as soon as it is
large enough.
Numerical simulations of system (4) with values

indicated in Table 1 are displayed in Fig. 6. One can
observe that the simulated curve does not exactly fit the
experimental curve in Fig. 1A even though it exhibits more
interesting features than the simulations in Fig. 4. In
particular, there is a rapid increase of the hematocrit,
following anemia, that reaches a peak (with a rather
overestimated value about 57%, even though it could be
acceptable), and then the hematocrit oscillates about the
steady hematocrit, with damped oscillations, in contrast to
the case without self-renewal where oscillations were not
observed. Yet, periods of the oscillations are too large
(about 30 days) and do not fit experimental data.
Adding progenitor self-renewal in our erythropoiesis

modelling seems to affect the erythrocyte density evolution
over time, but not in a sufficiently realistic way: the model
does not give a correct answer of the hematocrit to a severe
anemia, even though it exhibits interesting properties.
However, when increasing erythrocyte mortality rate g,

one can obtain a much more realistic simulation (see Fig. 7).
The value of g used in previous simulations describes an
average lifetime of 40 days in mice. Yet this value must be
understood as a normal mortality rate, that is in normal
circumstances. Since we simulate a severe anemia, it is not
realistic to keep the same value for the mortality of
erythrocytes. Indeed, the anemia is obtained by injecting
mice with phenylhydrazine and one effect of this substance
is to dramatically alter the lifespan of erythrocytes (see
Shimada, 1975 for a study on chicken’s erythrocytes
lifespan under induced anemia). One can see that the
simulation of model (4) gives better results when changes in
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Fig. 7. Evolution of hematocrit over 44 days (Panel A), with values given in Table 1, except g ¼ 0:15 d�1. The solid line corresponds to the simulation of

the erythrocyte equation in system (4), and the dashed one to experimental results (Fig. 1.A). Panel B: The solution EðtÞ of system (4) corresponding to the

simulated hematocrit represented in A. One can observe that the erythrocyte density oscillates about its equilibrium E� ¼ 8:7� 107 cells g�1. In both

figures, simulations start at time t ¼ 0, and initial conditions are drawn for to0, as given in (15).
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erythrocytes mortality are taken into account. Moreover,
the steady state value E� of the erythrocytes is in this case
about 8:7� 107 cells g�1, which is a reasonable value.

One may object that the increase of the mortality rate g
could allow to obtain better results than the ones presented
in Section 5.3 when simulating the model (6). However,
and even though simulations are not shown here, this does
not improve the model without self-renewal (data not
shown). When the threshold value b equals 108 cells g�1,
simulations do not differ from the one in Fig. 4, and the
steady state value E� is too small, E� ¼ 1:7� 107 cells g�1.
For b ¼ 107 cells g�1, the simulated curve better fits
experimental data (damped oscillations are observed, but
with small amplitudes, and the simulated curve does not
reach the experimental peak), but values of the erythrocyte
density become even less realistic, with a steady state value
E� about 8:3� 106 cells g�1.

One can note that the progenitor dynamics in erythro-
poiesis process have not really been investigated in this
study, mainly because we focused on data related to the
hematocrit. However, when simulating the erythrocyte
density in system (4), or (5)–(6), one can compute as well
the progenitor density. This is done in Fig. 8, for both cases
with and without self-renewal. It appears that the
equilibrium value of the progenitor density is larger under
the action of self-renewal (about 1:1� 106 cells g�1 versus
1:6� 104 cells g�1 when there is no self-renewal), and
progenitor population dynamics are more complex in this
case, because of the action of a negative and a positive
feedback. This might provide a way to further investigate
the role of progenitor self-renewal.

7. Discussion

Based on recent advances in red blood cell research, we
proposed a new mathematical model of erythropoiesis that
takes into account up-to-date knowledge on red blood cells
production—this means inhibition of apoptosis by EPO
(Koury and Bondurant, 1990), and existence of erythroid
progenitor self-renewal (Bauer et al., 1999; Gandrillon
et al., 1999; Pain et al., 1991)—acquired at the cellular and
molecular level these last few years.
Although hematopoietic stem cell dynamics are not

considered in our study, the model incorporates two
feedback loops, a negative glucocorticoid-mediated feed-
back of erythrocytes on progenitor self-renewal, and a
positive EPO-mediated feedback on progenitor apoptosis.
Even though this rendered the theoretical analysis of the
complete model somewhat difficult, this proved to be
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critical for obtaining a model that closely matches
experimental data.

Moreover, as similarly done by Loeffler and Wichmann
(1980), Wichmann and Loeffler (1985), Wichmann et al.
(1985), or by Mackey (1978, 1979, 1997), Pujo-Menjouet
and Mackey (2004), the model has been confronted to
experimentally-obtained values in a non-equilibrium con-
dition, that is here an experimentally induced severe
anemia. We reasoned that our model should be able to
model not only steady state but also stress erythropoiesis.
This was especially needed since the role of glucocorticoids
in mice has precisely been demonstrated to be critical for
stress erythropoiesis (Bauer et al., 1999).

Although we could not derive all parameters values from
the literature, we nevertheless were very careful to use only
values that were within a biologically reasonable range.
The fact that some variants of our model produced
unreasonable quantitative values was clearly for us the
sign that the modelling was not heading in the right
direction. We tried to keep the number of parameters as
small as possible, so that we could explore their influence
on the results of the numerical situations.

Using this modelling strategy we could demonstrate that
numerical simulations of the complete model, incorporat-
ing both a negative feedback of erythrocytes on progenitor
self-renewal and a positive feedback on progenitor
apoptosis, exhibited good results, the main characteristics
of experimental data being well fitted by the model (see
Section 6). These results tend to indicate that a correct
modelling of erythropoiesis needs a clear understanding of
the feedback mechanisms, in particular those that control
progenitor populations (such as self-renewal).

The importance of a dynamically regulated and self-
renewing stem cell population in hematopoiesis is self-
evident as shown in numerous models, including Loeffler et
al. (1989), Wichmann and Loeffler (1985), and Bernard et
al. (2004) or Colijn and Mackey (2005a,b). Yet, we decided
to deliberately omit this dynamical component in our
model, essentially due to our ignorance of the precise
molecular controls that could be involved in feedback
controls of HSC populations, and of the cells from which
the feedback could originate from (erythrocytes, or pre-
mature erythrocytes, could control HSC dynamics, among
many other controls). On the contrary, molecular process
controlling feedbacks on erythroid progenitors are rather
well known, and this directed the modelling part of this
work, allowing to go deeper in the analysis by investigating
these molecular process and their precise roles in erythro-
poiesis. We are nevertheless aware that the experimental
results we obtained might have been correctly modelled by
a different model in which the self-renewing ability of
hematopoietic stem cells would have been taken into
account.

Note that this model makes two testable predictions:
(1)
 The first deals with the lifespan of mature cells. In order
to get a perfect fitting we had to consider that the value
of g had to be severely reduced in the wake of
phenylhydrazine injection. Since phenylhydrazine dra-
matically reduces the lifespan of erythrocytes, this
might not seem to be far stretched. Nevertheless, this
value can return to normal (1/40 per day) only after
numerous days to capture the fading oscillations
characteristic of our data. It would therefore be of
great interest to measure the lifespan of the neo-
synthesized erythrocytes, after recovery and the follow-
ing days. A reduction of lifespan can be predicted, since
a study in a different species demonstrated that the red
cells resulting from phenylhydrazine-induced anemia
had a shorter life-span when compared to normal red
cells (Berlin and Lotz, 1951, Nagai et al., 1968, 1971,
Shimada, 1975, Stohlman, 1961). Such a change in life
span could be due to specific membrane properties of
the erythrocytes produced during stress erythropoiesis
(Walter et al., 1975). In any case, this prediction could
be tested in mice.
(2)
 The second type of predictions that can be made on the
basis of our modelling is the behavior of the progenitor
populations. Not only the absolute amount but also the
oscillating behavior was quite different between the two
versions of the model. Measuring the amount of
progenitors of phenylhydrazine-treated mice could
therefore confirm or not the necessity to incorporate
erythroid progenitor self-renewal, and also lead to
refinements of this model.
At least four perspectives from the modelling point of
view can be drawn. We could first try to see up to which
extent we could use the same model with different
parameters values for modelling the appearance of
erythroleukemia. It has for example been shown that an
autocrine EPO production occurred in human erythroleu-
kemia (Mitjavila et al., 1991). In our model this can be
modelled quite simply by modifying the value of b. One
could also try to analyze the influence of the self-renewal
ability of our cells by modifying the value of s. Reducing
the amount of progenitors committing in a differentiation
process, in order to model for example the effect of v-erbA
oncogene on the differentiation process (Gandrillon, 2002),
would require modifications of the model.
A second perspective of this work would be to dissect the

feedback loops so as to incorporate explicitly important
molecules like EPO receptors, signaling molecules and
target genes. This would require a specific effort in multi-
scale modelling. Thus a richer and more detailed model
could be obtained without any loss in our modelling
strategy, that is a model in which each parameter has a
biological relevance, and in which the effect of each
parameter on the blood cell population dynamics can be
investigated.
It is obviously tempting to extend the model to more

than one hematopoietic lineage. In order to keep the
control of the model’s behavior, one should start by
modelling relatively simple lineage decisions. The lineage
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choice between erythrocytic and megakaryocytic fate of a
bipotent progenitor, thought to involve cross-antagonism
between transcription factors (Starck et al., 2003), could
represent an interesting step in this direction.

Finally, our model is a system of age-structured
equations, and does not incorporate an explicit maturity-
structured variable, that would describe cell differentiation.
Hence, differentiation in this model is artificially intro-
duced as an amplification parameter A, assumed to
incorporate several divisions of progenitors. This leads to
a limitation in the model, since progenitor self-renewal and
differentiation processes are separated (first progenitor self-
renew, and then they differentiate), although this decision
is made at the single cell level. A way of considering
differentiation explicitly is to add a discrete maturity
variable (as it can be found in Adimy et al. (2007) and
Bernard et al. (2003b)). This would lead to a system of
several differential equations, each of them describing the
dynamics of progenitors for a given maturity level. This
could also bring more information on the dynamics of
erythroid progenitors.

Altogether, our modelling scheme allowed us to design a
model that fits experimental data well, allowing to make
testable predictions, and that can be extended toward
more hematopoietic lineages, in order to model, in the
long run, a complete hematopoietic system. The success of
our model was strictly dependent upon recent advances in
our cellular and molecular understanding of red cell
differentiation, and therefore its extension might require
new advances, notably in the still open question of the
feedback operating at the stem cell level by mature
hematopoietic cells.
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Appendix A. Method of the characteristics

We develop the method of the characteristics that allows
us to express psrðt; tcÞ and pðt; tpÞ in terms of P and E, and
then to give a clear expression of system (3).
Equations of the characteristics for system (1) are given
by

da

dt
¼ 1,

from which we deduce aðtÞ ¼ tþ a0, for
tXt0 ¼ maxf0;�a0g. Then, setting

xðtÞ ¼ psrðt; tþ a0Þ,

we obtain from the second equation of (1)

dx

dt
¼ �bðEðtÞÞxðtÞ.

Thus

xðtÞ ¼ xðt0Þ exp �

Z t

t0

bðEðsÞÞds

� �
.

If t0 ¼ 0, then

xðtÞ ¼ xð0Þ exp �

Z t

0

bðEðsÞÞds

� �
,

that is

psrðt; aÞ ¼ psrð0; a� tÞ exp �

Z t

0

bðEðsÞÞds

� �
if toa,

and if t0 ¼ �a0 ¼ t� a, then

xðtÞ ¼ xðt� aÞ exp �

Z t

t�a

bðEðsÞÞds

� �
,

that is

psrðt; aÞ ¼ psrðt� a; 0Þ exp �

Z t

t�a

bðEðsÞÞds

� �
if aot.

In particular, we deduce, with (2), that

psrðt; tcÞ ¼ sðEðt� tcÞÞPðt� tcÞ

� exp �

Z t

t�tc

bðEðsÞÞds

� �
for tcot. ðA:1Þ

Similarly, we can obtain

pðt; aÞ ¼
pðt� a; 0Þ exp �

R t

t�a
ðbðEðsÞÞ þ sðEðsÞÞÞds

� �
if aot;

pð0; a� tÞ exp �
R t

0
bðEðsÞÞ þ sðEðsÞÞð Þds

� �
if toa;

(

so, from (2), for aot,

pðt; aÞ ¼ ½K þ 2psrðt� a; tcÞ�

� exp �

Z t

t�a

ðbðEðsÞÞ þ sðEðsÞÞÞds

� �
.

It follows that, for t4tc,

pðt; tpÞ ¼ ½K þ 2psrðt� tp; tcÞ�

� exp �

Z t

t�tp

ðbðEðsÞÞ þ sðEðsÞÞÞds

 !
,

http://bsmc.insa-lyon.fr
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and for t4tp þ tc, using (A.1) we obtain

pðt; tpÞ ¼ K þ 2sðEðt� tp � tcÞÞPðt� tp � tcÞ

"

� exp �

Z t�tp

t�tp�tc

bðEðsÞÞds

 !#

� exp �

Z t

t�tp

bðEðsÞÞ þ sðEðsÞÞð Þds

 !
. ðA:2Þ

Hence, with expressions (A.1) and (A.2), we can write
system (3), for t4tp þ tc,

dP

dt
ðtÞ ¼ � bðEðtÞÞ þ sðEðtÞÞ½ �PðtÞ

þ K þ 2sðEðt� tcÞÞPðt� tcÞ

� exp �

Z t

t�tc

bðEðsÞÞds

� �

� K þ 2sðEðt� tp � tcÞÞPðt� tp � tcÞ

"

� exp �

Z t�tp

t�tp�tc

bðEðsÞÞds

 !#

� exp �

Z t

t�tp

ðbðEðsÞÞ þ sðEðsÞÞÞ ds

 !
,

dPsr

dt
ðtÞ ¼ � bðEðtÞÞPsrðtÞ þ sðEðtÞÞPðtÞ,

� sðEðt� tcÞÞPðt� tcÞ

� exp �

Z t

t�tc

bðEðsÞÞds

� �
,

dE

dt
ðtÞ ¼ � gEðtÞ þ A exp �

Z t

t�tp

ðbðEðsÞÞ þ sðEðsÞÞÞds

 !

þ K þ 2sðEðt� tp � tcÞÞPðt� tp � tcÞ

"

� exp �

Z t�tp

t�tp�tc

bðEðsÞÞds

 !#
. ðA:3Þ

One can easily check that the first and third equations in
(A.3) do not depend on Psr, so we omit the second equation
in our study, and we focus on system (4).

Appendix B. Properties of complex eigenvalues

Let us study the existence and properties of purely
imaginary roots of Eq. (12), in order to determine the local
asymptotic stability of the unique steady state ðP�;E�Þ of
(5)–(6).

Let first check that l ¼ 0 is not an eigenvalue of (10).
Indeed, if l ¼ 0 is an eigenvalue of (10), then from (12), we
obtain

gþ xtp ¼ 0,

which is impossible since g; x40 and tpX0.
Consequently, we can compute the integral in (12) and
one can see that (12) is equivalent to

l2 þ glþ x� x e�ltp ¼ 0 and la0.

Then we focus on the study of complex roots of (13).

B.1. The case tp ¼ 0

We first check that all roots of (13) have negative real
parts when tp ¼ 0, that is E� is locally asymptotically stable
in this case.
If tp ¼ 0, Eq. (13) reduces to

l2 þ gl ¼ 0,

that is

lðlþ gÞ ¼ 0.

Since l ¼ 0 is not a characteristic root of (10), we deduce
that l ¼ �go0 is the only characteristic root, and since it is
negative, we conclude to the local asymptotic stability of
E� when tp ¼ 0.

B.2. Existence of purely imaginary eigenvalues

Assume tp40, and search for eigenvalues l ¼ io, with
o 2 R. Then separating real and imaginary parts in (13),
we obtain

cosðotpÞ ¼ 1�
o2

x
, (B.1)

sinðotpÞ ¼ �
g
x
o. (B.2)

First note that if o satisfies (B.1)–(B.2), then so does �o.
Moreover, since l ¼ 0 is not an eigenvalue of (10),
we only focus on the existence of o40 satisfying
(B.1)–(B.2).
By summing the squares of both sides of (B.1)–(B.2),

we obtain

o2

x2
½o2 þ g2 � 2x� ¼ 0.

Since we look for solutions o40, this is equivalent to

o2 ¼ 2x� g2.

If 2xpg2, then (10) has no purely imaginary character-
istic roots, and so the stability of the steady state E� cannot
change. Since it is locally asymptotically stable when
tp ¼ 0, then it is locally asymptotically stable for tpX0
under condition 2xpg2.
Now, let study the case 2x4g2. From (11), this condition

is equivalent to

E�b0ðE�Þ4
g
2
.

Under this condition, if (10) has purely imaginary

roots �io, then o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
. Therefore, from (B.1),
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we deduce that

cos tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p� �
¼

g2

x
� 1,

that is

tp ¼

arccos
g2

x
� 1

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p .

Consequently, for tp ¼ t�p:¼ arccosðg2=x� 1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
,

(10) has purely imaginary roots �io, with o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
.

B.3. Properties of purely imaginary roots

Let us show that purely imaginary roots �io�:¼�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� g2

p
of (10) that exist when tp ¼ t�p are simple and

satisfy the so-called transversality condition, that is

dReðlðt�pÞÞ

dtp

40.

Let consider a branch of eigenvalues lðtpÞ of (13) such that

lðt�pÞ ¼ io�.

Then, from (13), it follows that

lðtpÞ
2
þ glðtpÞ þ x� xe�lðtpÞtp ¼ 0.

By differentiating the above equation with respect to tp, we
obtain

½2lðtpÞ þ gþ xtp e
�lðtpÞtp �

dl
dtp

ðtpÞ þ xlðtpÞe
�lðtpÞtp ¼ 0.

(B.3)

By contradiction, assume dlðt�pÞ=dtp ¼ 0. Then from (B.3)

xio� e�io
�t�p ¼ 0,

that is, since x40,

o� cosðo�t�pÞ ¼ 0 and o� sinðo�t�pÞ ¼ 0.

Since o�40, we deduce

cosðo�t�pÞ ¼ 0 and sinðo�t�pÞ ¼ 0,

which is equivalent, from (B.1)–(B.2), to

ðo�Þ2 ¼ x40 and o� ¼ 0,

which is impossible. We conclude that dlðt�pÞ=dtpa0 and
�io� are simple eigenvalues.
Moreover, from (13) and (B.3),

dl
dtp

ðt�pÞ
� ��1

¼
2lðt�pÞ þ gþ xt�p e

�lðt�pÞt
�
p

�xlðt�pÞ e
�lðt�pÞt�p

¼
2lðt�pÞ þ g

�xlðt�pÞ e
�lðt�pÞt�p

�
t�p

lðt�pÞ

¼
2io� þ g

�io�½ðio�Þ2 þ gðio�Þ þ x�
�

t�p
io�

¼
2io� þ g

�io�½x� ðo�Þ2 þ igo��
þ i

t�p
o�

.

We deduce

dl
dtp

ðt�pÞ
� ��1

¼
2io� þ g

gðo�Þ2 þ io�½ðo�Þ2 � x�
þ i

t�p
o�

¼
g2ðo�Þ2 � 2ðo�Þ2½x� ðo�Þ2� þ igo�½xþ 2o� � ðo�Þ2�

g2ðo�Þ4 þ ðo�Þ2½ðo�Þ2 � x�2

þ i
t�p
o�

.

Consequently

Re
dl
dtp

ðt�pÞ
� ��1

¼
g2ðo�Þ2 � 2ðo�Þ2½x� ðo�Þ2�

g2ðo�Þ4 þ ðo�Þ2½ðo�Þ2 � x�2

¼
g2 � 2xþ 2ðo�Þ2

g2ðo�Þ2 þ ½ðo�Þ2 � x�2

¼
g2 � 2xþ 2ð2x� g2Þ

g2ð2x� g2Þ þ ½2x� g2 � x�2

¼
2x� g2

x2
.

We conclude that

Re
dl
dtp

ðt�pÞ
� ��1

¼
2x� g2

x2
40.
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