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Abstract. We generalize the model proposed in [Adimy, Babin, Pujo-Menjouet,
SIAM Journal on Applied Dynamical Systems (2022)] for prion infection to a

network of neurons. We do so by applying a so-called multigroup approach to

the system of Delay Differential Equations (DDEs) proposed in the aforemen-
tioned paper. We derive the classical threshold quantity R0, i.e. the basic

reproduction number, exploiting the fact that the DDEs of our model qualita-
tively behave like Ordinary Differential Equations (ODEs) when evaluated at

the Disease Free Equilibrium. We prove analytically that the disease naturally

goes extinct when R0 < 1, whereas it persists when R0 > 1. We conclude with
some selected numerical simulations of the system, to illustrate our analytical

results.

1. Introduction. Prion is a protein involved in neurodegenerative diseases and
more particularly the transmissible spongiform encephalopathies such as scrapie for
sheep, bovine spongiform encephalopathy, also known as mad cow disease in cattle,
and the Creutzfeldt-Jakob disease in humans [22, 24]. Produced by the cells, this
protein in its normal form is called PrPC (for Prion Protein Cellular) and appears to
be protective [24]. However, it becomes harmful and fatal when its shape changes.
This misfolded pathological conformation also known as PrPSc (for Prion Protein
Scrapie) can be acquired either through transmission (this was the case for instance
under the mad cow disease spread in the 1990s), or spontaneously, mostly above 75
years old for humans [21].
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Even if extensively studied in the past decades, the action of this protein on the
neurons leading to a fatal issue remains unclear. However, some recent discoveries
may bring possible explanations and open new therapeutic strategies. This mecha-
nism also known as Unfolded Protein Response (or UPR) [7, 9, 11, 12, 29] can be
described as follows.

First, when produced by the cell, the PrPC proteins remain anchored to its
membrane, unless misfolded PrPSc in the extracellular matrix forces it to set it
free and to join the pathological cohort. It is important to remind here that, by
contact, a PrPSc protein allows the normal form PrPC to change its conformation
and to become misconformed. Once in this state, the proteins have the ability to
polymerize, that is to tie together. They can easily reach very large sizes, stay in
the neighbourhood of the cell or diffuse in the extracellular matrix to seed other
neurons (see Fig. 1).

Figure 1. schematic view of the PrPC protein production (in blue)

by two neurons (green). The PrPC protein can aggregate and form

pathological PrPSc (pink and orange). The PrPSc proteins diffuse and

a certain amount can reach the neighbourhood of another neuron (the

orange ones can reach the neighbourhood of neuron 1, while the pink ones

can reach neuron 2. We refer to Section 2 for a complete description of

this case and of the parameters and variables involved.

If for some reason, such as an over-expression of PrPC or a slow diffusion, they
accumulate in the neuron proximity, this latter feels it and under this induced stress
shuts down almost all its activities except the vital ones.

This global shutdown, created by a high concentration of PrPSc in the neuron
surrounding, causes the neuron to stop producing PrPC , not vital for the cell (see
Fig. 2).
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Figure 2. schematic representation of a neuron (neuron 1) under Un-

folded Protein Response (UPR). Stressed by the overcrowded amount of

PrPSc in its neighbourhood, neuron 1 shuts down its activities (except

the vital ones). No PrPC protein is then produced, and the population

of PrPSc pathological proteins diffuse out the neuron surroundings.

This break ends only if these proteins move away by diffusion or degradation.
When the zone is clear, the cell starts again its protein production and the process
continues until the next stress period.

Still under investigation, the detailed UPR mechanism remains to be fully under-
stood, even if several papers may be referred to the reader [9, 11, 12, 29]. Besides,
the link between UPR, PrPSc has been put in evidence [10, 19, 25, 28, 32, 33].

Because of its complexity, the UPR modus operandi has already been the object
of mathematical models, from a gene regulatory point of view [3, 17, 26, 34, 35]
or through regulation of UPR intra- or extra-cellular pathways [34, 35]. Our goal
here is to generalise the pioneering mathematical model [1] dealing explicitly with
prion, and investigating the parameters causing the oscillating neural activity. In
[1], the authors investigated the case of one neuron only, and for two neurons they
gave analytical results specifically when both cells would exhibit the exact same
behaviour. In this paper, we briefly remind the model with two neurons and give
new theoretical results to complete the ones of [1], then we extend the construction
to any neuron number n ∈ N, n ≥ 2.

We exploit the formulation of the Delay Differential Equation (DDE) system set
up in detail in [1], where the delay is only present in the infectious/infected variables,
in order to apply a classical tool of Ordinary Differential Equations (ODE) epidemic
models, namely the Next Generation Matrix. This technique was first introduced
in [4], then generalized in [36] (see also [5]). Through an appropriate decomposition
of the Jacobian matrix evaluated at the Disease Free Equilibrium, we are able to
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provide a formulation for the Basic Reproduction Number R0 of the n-dimensional
system, under biologically acceptable conditions.

Then, we apply the definition of the threshold quantity R0 to prove either global
stability of the Disease Free Equilibrium (when R0 < 1) or permanence of the
system (when R0 > 1). Moreover, under slightly stricter conditions, we are able to
prove the existence of at least one Endemic Equilibrium.

The paper is structured as follows. In Section 2, we recall the 2 neurons model
introduced in [1]. In Section 3, we generalize this construction to a network of n
neurons, with n ≥ 2; moreover, we show two other results: first, how the fully
connected and fully homogeneous case can be qualitatively reduced to a single
neuron model (but with a different R0) proposed in [1], and second how the case
of one-way direction connection of several neurons behaves like a single one. In
Section 4, we prove global stability of the Disease Free Equilibrium when R0 < 1.
In Section 5, we show a condition for the existence (but not uniqueness) of the
Endemic Equilibrium. In Section 6, we show the persistence of the system when
R0 > 1. In Section 7, we provide extensive numerical simulations of the model
proposed in Section 3. Lastly, in Section 8 we conclude.

2. System with 2 neurons. We begin by recalling the system of 2 neurons from
[1]. It describes the dynamics of the PrPC protein associated with neuron 1 and
neuron 2, respectively x1 and x2, as well as the PrPSc concentrations in the envi-
ronment of neuron 1 and neuron 2, y1 and y2. Due to their biological interpretation,
we only consider xi, yi ≥ 0. This model is represented, for t > 0, by the following
system

dx1

dt
= K1β(y1(t− T1))− µ1x1(t)− dx1(t) (y1(t) + κα2y2(t)) ,

dx2

dt
= K2β(y2(t− T2))− µ2x2(t)− dx2(t) (y2(t) + κα1y1(t)) ,

dy1
dt

= dx1(t) (y1(t) + κα2y2(t))− α1y1(t),

dy2
dt

= dx2(t) (y2(t) + κα1y1(t))− α2y2(t),

(1)

where Ki > 0 (i = 1 or 2) represents the PrPC production rate of the neuron
i and d > 0 characterizes the force of the interaction between PrPC and PrPSc.
The terms dx1(t) (y1(t) + κα2y2(t)) and dx2(t) (y2(t) + κα1y1(t)) stand for the new
PrPSc produced. The parameter µi represents the degradation rate of PrPC pro-
duced by the neuron i and αi is the rate at which PrPSc proteins are lost through
degradation or diffusion. The factor κ indicates the interaction between proteins
from different neurons. The parameter Ti is the time required for a neuron i to
process the PrPC protein synthesis. Due to the UPR effect, increasing the amount
of PrPSc around a neuron decreases its activity and consequently the PrPC pro-
duction. The contribution of PrPSc concentration to PrPC production is therefore
given through the decreasing Hill function (negative feedback [1])

β(y) =
1

1 + (y/yc)p
, (2)

where p > 0 is the sensitivity of PrPSc production to PrPSc overload. The parame-
ter yc > 0 is the PrPSc threshold beyond which the neuron stops PrPC production.
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Compared to the notation in [1], to avoid confusion we write β instead of βn

since n will represent the number of neurons in the system from Section 3 onward.
The Disease Free Equilibrium corresponding to the system (1) is

(x1, x2, y1, y2) =

(
K1

µ1
,
K2

µ2
, 0, 0

)
. (3)

The linearized version of system (1) around the Disease Free Equilibrium (3) is
given by

dx1

dt
= K1β

′(0)y1(t− T1)− µ1x1(t)− d
K1

µ1
(y1(t) + κα2y2(t)) ,

dx2

dt
= K2β

′(0)y2(t− T2)− µ2x2(t)− d
K2

µ2
(y2(t) + κα1y1(t)) ,

dy1
dt

= d
K1

µ1
(y1(t) + κα2y2(t))− α1y1(t),

dy2
dt

= d
K2

µ2
(y2(t) + κα1y1(t))− α2y2(t).

(4)

Note that β′(0) = 0. Then, the linearized system (4) becomes an ordinary differen-
tial system and its Jacobian matrix is

JDFE =


−µ1 0 −dK1

µ1
−dκα2

K1

µ1

0 −µ2 −dκα1
K2

µ2
−dK2

µ2

0 0 dK1

µ1
− α1 dκα2

K1

µ1

0 0 dκα1
K2

µ2
dK2

µ2
− α2

 .

Now, we use the Next Generation Matrix method, firstly introduced in [4], then
generalized in [36] (see also [5]) to obtain the basic reproduction number R0 of the
system (1). In order to do so, we need to write JDFE as JDFE = M − V , with M
having non-negative entries and V invertible. One possible choice is the following

M =


0 0 0 0
0 0 0 0
0 0 dK1

µ1
dκα2

K1

µ1

0 0 dκα1
K2

µ2
dK2

µ2

 and V =


µ1 0 dK1

µ1
dκα2

K1

µ1

0 µ2 dκα1
K2

µ2
dK2

µ2

0 0 α1 0
0 0 0 α2

 .

The basic reproduction number R0 is exactly ρ(MV −1). Remark that, in order to
compute this spectral radius, we implicitly assumed that α1, α2 ̸= 0. This means
that each neuron receives a strictly positive amount of infection from the other.
Recall that in [1] the basic reproduction number of neuron i was computed as

R0i = d
Ki

µiαi
.

Since the first two rows of M are 0, it suffices to observe the matrix

F =

(
d K1

µ1α1
dκK1

µ1

dκK2

µ2
d K2

µ2α2

)
=

(
R01 κα1R01

κα2R02 R02

)
,

which has eigenvalues

λ± =
R01 +R02 ±

√
(R01 −R02)2 + 4κ2α1α2R01R02

2
, (5)
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with λ+ = ρ(F ) being the new R0 of the 2-neurons system. We remark that the
connectivity between the two neurons κ plays a fundamental role in the dynam-
ics: even if both R0i < 1, with κ large enough the disease could remain endemic.
However, we recall that due to its biological interpretation, the relevant region we
should consider is κ ∈ [0, 1].

In the next section, we generalize this construction to a network of n ∈ N≥2

neurons.

3. System with n neurons. The construction from the previous section can be
generalized to a n neurons case by similarly constructing the matrices M and V .
In this case, we would generally obtain R0 implicitly, as the spectral radius of a
2n× 2n matrix. However, such a matrix can be reduced to n×n as in the previous
section since M will only have the lower-right quarter of non-zero entries.

We consider the following system of Delay Differential Equations (DDEs)

dxi

dt
= Kiβ(yi(t− Ti))− µixi(t)− dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

 ,

dyi
dt

= dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

−

∑
j ̸=i

αi→j

 yi(t).

(6)

Due to their biological interpretation, we only consider xi, yi ≥ 0. The parameter
αi→j represents the fraction of prions produced by neuron i and moving towards
neuron j. It also includes prion degradation. In other words, αi→j describes the
diffusive property (including degradation) of PrPSc to the neuron j ̸= i. This
includes both prions which die while moving away and prions which actually reach
neuron j. The interactions between PrPC from neuron i with PrPSc of another
neuron j ̸= i is given by the factor κji (it characterizes the difference between prion
species); hence,

∑
j ̸=i κji ≤ 1 for all j, since this sum represents the fraction of

prions “orbiting” neuron i (neuron has a number of prions it can spread to others)
which does not die and manages to spread to other neurons.

For ease of notation, let

αi :=
∑
j ̸=i

αi→j

denote the total rate of migration of prions from neuron i, which can result in either
the death of the prion or contact with any other neuron j ̸= i.

Let C := C([−T, 0],R), T := maxi=1,...,n Ti, be the space of continuous func-
tions on [−T, 0] and C+ := C([−T, 0],R+) be the space of nonnegative continuous
functions on [−T, 0]. We assume throughout this paper that the initial conditions
for the system (6), i.e. (xi0, φi) ∈ R+ × C+, for i = 1, ..., n. The existence and
uniqueness of nonnegative solutions of (6) can be obtained by using the theory of
functional differential equations.

Since the delay is discrete, the continuity of β is sufficient to ensure the existence
and uniqueness of the solution (see, [8, 14]). We call the history function each
function ut ∈ C, for t ≥ 0 and u ∈ C([−T,+∞),R) satisfying ut(θ) = u(t + θ) for
θ ∈ [−T, 0]. Now, we show the nonnegativity and boundedness of solutions of the
system (6).

Proposition 3.1. All solutions of the system (6) with nonnegative initial conditions
remain nonnegative and bounded.
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Proof. We prove nonnegativity by applying the Theorem 3.4 of [27]. In fact, for
i = 1, ..., n, if xi(t) = 0 then

dxi

dt
= Kiβ(yi(t− Ti)) ≥ 0, for yi ∈ C+,

and if yi(t) = 0 then

dyi
dt

= dxi(t)
∑
j ̸=i

κjiαj→iyj(t) ≥ 0, for xi ∈ R+, yj ∈ C+.

Then, by Theorem 3.4 of [27], we get xi(t) ≥ 0 and yi(t) ≥ 0 for t ≥ 0.
Now, by adding both equation of xi and yi, we get, for t ≥ 0,

dxi

dt
+

dyi
dt

= Kiβ(yi(t− Ti))− µixi(t)−

∑
j ̸=i

αi→j

 yi(t).

This implies that, for t ≥ 0,

d(xi + yi)

dt
≤ Kiβ(0)−min{µi, αi}(xi + yi).

This means that

lim sup
t→+∞

xi(t) + yi(t) ≤
Kiβ(0)

min{µi, αi}
.

Therefore, the solution should be necessarily bounded.

We now introduce a formula for the Basic Reproduction Number (BRN) R0 of
the system (6), given as the spectral radius of an n×n matrix. We do so by applying
the Next Generation Matrix method [4, 5, 36]. We remark that this method was
developed specifically for systems of ODEs. However, when evaluated in its Disease
Free Equilibrium, namely

(x1, . . . , xn, y1, . . . , yn) =

(
K1

µ1
, . . . ,

Kn

µn
, 0, . . . , 0

)
, (7)

the system (6) does not exhibit any form of delay, and qualitatively reduces to
a system of ODEs. We focus on the Jacobian on the system evaluated in this
equilibrium, obtaining a reliable threshold quantity.

Proposition 3.2. Recall from [1] that the “Basic Reproduction Number of neuron
i” is R0i = d Ki

µiαi
.

The Basic Reproduction Number R0 of the system (6) is given by the spectral
radius of the matrix F ∈ Rn×n defined as

(F )ij =

{
R0i if j = i,

κjiαj→iR0i if j ̸= i.
(8)

Proof. For ease of notation, we use diag(·) to indicate diag(·)1≤i≤n, since all the
diagonal matrices we consider are of dimension n× n.

We compute the Jacobian J of (6), dropping the explicit dependence on (t)
everywhere for ease of notation. By “splitting” the system into x and y, we can
write

J =

(
J11 J12
J21 J22

)
,
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where

J11 = diag

−µi − d

yi +
∑
j ̸=i

κjiαj→iyj

 , (J12)ij =

{
Kiβ

′(yi)− dxi if j = i,

−dxiκjiαj→i if j ̸= i,

J21 = diag

d

yi +
∑
j ̸=i

κjiαj→iyj

 and (J22)ij =

{
dxi − αi if j = i,

dxiκjiαj→i if j ̸= i.

We now evaluate the Jacobian in the Disease Free Equilibrium of System (6), given
in (7).

Recall that β′(0) = 0. We obtain

J11,DFE = diag (−µi) , J21,DFE = 0,

(J12,DFE)ij =


−d

Ki

µi
if j = i,

−d
Ki

µi
κjiαj→i if j ̸= i,

and (J22,DFE)ij =


d
Ki

µi
− αi if j = i,

d
Ki

µi
κjiαj→i if j ̸= i.

Finally, we decompose JDFE = M − V , with

M =

(
0 0
0 M22

)
and V =

(
V11 V12

0 V22

)
,

where

(M22)ij =


d
Ki

µi
if j = i,

d
Ki

µi
κjiαj→i if j ̸= i,

and

V22 = diag (αi) .

We do not write V11 and V12 explicitly, since they are not needed for our compu-
tations. Then, the basic reproduction number of the whole system is the spectral
radius R0 = ρ(M22V

−1
22 ) = ρ(F ), with F ∈ Rn×n defined as

(F )ij =

{
R0i if j = i,

κjiαj→iR0i if j ̸= i.

Notice that, in order to compute this spectral radius, we implicitly assumed that
αi ̸= 0 for all i = 1, 2, . . . , n. This means that we assume that each neuron receives
some infection from at least one of its neighbours. We comment more on this in
Section 7. We derived the Basic Reproduction Number of System (6) similarly to
how we proceeded on page 2 for the 2 neurons case. Here, the influence of the
various κji is less obvious, and we shall investigate it numerically, except for the
case R0 < 1, for which we analytically prove global convergence towards the Disease
Free Equilibrium (7) in Section 4.
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3.1. Fully homogeneous case. Recall that we are interested in the number of
neurons n ≥ 2, so the divisions we make in this section by n − 1 are not problem-
atic. Assume now that the system is fully homogeneous, and that all the neurons
are connected to each other. This is clearly an unrealistic setting, however, it is
instructive to obtain an intuition of what the role of n, the number of neurons, is
in the spread of the prion.

Full homogeneity in this setting means that in the system (6) the parameters are
Ki = K, µi = µ for all i = 1, . . . , n, and κij = κ, αi→j = α/(n − 1) for all i, j =
1, . . . , n. Then, αi = α; moreover, for each neuron the local Basic Reproduction
Number is

R0i =
dK

µα
=: R0,

and the matrix F defining the global Basic Reproduction Number R0 is given by

(F )ij =

{
R0 if j = i
κα

n− 1
R0 if j ̸= i

= R0

{
1 if j = i
κα

n− 1
if j ̸= i

= R0

((
1− κα

n− 1

)
In +

κα

n− 1
1n

)
,

(9)

where In is the n × n identity matrix, and 1n is the n × n matrix with 1 in all its
entries.

Then, 1n has one eigenvalue n (its trace) and n− 1 zero eigenvalues (since it has
rank 1), whereas the matrix (

1− κα

n− 1

)
In,

clearly has n eigenvalues equal to 1− κα/(n− 1).
Recall that, if a matrix A has eigenvalues λ1, . . . , λn, then the matrix cIn + bA

has eigenvalues c + bλ1, . . . , c + bλn, for any b, c ∈ R, since any eigenvector v of A
will also satisfy cIv = cv.

Hence, the sum (9) (ignoring for a moment the scalar coefficient R0 in front of
the brackets) has one eigenvalue equal to κα + 1 (its spectral radius) and n − 1
eigenvalues equal to 1− κα/(n− 1). Consequently,

R0 = ρ(F ) = R0 (κα+ 1) . (10)

This value is clearly strictly greater than R0, and independent on n. This means
that, as long as the network is fully connected and fully homogeneous, the number
of neurons has no direct impact on the dynamics of the system, according to our
model. However, the connectivity between the neurons, expressed by κ, plays a
fundamental role in the dynamics in the sense that even if all R0 < 1, with κ big
enough the global system might have a Basic Reproduction Number R0 > 1, and
the disease could hence remain endemic. Figure 4a in Section 7 is an example of a
fully connected network with n = 3.

3.2. Case of ring network. Next, we consider a case of a ring network with
homogeneous coefficients. In this scenario, as illustrated in Figure 3a, each neuron
i is only connected to the previous one (i− 1) and the following one (i+1), as well
as the n-th neuron being connected to the first. This leads then to the following
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(a) Ring network, n neurons.

. . .

. . .

1

2

3

4

n− 1

n

(b) Line network, n neurons.

. . .

. . .

1

2

3

4

n− 1

n

(c) One-way network, n neu-
rons.

Figure 3. The three networks we consider in the sections 3.2, 3.3
and 3.4. We only show the forward case from Section 3.4, as the
backward case would look exactly the same but with each arrow
reversed.

expression

(F )ij = R0



1 if j = i,
κα
2 if j = i− 1, 2 ≤ i ≤ n,
κα
2 if j = i+ 1, 1 ≤ i ≤ n− 1,
κα
2 if j = 1, i = n,
κα
2 if j = n, i = 1,

0 otherwise.

F is a symmetric circulant matrix (see [23]); its eigenvalues are given by

λk = R0

(
1 + κα cos

(
2kπ

n

))
, k = 0, . . . , n− 1.

Then, the spectral radius of the matrix F is given by

R0 = ρ(F ) = R0 (1 + κα) .
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As with a fully connected network, connectivity between neurons plays an important
role in the dynamics of a ring network. Figure 4c in Section 7 is a particular case
of ring network with n = 5.

3.3. Case of line network. Then, we consider a case of a line network with ho-
mogeneous coefficients. This corresponds to the ring network considered in Section
3.2, from which we remove the connection between neuron n and neuron 1. This
scenario is illustrated in Figure 3b. This leads then to the following expression

(F )ij = R0


1 if j = i,
κα
2 if j = i− 1, 2 ≤ i ≤ n,
κα
2 if j = i+ 1, 1 ≤ i ≤ n− 1,

0 otherwise.

We obtain a tridiagonal symmetric Toeplitz matrix (see [15]). Then, the eigenvalues
of F are given by

λk = R0

(
1 + κα cos

(
kπ

n+ 1

))
, k = 1, . . . , n,

and the spectral radius is

R0 = ρ(F ) = R0

(
1 + κα cos

(
π

n+ 1

))
.

We see here that not only the connectivity κ between neurons plays a fundamental
role, but also the number n of neurons involved. This network acts like a ring
network when n is very large (n → +∞). Figures 4b and 4d in Section 7 are
particular cases of line networks with n = 5 and n = 9, respectively.

3.4. Case of one-way direction. Lastly, we consider a case in which each neuron
is only connected to the ones preceding (or following) it, meaning neuron i only
spreads the infection to neurons j < i (or j > i), with homogeneous coefficients.
This leads then to the following expressions,

(F )ij = R0


1 if i = j,
κα

n− j
if i ≥ j + 1, j ≤ n− 1,

0 otherwise,

or(F )ij = R0


1 if i = j,
κα

j − 1
if i ≤ j − 1, j ≥ 2,

0 otherwise.

In this case, since the matrix F is triangular, we obtain

R0 = ρ(F ) = R0.

The former case is illustrated in Figure 3c. Unlike fully connected networks, ring
networks and line networks, the global Basic Reproduction Number R0 of the one-
way direction network is independent of the connectivity between neurons.

4. Global stability of the disease free equilibrium. In this section, we prove
the global stability of the Disease Free Equilibrium (7) for System (6) when R0 =
ρ(F ) < 1. In order to do so, we proceed similarly to [20, Thm. 5].

Theorem 4.1. The Disease Free Equilibrium (7) of System (6) is globally asymp-
totically stable when R0 = ρ(F ) < 1.
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Proof. Recall from (2) that β(x) ≤ 1 for all x ≥ 0. Then, we can bound the first n
DDEs of System (6) from above by

dxi

dt
= Kiβ(yi(t− Ti))− µixi(t)− dxi

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

 ≤ Ki − µixi(t).

Consider the auxiliary system

dzi
dt

= Ki − µizi(t), i = 1, 2, . . . , n. (11)

Clearly, the first n entries of Disease Free Equilibrium (7) form a point which is
globally asymptotically stable for (11). Then, for any ε > 0, there exists a t̄i > 0
such that, for t ≥ t̄i,

xi(t) ≤
Ki

µi
+ ε.

Take t̄ = maxi t̄i. Then, for t ≥ t̄, the second n ODEs of the system (6) can be
bound from above by

dyi
dt

≤ d

(
Ki

µi
+ ε

)yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

Consider the second auxiliary system

dwi

dt
= d

(
Ki

µi
+ ε

)wi(t) +
∑
j ̸=i

κjiαj→iwj(t)

− αiwi(t).

This system is linear in w = (w1, w2, . . . , wn), and can be rewritten as

dw

dt
= (M22(ε)− V22)w,

where

(M22(ε))ij =


d

(
Ki

µi
+ ε

)
if j = i,

d

(
Ki

µi
+ ε

)
κjiαj→i if j ̸= i,

meaning the matrix M22 used in the definition of R0 is actually M22(0), and

V22 = diag (αi) ,

as above. For ε > 0 small enough, as a consequence of our assumption R0 < 1, we
can have ρ(M22(ε)V

−1
22 ) < 1. We then use the following lemma:

Lemma 4.2 ([37], Lemma 2). If M is non-negative and V is a non-singular M-
matrix, then R0 = ρ(MV −1) < 1 if and only if all eigenvalues of (M − V ) have
negative real parts.

This means that, if ρ(M22(ε)V
−1
22 ) < 1, then

lim
t→+∞

wi(t) = 0

for all i = 1, 2, . . . , n, which implies

lim
t→+∞

yi(t) = 0.
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Thus, for any δ > 0, there exists t∗ > 0 such that, for all t ≥ t∗ and for all i =
1, 2, . . . , n, we have yi(t) ≤ δ. Hence, introducing for ease of notation T = maxi Ti,
for t ≥ t∗ + T , we have

β(yi(t− Ti)) =
1

1 + (yi(t− Ti)/yc)p
≥ 1

1 + (δ/yc)p
= β(δ).

Notice that β(δ) → 1 as δ → 0. We can then bound the first n DDEs of System (6)
from below by

dxi

dt
≥ Kiβ(δ)− µixi(t)− dxi(t)

δ +
∑
j ̸=i

κjiαj→iδ

 .

Consider the final auxiliary system

dvi
dt

= Kiβ(δ)− µivi(t)− dvi(t)

δ +
∑
j ̸=i

κjiαj→iδ

 .

Clearly, each for each i we have

lim
t→+∞

vi(t) =
Kiβ(δ)

µi + δd(1 +
∑

j ̸=i κjiαj→i)
.

Hence, for each i = 1, 2, . . . , n and for all ε, δ > 0, we have the following lower and
upper bounds:

Kiβ(δ)

µi + δd(1 +
∑

j ̸=i κjiαj→i)
≤ lim inf

t→+∞
xi(t) ≤ lim sup

t→+∞
xi(t) ≤

Ki

µi
+ ε.

Letting ε, δ → 0 concludes the proof.

Corollary 4.3. The Disease Free Equilibrium is locally unstable when R0 > 1.

Proof. Direct consequence of Theorem 4.1 and [37, Thm. 1].

We remark that, for all our results thus far, the only assumptions on the function
β(·) are: β(0) = 1, β′(0) = 0 and β(x) decreasing in x. Our specific choice (2) was
made for consistency with [1] and because it appears biologically relevant. However,
other choices might lead to interesting results. We comment more on this in Section
8.

5. Existence of an endemic equilibrium. We now prove, under stronger as-
sumptions than R0 > 1 (but weaker than R0i > 1), that System (6) admits at least
one Endemic Equilibrium (EE), i.e. an equilibrium such that yi > 0 for all i.

Theorem 5.1. Assume that the matrix F (8) is such that the minimum row sum is
strictly bigger than 1. Then, System (6) admits at least one Endemic Equilibrium.

Proof. We know that

min row/column sum of F ≤ ρ(F ) ≤ max row/column sum of F,

hence under our assumption, ρ(F ) = R0 > 1.
We begin by noticing that an equilibrium of the system (6) necessarily satisfies

xi =
Kiβ(yi)

µi + d
(
yi +

∑
j ̸=i κjiαj→iyj

) . (12)
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Substituting (12) in the ODEs for yi and equating them to 0, we obtain

0 =
dKiβ(yi)

(
yi +

∑
j ̸=i κjiαj→iyj

)
µi + d

(
yi +

∑
j ̸=i κjiαj→iyj

) − αiyi. (13)

Notice that, for yi large enough, the right hand side (RHS) of (13) is clearly negative.
Let us denote with Mi a large number such thatdKiβ(yi)

(
yi +

∑
j ̸=i κjiαj→iyj

)
µi + d

(
yi +

∑
j ̸=i κjiαj→iyj

) − αiyi

∣∣∣∣
yi=Mi

< 0,

for all non-negative values of yj , j ̸= i. Moreover, let us denote with M = maxMi.
If we find a value ε > 0 such that the RHS of (13) is positive for all i = 1, 2, . . . , n,

we can apply the Poincaré-Miranda theorem [16, 18] (qualitatively, a higher dimen-
sional version of the intermediate value theorem) to conclude the existence of at
least one Endemic Equilibrium of System (6).

Let us evaluate the RHS of (13) at yi = ε for all i = 1, 2, . . . , n, and study its
sign. We have

dKiβ(ε)
(
ε+ ε

∑
j ̸=i κjiαj→i

)
µi + d

(
ε+ ε

∑
j ̸=i κjiαj→i

) − αiε > 0.

In fact, we can divide by ε > 0 on both sides, obtaining

dKiβ(ε)
(
1 +

∑
j ̸=i κjiαj→i

)
µi + d

(
ε+ ε

∑
j ̸=i κjiαj→i

) − αi > 0. (14)

Recall that β(0) = 1. Then, for ε = 0, (14) coincides with the i-th row sum of F
being strictly greater than 1. Since by assumption the minimum of the row sums
(hence, all the row sums) is greater than 1, by continuity there exists a small εi > 0
such that the RHS of (13) is strictly positive. Let us denote with ε = min εi.

Applying the Poincaré-Miranda theorem on the set [ε,M ]n allows us to conclude
the existence of at least one Endemic Equilibrium, i.e. with 0 < ε < yi < M for
i = 1, 2, . . . , n.

We conjecture the following, based on our extensive numerical simulations:

Conjecture 5.2. System (6) admits at least one Endemic Equilibrium when R0 >
1.

Our proof of Theorem 5.1 relies heavily on the assumption on the minimum row
sum being strictly bigger than 1, hence it fails so for a generic matrix F , if we only
assume ρ(F ) > 1. However, the application of the Poincaré-Miranda theorem might
not be necessary to prove this result.

6. Persistence of solutions. In this section, we treat the long-term behavior of
the system (6) when R0 > 1. We start with the following proposition:

Proposition 6.1. Consider a fixed i = ĩ ∈ {1, . . . , n}. If R0ĩ = dKĩ/(µĩαĩ) > 1,
then R0 > 1 and there exists a constant εĩ > 0 such that

lim sup
t→+∞

yĩ(t) > εĩ, with φĩ ∈ C([−T, 0],R+), φĩ(0) ̸= 0.
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Proof. By considering the second equation of System (6) for i = ĩ, we have, for
t > 0,

dyĩ
dt

≥ dxĩ(t)yĩ(t)− αiyĩ(t).

We have also, for t > 0,

d(xĩ + yĩ)

dt
= Kĩβ(yĩ(t− T1))− µĩxĩ(t)− αĩyĩ(t).

We suppose by contradiction that lim supt→+∞ yĩ(t) ≤ εĩ, for any small εĩ >
0. By the boundedness of solutions, we consider lim inft→+∞ xĩ(t) = xĩ∞ and
lim inft→+∞ yĩ(t) = yĩ∞ = 0. Then, there exists a sequence tk → +∞ as k → +∞,
such that xĩ(tk) → xĩ∞, yĩ(tk) → 0, y′

ĩ
(tk) → 0 and x′

ĩ
(tk) → 0. This yields to

0 ≥ Kĩβ(0)− µĩxĩ∞ ⇒ xĩ∞ ≥ Kĩβ(0)

µĩ

=
Kĩ

µĩ

.

For a very large time t, the ODE of yĩ then satisfies

dyĩ
dt

≥ dKĩ

µĩ

yĩ(t)− αiyĩ(t).

By using R0ĩ = dKĩ/(µĩαĩ) > 1, then limt→+∞ yĩ(t) = yĩ∞ = +∞, which contra-
dicts the hypothesis and clashes with the results derived earlier on the boundedness
of solutions.

Clearly, if R0ĩ > 1, then R0 > 1. This is a consequence of Theorem 4.1: if
R0 < 1, then the solution approach zero in every yi component, which is not the
case for i = ĩ.

Next, we show the weak persistence of each yi, i = 1, ..., n, in the following
proposition.

Proposition 6.2. Suppose that R0 > 1. Then, there exists a constant ε > 0 such
that, for any initial condition (xi0, φi) ∈ R+ × C([−T, 0],R+), for i = 1, ..., n, we
have

lim sup
t→+∞

yi(t) > ε, φi(0) ̸= 0.

Proof. We suppose by contradiction that lim supt→+∞ yi(t) ≤ ε, for i = 1, . . . , n
and for any small ε > 0. Then, there exists a sufficiently large t1ε > 0 such that
yi(t) ≤ ε, for all t ≥ t1ε. Hence, we get for all t ≥ t1ε,

dxi

dt
≥ Kiβ(ε)− µixi(t)− dxi

(
ε+ ε

∑
j ̸=i κjiαj→i

)
.

We denote lim inft→+∞ xi(t) = xi∞, for i = 1, . . . , n. Then, there exists a sequence
tm → +∞ as m → +∞, such that xi(tm) → xi∞ and x′

i(tm) → 0 (see Lemma A.14
of [30]). This yields

0 ≥ Kiβ(ε)− µixi∞ − dxi∞

ε+ ε
∑
j ̸=i

κjiαj→i

 .

Then, we have

xi∞ ≥ Kiβ(ε)

µixi∞ + d
(
ε+ ε

∑
j ̸=i κjiαj→i

) =: xiε.



A MULTIGROUP APPROACH TO DELAYED PRION PRODUCTION 2987

Hence, for every small ν > 0, there exists a sufficiently large t2ν > 0 such that, for
t ≥ t2ν ,

xi(t) ≥ xiε − ν =: xν
iε.

Then, for a significant large time, we get

dyi
dt

≥ dxν
iε

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

As in the proof of Theorem 4.1, we consider the following system of ODEs:

dwi

dt
= dxν

iε

wi(t) +
∑
j ̸=i

κjiαj→iwj(t)

− αiwi(t).

This system is linear in w = (w1, w2, . . . , wn), and can be rewritten as

dw

dt
= (M22(ε, ν)− V22)w,

where

(M22(ε, ν))ij =

{
dxν

iε if j = i,

dxν
iεκjiαj→i if j ̸= i,

V22 = diag (αi) .

Using the hypothesis that R0 = ρ(M22(0, 0)V
−1
22 ) > 1, we can consider ε and ν

sufficiently small such that

Rε,ν
0 := ρ(M22(ε, ν)V

−1
22 ) > 1.

We then use Lemma 4.2 to conclude that at least one eigenvalue of (M22(ε, ν) −
V22 has positive real part. This leads to a contradiction with the assumption
lim supt→+∞ yi(t) ≤ ε, for all i = 1, ..., n. As a consequence, there exists at least

one i = ĩ such that
lim sup
t→+∞

yĩ(t) = yĩ∞ > ε.

This is sufficient to conclude the weak persistence for each i ∈ {1, . . . , n}.
Suppose this is not true, and for some i ∈ {1, . . . , n} and i ̸= ĩ we have

lim supt→+∞ yi(t) = 0. This means since solutions remain non-negative, that

lim
t→+∞

yi(t) = 0.

By the boundedness of solutions and as a consequence of Barbalat’s Lemma [13, 31],
we obtain

lim
t→+∞

y′i(t) = 0.

We can then choose a sequence tm → +∞ as m → +∞, such that yĩ(tm) → yĩ∞.
Recall the equation of yi, for t > 0,

dyi
dt

= dxi(t)

yi(t) +
∑
j ̸=i

κjiαj→iyj(t)

− αiyi(t).

Therefore, by letting tm → +∞ we obtain

0 ≥ dxi∞κĩiαĩ→iyĩ∞ > 0.

This contradiction completes the proof.

Using the boundedness of the solution (see Proposition 3.1) and the fact that β
is nonincreasing, we can show easily the following result.
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Proposition 6.3. There exists a constant ε̃ > 0 such that, for any initial condition
(xi0, φi) ∈ R+ × C([−T, 0],R+), for i = 1, ..., n, we have

lim inf
t→+∞

xi(t) > ε̃.

Now, we can establish the following result stating the strong uniform persistence
of System (6) when R0 > 1.

Theorem 6.4. Suppose that R0 > 1. Then, there exists a constant ε > 0 such
that, for any initial condition (xi0, φi) ∈ R+ × C([−T, 0],R+), for i = 1, ..., n, we
have

lim inf
t→+∞

yi(t) > ε, φi(0) ̸= 0.

The proof can be adapted from the demonstration of Theorem 1 of [6] and it
follows that the uniform weak persistence implies the uniform (strong) persistence
(see also Theorem 7.3 of [2]).

7. Numerical simulations. In this section, we provide an extensive, but not ex-
haustive numerical exploration of the system (6), for various values of the parame-
ters involved. Specifically, we simulate the model (6) for the four choices of networks
depicted in Fig. 4: fully connected network with n = 3 neurons; line networks with
n = 5 and n = 9 neurons; and ring network with n = 5 neurons. Our selection
of initial conditions is influenced by a potential relevance from a biological stand-
point. In the context of initiating an experiment, there is an inherent interest in
commencing with all neurons exhibiting similar behavior. This entails the produc-
tion of an identical amount of monomers and, through a protein misconfiguration
process, the generation of oligomers in approximately the same quantities. This
initial production may be set at zero in certain simulations, as illustrated in Figure
7, Figure 8, Figure 9, or at a non-zero value, as observed in Figure 5. Other choices
of initial conditions can be explored, but as the analytical study has shown, the as-
ymptotic behaviour of the solution will remain unchanged, so no further simulation
is required.

We start by considering two fully connected, and fully homogeneous scenarios,
which could correspond to the figure (a) in Fig. 4.

An illustration for the case R0 < 1 with n = 3 is given in Fig. 5. In this
configuration, we observe an extinction of the disease, as analytically expected and
proven in Section 4.

In Fig. 6, instead, we illustrate the case R0 > 1 with n = 3. These figure
showcase the role of µi, i.e. degradation rate of PrPC produced by the neuron
i, particularly its effects on the basic reproduction number and the spread of the
infection, in a non-trivial case.

We are also interested in the fully homogeneous case (κij := κ and αi→j =
α/(n − 1)) with a line connection between neurons as depicted in Fig. 4b, 4c and
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(a) Fully connected network, n = 3.

1

2

34

5

(b) Line network, n = 5.

1
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34

5

(c) Ring network, n = 5.

1

2

3

4

56

7

8

9

(d) Line network, n = 9.

Figure 4. The four networks we consider in our numerical simu-
lations. Notice that only the network with n = 3 has double arrows
on each edge, representing the fully connected network. The three
remaining networks all have unidirectional edges.

4d. In this case, the system has the following form, for t ≥ 0,

dx1

dt
= Kβ(y1(t− T ))− µx1(t)− dx1(t)y1(t),

dy1
dt

= dx1(t)y1(t)− αy1(t),

dx2

dt
= Kβ(y2(t− T ))− µx2(t)− dx2(t)

(
y2(t) +

κα

n− 1
y1(t)

)
,

dy2
dt

= dx2(t)

(
y2(t) +

κα

n− 1
y1(t)

)
− αy2(t),

...

dxi

dt
= Kβ(yi(t− T ))− µxi(t)− dxi(t)

(
yi(t) +

κα

n− 1
yi−1(t)

)
,

dyi
dt

= dxi(t)

(
yi(t) +

κα

n− 1
yi−1(t)

)
− αyi(t),

...
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Figure 5. the fully connected network of n = 3 neurons (recall Fig.

4a), showing the stability of disease free equilibrium when R0 = ρ(F ) =

0.8194 < 1. In this case R0i = 0.6944 < 1 for i = 1, 2, 3. The parameters

are: αi→j = 0.9, κij = 0.1, p = 5, d = 0.015, yc = 60, T = 0.17,

Ki = 1500 and µi = 18.

Figure 6. the fully connected network of n = 3 neurons (depicted

by Fig. 4a), showing the stability of endemic equilibrium when R0 =

ρ(F ) = 1.1346 > 1. In this case R0i = 0.9615 < 1 for i = 1, 2, 3. The

parameters are: αi→j = 0.9, κij = 0.1, p = 5, d = 0.015, yc = 60,

T = 0.17, Ki = 1500 and µi = 13.
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Figure 7. line network of n = 5 neurons (depicted in Fig. 4b). This

case shows that cutting the connection showed stabilization. The param-

eters are: αi→j = 2.5, κij = 0.17 (when considered), p = 10, d = 0.15,

yc = 50, Ki = 1500, µi = 20 and T = 0.15.

Figure 8. circle (ring) network of n = 5 neurons (depicted in Fig.

4c). This case shows that linking the connection in Fig. 7 showed

destabilization of the system. The parameters are: αi→j = 2.5, κij =

0.17 (when considered), p = 10, d = 0.15, yc = 50, Ki = 1500, µi = 20

and T = 0.15. Similar results can be obtained by varying the time delay

T and fixing all other parameters.

and the matrix (8) becomes

(F )ij = R0


1 if j = i,
κα

n− 1
if j = i− 1, i ≥ 2,

0 otherwise.
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Figure 9. line network of n = 5 neurons (depicted in Fig. 4b). For

this figure showing the oscillation of only some neurons (n = 4, 5, the last

ones), we took κ = 0.071. Parameters are: p = 10, d = 0.15, yc = 60,

Ki = 1800, µi = 50, αi→j = 0.9 (αi = 3.6) and T = 0.15. Similar results

can be produced by changing the delay T .

Hence, we obtain

R0 = ρ(F ) = R0 =
dK

µα
.

Note that in the non-fully homogeneous case, and non-fully connected like in Fig.
4 (b), (c) or (d) (where parameters can be different from one neuron to another) we
cannot apply this definition of R0, since some of the αi’s may end up to be equal
to 0. We need then to go back to the more general theory.

In Fig. 7, a fully homogeneous line network, after some initial “wobbling”, the
system approaches an Endemic Equilibrium. In particular, we notice that neurons
further down the line (i.e., couples (xi, yi) with larger i’s (i = 4, or 5) approach
equilibrium with a higher value for the infected compartment yi.

In Fig. 8-11, we examine the behavior of the neural network when the parameter
κ is varied. In fact, we obtain similar results, see Fig. 12, by varying the time delay
T .

In Fig. 8 we “close” the line, forming a close ring with the five neurons. Without
changing the other parameters, this additional link completely destabilizes the sys-
tem. Each neuron approaches a limit cycle. Proving the existence of such a limit
cycle analytically remains to prove and will be the object of future works. This
result was proved for two neurons [1], by a Hopf bifurcation with respect to the
parameters κ and T . It can naturally be extended to a network of n neurons. It is
also interesting to notice that in the case of the close ring, all neurons oscillate at
the same time, with the same period.

In Fig. 9, we revisit the n = 5 line structure, illustrating a case in which neurons 4
and 5 exhibit instability in their asymptotic behaviour, whereas neuron 1 converges
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Figure 10. line network of n = 5 neurons (depicted in Fig. 4b).

Our starting point was the case where the system is stable and we have

increased the bifurcation parameter κ and noted each value for which

a neuron is destabilized. The value of bifurcations are 0.07, 0.0709,

0.728 and 0.768. The neurons are destabilized one by one from the last

and going up to the second. The last neurons always look destabilized

almost at the same time (approximately the same bifurcation values).

Parameters are: p = 10, d = 0.15, yc = 60, Ki = 1800, µi = 50,

αi→j = 0.9 (αi = 3.6) and T = 0.15. A curve similar to this one can be

obtained as a function of the time delay T .

to an equilibrium. This is possible because neuron 1 only spreads the infection, and
does not receive feedback from the remaining neurons in the network. Moreover,
we provide more detail on the parameter κ, which incorporates crucial information,
namely the interconnectivity between neurons. We provide the bifurcation values
of κ, assuming all the other parameters to be fixed, for which each neuron of the
system destabilizes. From a mathematical point of view, the oscillating neuron acts
as a force on the next neuron, which in turn oscillates, and the oscillations thus
propagate to all the following neurons.

In Fig. 10, we explored the case of Fig. 9 a little further in the following sense:
beginning our simulations from the stable case, we increased κ, one of the key
parameters for the Hopf bifurcations and managed to compute the exact value of
κ at which the first neuron of the line would oscillate. For instance, at κ = 0.07
only the last (the fifth) one is destabilized, while for κ = 0.077 only the first one
is stable, while all the others oscillate. We observe that this process is non-linear.
Predicting the number of neurons destabilized with respect to κ analytically is also
an open problem that we keep for future work.

In Fig. 11, we showcase how a continuous variation of the parameter κ impacts
the asymptotic value of each xi and yi, again for the n = 5 line network. Increasing
κ causes more neurons to destabilize; for each of them, we plot the maximum and
minimum values assumed by each variable as they asymptotically approach a limit
cycle. Similarly, in Fig. 12 we showcase what the influence of the delay T is on
these oscillations.
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Figure 11. line network of n = 5 neurons (recall Fig. 4b). The ampli-

tude of the oscillations as a function of κ ∈ [0.055, 0.1]. The amplitude

of the oscillations becomes almost the same for higher values of κ. Pa-

rameters are: p = 10, d = 0.15, yc = 60, Ki = 1800, µi = 50, αi→j = 0.9

(αi = 3.6) and T = 0.15. The red, blue, green and yellow curves are

associated respectively with (x2, y2), (x3, y3), (x4, y4) and (x5, y5). The

same behavior can be obtained as a function of time delay T , see Figure

12.

Finally, in Fig. 13, we explore the effect of increasing the number of neurons
in the line network in the case of our choice of κij = κ = 0.125 set up in Section
3.1. Using similar parameter values as in Fig. 9 (except for κij and αi→j , to keep
them biologically feasible). We manage to show that adding more neurons (going
from 5 to 9 neurons here) can damp the oscillations, and lead the system of neurons
to stabilize again. This process has to be explored biologically to be confirmed
experimentally.

We remark that our results in Section 3.1 only concern R0, from which however
we can only predict extinction or permanence of the disease, and nothing on the
asymptotic stability of orbits. Hence, further analytical results in this direction are
a promising research outlook.

8. Conclusions and outlook. In this paper, we presented a model for the delayed
spread of prion in a network of n neurons, building on the 1 neuron model proposed
in [1]. We studied its analytical properties and provided extensive numerical simu-
lations to illustrate various scenarios.

Due to the high dimension of the system, and of the analytical complexity of
systems of DDEs, many questions remain unanswered. How can we overcome the
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Figure 12. line network of n = 5 neurons (recall Fig. 4b). The

amplitude of the oscillations as a function of T ∈ [0.15, 0.4]. All the

cycles except for the blue one are almost overlapping for every value of

T . Parameters are: p = 10, d = 0.15, yc = 60, Ki = 1800, µi = 50,

αi→j = 0.9 (αi = 3.6) and κ = 0.07. The blue, red, green, purple and

yellow curves are associated respectively with (x1, y1), (x2, y2), (x3, y3),

(x4, y4) and (x5, y5).

requirement that αi > 0 in the definition of R0? The system has a clear biological
interpretation even when this condition is not satisfied; hence, we would like to find
a threshold quantity in such a scenario. Moreover, does the Endemic Equilibrium
exist for all systems with R0 > 1? Is it unique? If yes, when is it stable? In our
numerical exploration, we found both convergences to Endemic Equilibrium and
sustained oscillations, indicating a possible stable limit cycle arising in the system.
It would be of interest to understand which relations between the parameters of the
system lead to the former or the latter.

Finally, we should point out here also that spatial structure has not been taken
into account. Indeed, considering diffusion may appear challenging for the following
reason: in the case of Alzheimer’s disease, oligomers diffuse randomly in the brain
tissue since the Aβ monomers are no longer anchored to the cell membrane. On
the contrary, for the prion disease, pathological PrPSc proteins spread following the
axon (and thus the cell membrane) where the source of non-pathological PrPC pro-
teins are attached (thanks to a GPI anchor). Thus diffusion cannot be represented
in the same way depending on the neurodegenerative disease studied. Furthermore,
PrPSc might not be produced immediately after the contact with previous neurons.
A time lag may be needed, and thus this could involve some de-synchronisation and
perhaps some chaotic behaviour. We leave these fundamental and other interesting
questions as the possible outlook for future work.



2996 M. ADIMY, A. CHEKROUN, L. PUJO-MENJOUET AND M. SENSI

Figure 13. line network of n = 9 neurons (recall Fig. 4d). We only

plot the time series of (xi, yi) with i = 1, 2, 5, 8, 9, respectively the first

two, the central one and the last two neurons in the line network. By

increasing the number n of neurons from 5 to 9 with the same parameters

as in Fig. 10 and 11 and with κ = 0.125, the system becomes stable.

Recall parameters: p = 10, d = 0.15, yc = 60, Ki = 1800, µi = 50,

αi→j = 0.45 (αi = 3.6) and T = 0.15.
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