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Abstract. The Greer, Pujo-Menjouet and Webb model [Greer et al., J. The-
oret. Biol., 242 (2006), 598–606] for prion dynamics was found to be in good

agreement with experimental observations under no-flow conditions. The ob-

jective of this work is to generalize the problem to the framework of general
polymerization-fragmentation under flow motion, motivated by the fact that

laboratory work often involves prion dynamics under flow conditions in order

to observe faster processes. Moreover, understanding and modelling the mi-
crostructure influence of macroscopically monitored non-Newtonian behaviour

is crucial for sensor design, with the goal to provide practical information about

ongoing molecular evolution. This paper’s results can then be considered as
one step in the mathematical understanding of such models, namely the proof

of positivity and existence of solutions in suitable functional spaces. To that

purpose, we introduce a new model based on the rigid-rod polymer theory to
account for the polymer dynamics under flow conditions. As expected, when

applied to the prion problem, in the absence of motion it reduces to that in
Greer et al. (2006). At the heart of any polymer kinetical theory there is

a configurational probability diffusion partial differential equation (PDE) of
Fokker-Planck-Smoluchowski type. The main mathematical result of this pa-
per is the proof of existence of positive solutions to the aforementioned PDE

for a class of flows of practical interest, taking into account the flow induced

splitting/lengthening of polymers in general, and prions in particular.
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1. Introduction.

1.1. Taking space into account for our problem: What is new in biol-
ogy, what is new in mathematics? In 1999, Masel et al. [12] introduced a new
model of polymerization in order to quantify some kinetic parameters of prion repli-
cation. This work was based on a deterministic discrete model developed into an
infinite system of ordinary differential equations, one for each possible fibril length.
In 2006, Greer et al. in [6] modified this model to create a continuum of possible
fibril lengths described by a partial differential equation coupled with an ordinary
differential equation. This approach appeared to be “conceptually more accessible
and mathematically more tractable with only six parameters, each of which having
a biological interpretation” [6]. However, based on discussions with biologists, it
appeared that these models were not well adapted for in vitro experiments. In these
experiments, proteins are put in tubes and shaken permanently throughout the ex-
periment to induce an artificial splitting in order to accelerate the polymerization-
fragmentation mechanism. To the best of our knowledge, dependence of polymer
and monomer interaction on the shaking orientation and strength, space compe-
tition and fluid viscosity had never been taken into account until now. Thus, it
seemed natural to propose a model generalizing the Greer model and adapt it to
the specific expectations of the biologists.

We therefore introduce a new model of polymer and monomer interacting in
a fluid, with the whole system subjected to motion. A large range of in vitro
experiments involving this protein refers to this protocol in order to accelerate
the polymerization-fragmentation process. Moreover, even as our model could be
well adapted to other polymer-monomer interaction studies, we give here a specific
application to prion dynamics to make an interesting link with the previous Masel
et al. [12] and Greer et al. [6] models. On the other hand, due to the complexity
of the model, any mathematical analysis becomes a challenge. We adapt here a
technique of semi-discretization in time for proving the main result of existence of
positive solutions, we also provide the basis for the numerical approximation of the
problem. The mathematical novelty of this paper resides in the choice of the ad hoc
function spaces and the appropiate modification of the existing techniques to this
new type of problem. Also this work presents an alternative way for proving the
existence of positive solutions as compared to the one given by Engler et al. in [5],
Laurençot and Walker in [11] and Simonett and Walker in [17]. It is then useful to
those who consider which techniques to use when proving the existence of positive
solutions of this class of equations.

The objective of this paper is twofold: not only to make a step forward in math-
ematical modelling of a class of polymer-monomer interaction models, but also to
propose, within a new framework, how to adapt an existing mathematical technique
that will prove the existence of positive solutions to the problem. The biological
implications (e.g. quantitative and qualitative comparison with experimental data)
of this paper model will be addressed in a subsequent work.

1.2. The polymer-monomer interaction model: An application to prion
dynamics. Prion proliferation is challenging at both the biological and mathemat-
ical levels. Prions are responsible for several diseases such as bovine spongiform
encephalopathy, Creutzfeld-Jacob disease, Kuru and it is now commonly accepted
that prions are proteins [14].
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Figure 1. View of prion fibrils, Transmission Electron Microscopy
image (Courtesy of Prof. J.-P. Liautard, inserm Université Mont-
pellier 2, France).

For the sake of clarity, we present several fundamental morphological features of
prions with relevance to the mathematical modelling of this paper (i.e. molecular
dynamics of a low enough concentration prion solution).

There are two types of prions: the Prion Protein Cellular also called PrPC and
Prion Protein Scrapie denoted by PrPSc. It has been proven that PrPC proteins
are naturally synthesized by mammalian cells and consist only of monomers. On
the other hand, the infectious PrPSc proteins are present only in pathologically
altered cells and exist only in “polymer”-shape. The conversion process of a non-
pathological into a pathologically modified one consists in attaching the former to an
already existing polymer (for details see e.g. [10]). As a consequence, the polymers
lengthen. However the sized-up new polymers are fragile, and shorten down their
size by splitting whenever the polymer solution is subjected to some flow conditions.
The size lengthening/shortening process takes place continuously, its kinetics being
dependent on monomer concentration, flow intensity, polymer size, etc.

Polymers may be seen as string-like molecules [16]. When polymer proliferation
occurs, they do interact to form fibrils; these latter exhibit a (physically speaking)
more stable structure and appear as rod-like molecules (see figure 1).

In this paper we deal with idealized rod-like PrPSc, a realistic choice taking
into account the flow-related experiments we investigate. We consider the presence
of a finite amount of PrPC(free monomers) and PrPSc proteins, as well as of
“seeding” rod-like PrPSc at initial condition, and fibril lengthening/splitting (i.e.
fragmentation). It is also important to note that our model is related to in vitro
experiments: neither source terms of monomers and polymers nor degradation rates
are taken into account.

We propose a comprehensive molecular model that accounts for the flow behavior
as observed in in vitro experiments, focusing on the dynamics of monomers and
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fibrils. A good deal of experimental laboratory work involves complex flows (e.g.
diffusion, mixing, etc.). Raw data are provided by sensors designed to acquire
macroscopically observable properties like stresses, flow rates, etc. The latter can
strongly be influenced by the microscopic interactions. Our model does provide an
understanding of how various polymers-monomer and polymer-solvent relationship
result in a configurational probability diffusion equation, with the help of which one
can investigate the stress tensor and related quantities. Therefore, it is of use for
flow pattern monitoring sensors.

The current approach is at an early stage of development. The scission (breakage)
process - the most important mechanism in the in vitro development/proliferation
of infectious proteins - is taken three-dimensionally. While prior models such as
those of [6, 12] (for mathematically in nature aspects related to, see [2, 5, 7, 11, 15,
16, 17, 18]) neglect the flow influence on prion dynamics, the one in [6] was rather
succesful in predicting prion molecular dynamics in the in vivo rest state, and our
model is a generalization of [6].

The prion fiber is modelled as a rigid rod polymer molecule the length of which
is time dependent; see figure 2.
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Figure 2. Prion fibril modelized as rigid rod polymer under flow.

The dynamics of rigid rod molecular fluids has been initiated by Kirkwood [9]
and significantly enriched and brought to fruition by Bird and his school [1] (see also
[8] for a more succinct presentation). As in any kinetical theory, the cornerstone
is the probability of the configurational diffusion equation, which is of a Fokker-
Planck-Smoluchowski type. The latter is the key ingredient for calculating (the
macroscopic) stress tensor and related quantities. In the following we shall derive
a suitable generalization of equations 14.2-8 in [1] that account for prion dynamics
as observed in experiments [3, 14, 19].

This paper begins by first presenting the constitutive assumptions which later
lead to the probability configurational diffusion equation in its general form. We
give a mathematical conceptual framework and a presentation of the main result:
the existence of global weak non-negative solution. To achieve this, we obtain
a variational formulation of the corresponding boundary value problem, and the
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proof is based on a semi-discretization in time technique. The uniqueness of the
solution will be proved in a subsequent paper.

1.3. The general model.

1.3.1. Polymers. Let a fiber be modeled as a rod-like molecule here represented by
a vector in R3. For convenience, we use separate symbols for the length r ∈ R+ =
(0,+∞), and for the angle-vector η ∈ S2, with S2 being the unit sphere of R3.
Contrary to the assumption made in [6] and for simplicity, we assume here that
polymers could be arbitrary small, that is no critical (lower) length is considered
(this assumption is explained in [4]). For technical reasons and without any loss of
realistic assumptions, we suppose that fibers are contained in a bounded, smooth
open set Ω in R3, and the position of each fiber center of mass is denoted by the
vector y. We assume a velocity vector field u : Ω× R+ → R3 such that

∇y · u = 0 in Ω, and u · ~n = 0 on ∂Ω. (1)

with ~n the outward normal. The polymer configurational probability distribution
function ψ(r, η,y, t), at any time t > 0, solves the following equation

∂

∂t
ψ + u · ∇yψ +

∂

∂r
(τ(φ,u, r, η)ψ) = Bψ + Fψ. (2)

with (r, η,y) ∈ R+ × S2 × Ω. Fibers are transported by the velocity vector field u
and lengthening occurs at a rate τ ≥ 0 that depends on the free monomers density,
φ. In dilute regime, the microscopic hydrodynamics is accounted for by the term B
as in [13] and defined by

[Bψ](r, η,y, t) = A(r) ∇η ·
[
D1∇ηψ − Pη⊥ (∇yu η) ψ

]
, (3)

where ∇η and (∇η·) denote the gradient and divergence on S2. A ≥ 0 is a weight
function that accounts for the influence of the length increase upon the motion and
D1 > 0 the diffusion coefficient on the sphere. Moreover, the transport on the
sphere due to the velocity field is given by Pη⊥ (∇yu η), with Pη⊥z = z− (z · η)η,

for all z ∈ R3, denoting the projection of the vector z on the tangent space at η.
The fragmentation (scission) process takes place at rate β(∇yu,u, r, η) ≥ 0 and is
described by F following [6] and given by

[Fψ](r, η,y, t) = −βψ + 2

∫ ∞
r

β(∇yu,u, r′, η)κ(r, r′)ψ(r′, η,y, t) dr′. (4)

The size redistribution kernel κ accounts for the fact that a polymer breaks into
smaller fibers. It is symmetric, since a polymer of size r′ breaks with equal proba-
bility into a fiber of size r′ − r and r; moreover, the fragmentation/recombination
is mass preserving process. We assume here that upon splitting, given the pecular-
ity of the motion process, and its impact on the scission, the resulting clusters of
fibrils have the same center of mass as the initial polymer. It seems reasonable to
assume that the orientation remains unchanged right after the scission. Therefore:
κ(r, r′) ≥ 0, κ(r, r′) = 0 if r > r′, κ(r′ − r, r′) = κ(r, r′) and∫ r′

0

κ(r, r′) dr = 1. (5)

The probability configurational function ψ must be a non-negative solution, satis-
fying the non-zero size boundary condition

ψ(0, η,y, t) = 0, (6)
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and the initial condition

ψ(r, η,y, 0) = ψ0(r, η,y), (7)

with ψ0 a known non-negative initial probability.

1.3.2. Monomers. The concentration of free monomers, given by the distribution
φ(y, t) at time t > 0 at any y ∈ Ω, solves

∂

∂t
φ+ u · ∇yφ−D2∆φ = −

∫
S2×R+

τ(φ,u, r, η)ψ(r, η,y, t) dr dη, (8)

with D2 > 0 the diffusion coefficient. The integral term is due to polymerization
of monomers, being transconformed (misfolded), into fibers. Moreover, monomer
concentration φ must be a non-negative solution satisfying the (no transport across)
boundary condition

∇yφ · ~n = 0 on ∂Ω, (9)

with ~n the outward normal vector on the boundary ∂Ω, as well as the initial condi-
tion

φ(y, 0) = φ0(y), (10)

with φ0 an initially non-negative given concentration. We adjoin to these equations
the balance equation for the total number of monomers contained in the domain Ω:∫

Ω

[
φ(y, t) +

∫
R+×S2

r ψ(r, η,y, t) dη dr

]
dy = ρ, for all t ≥ 0, (11)

where ρ is (experimentally) known from the outset. The above balance equation is
formally satisfied, as a consequence of equations (2)–(8) using also (1).

1.3.3. Velocity vector field and momentum balance equations. As an aside, notice
the velocity vector field, u(t,y) ∈ R3, for all t > 0 and y ∈ Ω, satisfies the Navier-
Stokes equations (for incompressible fluids)

∂

∂t
u + (u · ∇) u = −∇p+ ν∆u−∇ · S,

∇ · u = 0,

u · ~n = 0.

(12)

p is the pressure , ν the viscosity of the Newtonian solvent within which the prions
(i.e. rigid-rod molecules) are dissolved, and S is the non-Newtonian extra stress
tensor contribution (to the total stress) due to the presence of rigid rods. The latter
is given by [1] as

S(y, t) =

∫
R+

r2

∫
S2
η ⊗ η ψ dηdr. (13)

In this paper, we suppose that u is given and the unknown functions are only ψ
and φ. The existence and uniqueness of the solutions to the full system with the
Navier-Stokes equations introduced above (that is u, ψ and φ) will be the topic of
a subsequent paper.
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1.4. Constitutive assumptions. Assume the velocity vector field satisfies the
regularity

u ∈ C1
(
[0,∞),W 1,∞(Ω)

)
(14)

such that

∇y · u = 0 and u · ~n = 0 on ∂Ω. (15)

Next, we adhere to the view on prion proliferation expressed in [6, 7, 12, 15]. The
splitting (scission) rate of fibers, given by β, is assumed to be linear in r. Therefore
let g : M3(R) × R3 × S2 → R+ be continuous with respect to the first and second
variable, such that β(σ,v, r, η) = g(σ,v, η) r, for all σ ∈M3(R), v ∈ R3, r > 0 and
η ∈ S2. Moreover, we assume that for all bounded subsets B ⊂ R3 and O ⊂M3(R)
there exist positive constants gB,O ≥ gB,O such that

g
B,O
≤ g(σ,v, η) ≤ gB,O, for every (σ,v, η) ∈ O ×B × S2. (16)

Let T > 0 be fixed. Then, due to the smoothness of u, there exists g ≥ g > 0 such
that

g ≤ g(∇yu,u, η) ≤ g, for every (t,y, η) ∈ [0, T ]× Ω× S2. (17)

We consider the polymerization rate τ linear in (the free monomers density) φ, i.e.
there exists τ0 > 0 such that

τ(φ,v, r, η) = τ0φ. (18)

This assumption had been already evoked by Greer et al. [6] and corresponds to
a mass action binding. The splitting kernel κ accounts for the probability of a
polymer with initial length r, to split into a polymer with a shorter length r′ as
described in [6], and is given by

κ(r, r′) =

{
1/r′ if 0 < r ≤ r′,

0 else.
(19)

This expression is compatible with (5) (and the conservation law (11)). Then the
length weight function A ≥ 0 is supposed to be in L∞(R+) and there exists CA > 0
such that

‖A‖L∞(Ω) = CA <∞ (20)

We remark that, by virtue of u being sufficiently smooth and for fixed T > 0, there
exists CP > 0 such that

‖Pη⊥ (∇yu η) ‖L∞([0,T]×Ω×S2) = CP <∞, (21)

Using the result stated in the Appendix, there exists CD > 0 such that

‖∇η · Pη⊥ (∇yu η) ‖L∞([0,T]×Ω×S2) = CD <∞. (22)
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Thanks to the assumptions given in this section, the problem can be re-written as:

∂

∂t
ψ + u · ∇yψ + τ0φ

∂

∂r
ψ −A(r) ∇η ·

[
D1∇ηψ − Pη⊥ (∇yu η) ψ

]
= −g(∇yu,u, η)rψ + 2g(∇yu,u, η)

∫ ∞
r

ψ(r′, η,y, t) dr′,
(23a)

∂

∂t
φ+ u · ∇yφ−D2∆φ = −τ0φ

∫
S2×R+

ψ(r, η,y, t) dr dη, (23b)

ψ(r = 0, η,y, t) = 0, (23c)

∇yφ · ~n = 0, on ∂Ω (23d)

ψ(t = 0) = ψ0 and φ(t = 0) = φ0, (23e)

1.5. Particular case: Zero velocity field, as in the Greer’s model. Consider
u = 0, and assume that g is such that g(0, η) = g0, a constant, for any η. In fact,
even in the absence of flow the prion-fibrils can undergo scission and re-combination.
Suppose that φ is independent of y, then let f(t, r) = 1

|Ω|
∫

Ω×S2 ψ(r, η,y, t) dηdy be

the average of ψ. Integrating equations (23) leads to

∂

∂t
f + τ0φ(t)

∂

∂r
f + g0rf = 2g

∫ ∞
r

f(r′, t) dr′ over (t, r) ∈ R2
+,

d

dt
φ(t) = −τ0φ(t)

∫
R+

f(r, t) dr,

f(0, t) = 0.

(24)

Note that the above system of equations is the one proposed in [6] where it was
produced under the assumption of prion conservation mass (no protein synthesis,
no metabolic degradation).

2. Variational formulation and main result. First we present the functional
framework one of the main mathematical novelty of this paper, next the definition
of weak solutions to the system (23), and eventually the proof of the existence of a
weak solution of this system.

2.1. Functional framework. Let a : R+ → R+ be defined by a(r) = eαr for a
α > 0. Denote Q = S2 × R+ and dq = a(r)drdη. Let the following Hilbert spaces
be defined as

L2
α =

{
ψ ∈ L1

loc (Ω×Q) ,

∫
Ω×Q

ψ2 dqdy <∞
}
. (25)

Then,

V =

{
ψ ∈ L1

loc (Ω×Q) ,

∫
Ω×Q

(
A(r)|∇ηψ|2 + (1 + r)ψ2

)
dqdy <∞

}
, (26)

and

V1 =

{
ψ ∈L1

loc (Ω×Q) ,∫
Ω×Q

(∣∣∣∣ ∂∂rψ
∣∣∣∣2 +A(r)|∇ηψ|2 + (1 + r)ψ2

)
dqdy <∞

}
.

(27)
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Recall the Sobolev space H1(Ω) endowed with the norm

‖φ‖H1 = ‖φ‖L2(Ω) + ‖∇yφ‖L2(Ω). (28)

We also use the canonical embedding

V1 ⊂ V ⊂ L2
α = (L2

α)′ ⊂ V ′ ⊂ (V1)
′
. (29)

For any θ ∈ R, let L1
θ =

{
ψ ∈ L1

loc (Ω×Q) ,
∫

Ω×Q |ψ| r
θdrdηdy <∞

}
. Then we

have the canonical embedding

L2
α ⊂ L1

θ, for any α > 0 and θ ≥ 0, (30)

which makes sense in regard to the mass conservation and the total quantity of
polymers when θ = 0 or θ = 1.

2.2. Variational formulation. To begin with, we introduce test function spaces.
Let T > 0. First, for the polymer ψ-equation, let X1 be the completion of
C∞c ((−T, T )× Ω× S2 × [0,+∞)) with respect to the norm ‖ · ‖X1

‖ψ̃‖X1
=

∫ T

0

(∥∥∥∥ ∂∂t ψ̃
∥∥∥∥2

L2
α

+ ‖∇yψ̃‖2L2
α

+ ‖ψ̃‖2V1

)
dt (31)

In particular, this implies that, if ψ̃ ∈ X1, then ψ̃(t = T ) = 0. Second, the test
functions for the φ-equation are elements of X2, the latter space being the comple-
tion of C∞c ((−T, T ) × Ω) with respect to the norm H1((0, T ) × Ω). In particular

this implies that if φ̃ ∈ X2, then φ̃(t = T ) = 0. In order to obtain a variational
formulation of (23) we first assume that we have a strong solution which is smooth

enough. Then we multiply (23a) by ψ̃(r, η,y, t)a(r), with ψ̃ ∈ X1, and integrate

over (0, T )×Ω×Q, next we multiply (23b) by φ̃ ∈ X2 and integrate over (0, T )×Ω.
We note ∫

R+

τ0φ
∂

∂r
ψ ψ̃ a(r)dr = −

∫
R+

τ0φψ
∂

∂r

(
ψ̃a(r)

)
dr,

= −
∫
R+

τ0φψ

(
∂

∂r
ψ̃ + αψ̃

)
a(r)dr,

(32)

since ψ̃ ∈ X1. One also has:∫
S2
∇η · (D1∇ηψ) ψ̃ dη = −

∫
S2
D1∇ηψ ·

(
∇ηψ̃ − 2ηψ̃

)
dη, (33)

and∫
S2
∇η ·

(
Pη⊥ (∇yu η)ψ

)
ψ̃ dη = −

∫
S2

Pη⊥ (∇yu η)ψ ·
(
∇ηψ̃ − 2ηψ̃

)
dη,

= −
∫
S2

Pη⊥ (∇yu η)ψ · ∇ηψ̃ dη,

(34)

since Pη⊥ (∇yu η) ·η = 0 (see for instance Appendix II in [13] for calculation details
on the sphere). Moreover, by assumption (15) on u,∫

Ω

(u · ∇yψ) ψ̃ dy = −
∫

Ω

ψ
(
u · ∇yψ̃

)
dy, (35)

and ∫
Ω

(u · ∇yφ) φ̃ dy = −
∫

Ω

φ
(
u · ∇yφ̃

)
dy. (36)
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Then a variational formulation of (23a) is

−
∫

Ω×Q
ψ0 ψ̃(t = 0) dqdy −

∫ T

0

∫
Ω×Q

ψ

(
∂

∂t
ψ̃ + u · ∇yψ̃

)
dqdy dt

+

∫ T

0

∫
Ω×Q

A(r)
(
D1∇ηψ

(
∇ηψ̃ − 2ηψ̃

)
− Pη⊥ (∇yu η)ψ · ∇ηψ̃

)
dqdy dt

+

∫ T

0

∫
Ω×Q

ψ

(
g(∇yu,u, η)rψ̃ − τ0φ

(
∂

∂r
ψ̃ + αψ̃

))
dqdy dt

= 2

∫ T

0

∫
Ω×Q

g(∇yu,u, η)

(∫ ∞
r

ψ dr′
)
ψ̃ dqdy dt, (37)

for any ψ̃ ∈ X1 and for (23b),

−
∫

Ω

φ0 φ̃(t = 0) dy −
∫ T

0

∫
Ω

φ

(
∂

∂t
φ̃+ u · ∇yφ̃

)
dy dt +

+

∫ T

0

∫
Ω

[
D2 ∇yφ · ∇yφ̃+ τ0φ φ̃

(∫
S2×R+

ψ drdη

)]
dy dt = 0, (38)

for any φ̃ ∈ X2.

2.3. Main result: Existence of non-negative solutions of the problem. At
this point we are prepared to introduce our main result. It gives the existence of
non-negative weak solution to our problem under the general assumptions of section
1.4.

Theorem 2.1 (Main result). Let φ0 ∈ L∞(Ω) be non-negative and ψ0 ∈ L2
α

non-negative such that there exists a constant C0 > 0 with

ψ0 ≤ C0e
−αr.

Then, for any T > 0, there exists at least one solution (ψ, φ) to the weak formulation
(37)-(38) of the problem (23), with ψ and φ non-negative. Moreover we have ψ ∈
L∞(0, T ;L2

α) ∩ L2(0, T ;V ) and φ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 1. Proving the uniqueness of the solution is a rather lengthy undertaking
and will be done in a follow up paper.

Remark 2. Weak solutions to the above variational formulation with stronger
regularity than the one implied by the theorem above satisfy the problem (23) in
a strong sense. Moreover, this variational formulation complies weakly with the
mass conservation principle. Therefore, let ϕ ∈ H1(0, T ), with ϕ(t = T ) = 0,

and take ψ̃(r, η,y, t) = re−αrϕ(t) ∈ X1 and φ̃(t,y) = ϕ(t) ∈ X2 in the variational
formulations. Using the fact that, for any real value function f∫

S2
η · ∇ηf dη = 0. (39)
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we obtain

− ϕ(t = 0)

∫
Ω

[
φ0 +

∫
R+×S2

r ψ0 dη dr

]
dy

−
∫ T

0

d

dt
ϕ(t)

∫
Ω

[
φ+

∫
R+×S2

r ψ dη dr

]
dy dt = 0. (40)

If the solution is smooth enough we have then the mass conservation result

d

dt

∫
Ω

[
φ+

∫
R+×S2

r ψ dη dr

]
dy = 0. (41)

3. Proof of the main result. The proof consists of three main steps. First (sub-
section 3.1), a semi-discretization in time of the problem to obtain an approximation
of the solution. Second, we get appropriate estimates (subsection 3.2), and third
we obtain a solution by passing to the limit (subsection 3.3).

3.1. Semi-discretization in time. Let N > 0 and {tn}Nn=0 a subdivision of [0, T ]
such that t0 = 0, tN = T and tn − tn−1 = ∆t > 0. We denote by ψn and φn the
approximations of ψ and φ at tn. Denote un(y) = u(tn,y). First, for any s ∈ [0, T ],
consider the following problem on [0, T ]:

d

dt
χn(t) = un(χn(t)),

χ(s) = y.
(42)

We recall that the regularity of u is C1(0, T ;W 1,∞), therefore un ∈ W 1,∞(Ω) so
that there exists a unique solution χn which will be denoted in the following by
χn(t; s,y). The map y→ χn(t; s,y) is a homeomorphism from Ω onto Ω, and since
u is divergence-free, we have

det∇yχn(t; s, ·) = 1, a.e. in Ω× [0, T ]. (43)

Define the function

xn : Ω→ Ω, by xn(y) = χn(tn; tn−1,y). (44)

This map xn is invertible. Let us denote zn as its inverse. We remark that

zn(y) = χn(tn−1; tn,y). (45)

Assume now that ψn−1 ∈ V and φn−1 ∈ H1 are known. We consider two problems:
find ψn ∈ V such that∫

Ω×Q

ψn(r, η,y)− ψn−1(r, η, zn(y))

∆t
ψ̂ dqdy

+

∫
Ω×Q

A(r)
(
D1∇ηψn ·

(
∇ηψ̂ − 2ηψ̂

)
− Pη⊥ (∇yunη)ψn · ∇ηψ̂

)
dqdy

+

∫
Ω×Q

ψn
(
g(∇yun,un, η)rψ̂ − τ0φn−1

(
∂

∂r
ψ̂ + αψ̂

))
dqdy

= 2

∫
Ω×Q

g(∇yun,un, η)

(∫ ∞
r

ψn−1 dr′
)
ψ̂ a(r)drdηdy, (46)
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for any ψ̂ ∈ V1, and find φn ∈ H1 such that∫
Ω

(
φn(y)− φn−1(y)

∆t
+ un · ∇yφn

)
φ̂ dy dt

+

∫
Ω

[
D2 ∇yφ

n · ∇yφ̂+ τ0φ
n

(∫
S2×R+

ψn−1 drdη

)
φ̂

]
dy = 0, (47)

for any φ̂ ∈ H1. Problem (46) is re-written as

an(ψn, ψ̂) = lna (ψ̂), for any ψ̂ ∈ V1 (48)

with

an = a1n + a2n (49)

where a1n, a2n are defined on V × V1 by

a1n(ϕ1, ϕ2) =

∫
Ω×Q

A(r)D1∇ηϕ1 · (∇ηϕ2 − 2ηϕ2) dqdy

−
∫

Ω×Q
A(r)Pη⊥ (∇yunη)ϕ1 · ∇ηϕ2 dqdy

− τ0
∫

Ω×Q
φn−1ϕ1

(
∂

∂r
ϕ2 + α ϕ2

)
dqdy

+

∫
Ω×Q

g(∇yun,un, η)rϕ1ϕ2 dqdy

(50)

and

a2n(ϕ1, ϕ2) =
1

∆t

∫
Ω×Q

ϕ1ϕ2 dqdy, (51)

respectively, and lna is defined on L2
α by

lna (ϕ) = 2

∫
Ω×Q

g(∇yun,un, η)

(∫ ∞
r

ψn−1 dr′
)
ϕ dqdy

+
1

∆t

∫
Ω×Q

ψn−1 ◦ zn ϕ dqdy.

(52)

The problem (47) is re-written as

bn(φn, φ̂) = lnb (φ̂), for any φ̂ ∈ H1, (53)

with bn defined on H1 ×H1 such that

bn(ϕ1, ϕ2) =

∫
Ω

(
1

∆t
ϕ1 ϕ2 + (un · ∇yϕ1)ϕ2 +D2 ∇yϕ1 · ∇yϕ2

)
dy

+

∫
Ω

τ0ϕ1 ϕ2

(∫
S2×R+

ψn−1 drdη

)
dy,

(54)

and lnb defined on L2 by

lnb (ϕ) =
1

∆t

∫
Ω

φn−1ϕ dy. (55)
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Lemma 3.1. Let N ∈ N∗, φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that

0 ≤ ψ0 ≤ C0e
−αr a.e in Q

with C0 > 0 a constant.

Then there exist two sequences {ψn}Nn=1 ⊂ V and {φn}Nn=1 ⊂ H1(Ω) satisfying (48)
and (53).
Moreover, for ∆t small enough, we have that:

0 ≤ ψn ≤ C∞e−αr, for every n ∈ {0, 1, . . . , N}, (56a)

0 ≤ φn ≤ ‖φ0‖L∞ , for every n ∈ {0, 1, . . . , N}, (56b)

and

max
n=0,···N

[∫
Ω×Q

|ψn|2 dqdy +D1∆t

N∑
n=1

∫
Ω×Q

A(r)|∇ηψn|2 dqdy

+2g∆t

N∑
n=1

∫
Ω×Q

r|ψn|2 dqdy +

N∑
n=1

∫
Ω×Q

|ψn − ψn−1 ◦ zn|2 dqdy

]
≤ 4ek3T ‖ψ0‖2L2

α
, (57)

and

max
n=0,···N

[∫
Ω

|φn|2 dy +

N∑
n=1

∫
Ω

|φn − φn−1|2 dy + 2D2∆t

N∑
n=1

∫
Ω

|∇yφ
n|2 dy

]
≤ 2‖φ0‖2L2(Ω), (58)

where in the above we denoted

k1 =
2g

α
,

k2 = ατ0‖φ0‖L∞ + CDCA,

C∞ = 2C0e
(k1+k2)T ,

and

k3 = ατ0‖φ0‖L∞ +
C2
PCA
D1

+ 4ḡα−3/2C∞
√
|Ω||S2|.

(Recall CD and CA are given by equations (20) and (22)).

Proof of Lemma 3.1. Let us consider the sequence of numbers {Cn}Nn=0 defined by
induction as

Cn =
1 + k1∆t

1− k2∆t
Cn−1, for every n = 1, . . . , N. (59)

with C0 as in the hypothesis of the Lemma.
We proceed by induction. Suppose that ψn−1 and φn−1 are defined as elements

of V and L∞(Ω), respectively. Suppose also that

0 ≤ ψn−1 ≤ Cn−1e
−αr, (60a)

0 ≤ φn−1 ≤ ‖φ0‖L∞ . (60b)
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We shall prove the existence of ψn ∈ V and φn ∈ H1(Ω) solutions of (48) and (53),
respectively. We also prove that they satisfy

0 ≤ ψn ≤ Cne−αr, (61a)

0 ≤ φn ≤ ‖φ0‖L∞ . (61b)

The above inequalities give (56a) and (56b) since we have

Cn = C0

(
1 + k1∆t

1− k2∆t

)n
≤ C∞ (62)

for ∆t small enough.

Step 1. Regularization and existence.

We introduce a regularization of an, denoted anε defined on V1 × V1,

anε (ϕ1, ϕ2) = ε

∫
Ω×Q

∂

∂r
ϕ1

∂

∂r
ϕ2 dqdy + an(ϕ1, ϕ2). (63)

We shall first prove the existence of a sequence (ψnε )ε in V1 solutions of

anε (ψnε , ψ̂) = lna (ψ̂), for any ψ̂ ∈ V1 (64)

Clearly anε is bilinear and continuous on V1 × V1. Next we prove the coercivity of
anε . Indeed, let ϕ ∈ V1 and we remark that∫

S2
2η · ∇ηϕ ϕ dη =

∫
S2
η · ∇ηϕ2 dη = 0 (65)

since ∇η · η = 2 and η · η = 1. One has∫
S2
|A(r)Pη⊥ (∇yu η)ϕ ·∇ηϕ| dη ≤

1

2

∫
S2

(
D1A(r)|∇ηϕ|2 +

C2
PCA

D1
ϕ2

)
dη. (66)

Finally,

τ0

∫
R+

φn−1ϕ
∂

∂r
ϕ a(r)dr ≤ −1

2
ατ0

∫
R+

φn−1ϕ2 a(r)dr. (67)

We remark that this inequality can be proved by using a regularized sequence (ϕm)m
that converges to ϕ in V1 and the fact that the remaining term in the right-hand
side of (67) can be dropped according to its appropriate sign. Then, invoking (60b)
and the above remarks, it follows that

a1n
ε (ϕ,ϕ) ≥ D1

2

∫
Ω×Q

A(r)|∇ηϕ|2 dqdy + g

∫
Ω×Q

rϕ2 dqdy

− 1

2D1

(
ατ0D1‖φ0‖L∞ + C2

PCA
) ∫

Ω×Q
ϕ2 dqdy, (68)

which in turn implies

anε (ϕ,ϕ) ≥ ε

∫
Ω×Q

∣∣∣∣ ∂∂rϕ
∣∣∣∣2 dqdy +

D1

2

∫
Ω×Q

A(r)|∇ηϕ|2 dqdy

+ g

∫
Ω×Q

rϕ2 dqdy

+
1

2D1

(
2D1

∆t
− ατ0D1‖φ0‖L∞ − C2

PCA

)∫
Ω×Q

ϕ2 dqdy,

(69)

The coercivity of anε follows for ∆t small enough.
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Next, due to the inequality (60a), we have∫ ∞
r

ψn−1 dr′ ≤ Cn−1

α
(70)

which implies that, for any ϕ ∈ L2
α,∫

Ω×Q
g(∇yun,un, η)

(∫ ∞
r

ψn−1 dr′
)
|ϕ| dqdy ≤ ḡ

α

∫
Ω×Q

|ϕ| drdηdy. (71)

One also obtains∫
Ω×Q

ψn−1 ◦ zn |ϕ| dqdy ≤ Cn−1

∫
Ω×Q

|ϕ| drdηdy. (72)

We deduce that lna ∈ (L2
α)′ ⊂ (V1)′ by the continuous embedding of L2

α in L1.
Applying the Lax-Milgram theorem, for all ε > 0 there exists a unique ψnε ∈ V1

solution of (64). Next we will prove the existence of solutions to (53). First, bn is
clearly a bilinear and continuous function on H1 ×H1. To prove its coercivity, let
ϕ ∈ H1. Since ∫

Ω

un · ∇yϕ ϕ =
1

2

∫
Ω

un · ∇yϕ
2 = 0 (73)

we have

bn(ϕ,ϕ) ≥ 1

∆t

∫
Ω

ϕ2 dy +D2

∫
Ω

|∇yϕ|2 dy, (74)

using the positivity of ψn−1, and thus bn is coercive. Moreover, lnb ∈ (H1)′ since
φn−1 ∈ L∞. As a consequence of the Lax-Milgram theorem, there exists a unique
φn ∈ H1 satifying (53).

Step 2. L∞ - Estimates

To begin we first prove two estimates for ψnε : for its V -norm and for its derivative
with respect to r. It follows from (69) and the continuity of lna that there exists a
constant C > 0, dependent of ∆t, such that∫

Ω×Q

(
A(r)|∇ηψnε |2 + (1 + r)|ψnε |2

)
dqdy ≤ C,

ε

∫
Ω×Q

∣∣∣∣ ∂∂rψnε
∣∣∣∣2 dqdy ≤ C.

(75)

Next we prove the non-negativity of ψnε and φn. Let us denote [·]+ and [·]− respec-
tively the positive and negative part, both positive valued. Then, φn = [φn]+−[φn]−
and these two parts belong to H1. We have

lnb ([φn]−) = bn(φn, [φn]−) = −bn([φn]−, [φ
n]−) (76)

and invoking (55) and (60b), lnb ([φn]−) ≥ 0. Therefore

bn([φn]−, [φ
n]−) ≤ 0, (77)

hence φn ≥ 0. Next, ψnε = [ψnε ]+ − [ψnε ]−, the positive and negative parts belong
V1, and

lna ([ψnε ]−) = anε (ψnε , [ψ
n
ε ]−) = −anε ([ψnε ]−, [ψ

n
ε ]−), (78)

Invoking (52) and (60a), lna ([ψnε ]−) ≥ 0. Thus

anε ([ψnε ]−, [ψ
n
ε ]−) ≤ 0, (79)
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hence ψnε ≥ 0. Let us now obtain L∞ estimates . We have, according to (60b) and
using the above notation, that

bn([φn−‖φ0‖L∞ ]+, [φ
n − ‖φ0‖L∞ ]+)

= bn(φn − ‖φ0‖L∞ , [φn − ‖φ0‖L∞ ]+)

= bn(φn, [φn − ‖φ0‖L∞ ]+)− bn(‖φ0‖L∞ , [φn − ‖φ0‖L∞ ]+)

= lnb ([φn − ‖φ0‖L∞ ]+)− bn(‖φ0‖L∞ , [φn − ‖φ0‖L∞ ]+)

≤ 1

∆t

∫
Ω

(
φn−1 − ‖φ0‖L∞

)
[φn − ‖φ0‖L∞ ]+ dy,

(80)

Then by (60b)

bn([φn − ‖φ0‖L∞ ]+, [φ
n − ‖φ0‖L∞ ]+) ≤ 0, (81)

hence φn ≤ ‖φ0‖L∞ . Let Cn as defined in (59); then

anε ([ψnε−Cne−αr]+, [ψnε − Cne−αr]+)

= anε (ψnε − Cne−αr, [ψnε − Cne−αr]+)

= anε (ψnε , [ψ
n
ε − Cne−αr]+)− anε (Cne

−αr, [ψnε − Cne−αr]+)

= lna ([ψnε − Cne−αr]+)− anε (Cne
−αr, [ψnε − Cne−αr]+).

(82)

Next, for any ϕ ∈ V1 positive,

anε (Cne
−αr, ϕ) =− ε

∫
Ω×Q

αCn
∂

∂r
ϕ drdηdy

−
∫

Ω×Q
CnA(r)Pη⊥ (∇yunη) · ∇ηϕ drdηdy

−
∫

Ω×Q
Cnτ0φ

n−1

(
∂

∂r
ϕ+ α ϕ

)
drdηdy

+

∫
Ω×Q

Cng(∇yun,un, η)rϕdrdηdy + Cn
1

∆t

∫
Ω×Q

ϕ drdηdy.

(83)
We remark that

ε

∫
Ω×Q

αCn
∂

∂r
ϕ drdηdy = −ε

∫
Ω×S2

αCnϕ(r = 0, η,y) dηdy ≤ 0,∫
Ω×Q

Cnτ0φ
n−1 ∂

∂r
ϕ drdηdy = −

∫
Ω×S2

Cnτ0φ
n−1ϕ(r = 0, η,y) dηdy ≤ 0.

(84)

Then, by (20), (22), (60b) and the positivity of ϕ,

anε (Cne
−αr, ϕ) ≥

∫
Ω×Q

CnA(r)∇η ·
(
Pη⊥ (∇yunη)

)
ϕ drdηdy

+ Cn

(
1

∆t
− ατ0‖φ0‖L∞

)∫
Ω×Q

ϕ drdηdy

≥ Cn
(

1

∆t
− k2

)∫
Ω×Q

ϕ drdηdy.

(85)

Moreover, by (52), (71) and (72)

lna (ϕ) ≤ Cn−1

(
2g

α
+

1

∆t

)∫
Ω×Q

ϕ drdηdy. (86)
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Now, replacing ϕ by [ψnε − Cne−αr]+ and using (82) (85) and (86) one gets

anε ([ψnε − Cne−αr]+, [ψnε − Cne−αr]+)

≤
[
Cn−1

(
k1 +

1

∆t

)
− Cn

(
1

∆t
− k2

)]∫
Ω×Q

ϕ drdηdy. (87)

Using now the particular form of Cn gives

anε ([ψnε − Cne−αr]+, [ψnε − Cne−αr]+) ≤ 0, (88)

hence

ψnε ≤ Cne−αr. (89)

Step 3. Convergence and positivity

The sequence (ψnε )ε obtained for all ε > 0 is uniformly bounded in V by (75),
so it weakly converges to an element ψn ∈ V up to a subsequence. Moreover,(
ε1/2 ∂

∂rψ
n
ε

)
ε

is bounded in L2
α, then for ε → 0, ψn solves (48).The positivity of

ψnε yields the positivity of ψn. Moreover, by virtue of (89), ψn for ε → 0, and
inequalities (56a) are satisfied.

Step 4. Additional estimates

From (69), (52) and (56a) one gets

0 = anε (ψnε , ψ
n
ε )− lna (ψnε ) ≥D1

2

∫
Ω×Q

A(r)|∇ηψnε |2 dqdy

+ g

∫
Ω×Q

r|ψnε |2 dqdy

− k3

2

∫
Ω×Q

|ψnε |2 dqdy

+
1

∆t

∫
Ω×Q

(
ψnε − ψn−1 ◦ zn

)
ψnε dqdy.

(90)

Remarking that 2s1(s1 − s2) = s2
1 + (s1 − s2)2 − s2

2 for any reals s1, s2, leads to

D1

∫
Ω×Q

A(r)|∇ηψnε |2 dqdy + 2g

∫
Ω×Q

r|ψnε |2 dqdy

+
1

∆t

∫
Ω×Q

[
|ψnε |2 + |ψnε − ψn−1 ◦ zn|2 − |ψn−1 ◦ zn|2

]
dqdy

≤ k3

∫
Ω×Q

|ψnε |2 dqdy. (91)

Then, taking the lim inf for ε → 0, multiplying by ∆t and using the fact that∫
Ω
|ψn−1 ◦ zn|2 =

∫
Ω
|ψn−1|2, gives

D1∆t

∫
Ω×Q

A(r)|∇ηψn|2 dqdy + 2g∆t

∫
Ω×Q

r|ψn|2 dqdy

+ (1− k3∆t)

∫
Ω×Q

|ψn|2 dqdy +

∫
Ω×Q

|ψn − ψn−1 ◦ zn|2 dqdy

≤
∫

Ω×Q
|ψn−1|2 dqdy. (92)
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Multiply the last inequality by (1−k3∆t)n−1 and sum over n from 1 to N . Use the
inequality

(1− k3∆t)n ≥ (1− k3∆t)N ≥ 1

2
e−k3T (93)

to get (57). Taking φ̂ = φn in (47) and using (56b) and (73) we obtain

1

2∆t

∫
Ω

(
|φn|2 + |φn − φn−1|2 − |φn−1|2

)
dy +D2

∫
Ω

|∇yφ
n|2 dy ≤ 0 (94)

Summing over n from 1 to N produces (58), which ends the proof.

3.2. Construction of a solution. We now define, for any N large enough, the
following functions

ψN (·, t) =
t− tn−1

∆t
ψn(·) +

tn − t
∆t

ψn−1(·), t ∈ [tn−1, tn] (95)

and

ψ+
N (·, t) = ψn(·), ψ−N (·, t) = ψn−1(·), t ∈ (tn−1, tn] (96)

for n = 1, . . . , N .

We shall use analogous notations for φN and uN . Let ψ̃ ∈ X1, φ̃ ∈ X2, both be

test functions and set ψ̂ =
∫ tn
tn−1

ψ̃ dt and φ̂ =
∫ tn
tn−1

φ̃ dt. It is clear that ψ̂ ∈ V1 and

φ̂ ∈ H1(Ω). Then ∫ tn

tn−1

an(ψn, ψ̃(·, t)) dt =

∫ tn

tn−1

lna (ψ̃(·, t)) dt,∫ tn

tn−1

bn(ψn, ψ̃(·, t)) dt =

∫ tn

tn−1

lnb (ψ̃(·, t)) dt.
(97)

Adding these inequalities, we obtain, for any ψ̃ ∈ X1,∫ T

0

∫
Ω×Q

ψ+
N (r, η,y, t)− ψ−N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdy

+D1

∫ T

0

∫
Ω×Q

A(r)∇ηψ+
N ·
(
∇ηψ̃ − 2ηψ̃

)
dqdy

−
∫ T

0

∫
Ω×Q

A(r)Pη⊥
(
∇yu+

Nη
)
ψ+
N · ∇ηψ̃ dqdy

+

∫ T

0

∫
Ω×Q

ψ+
N

(
g(∇yu+

N ,u
+
N , η)rψ̃ − τ0φ−N

(
∂

∂r
ψ̃ + αψ̃

))
dqdy

= 2

∫ T

0

∫
Ω×Q

g(∇yu+
N ,u

+
N , η)

(∫ ∞
r

ψ−N dr′
)
ψ̃ dqdy, (98)

where in the above,

xN (y, t) = xn(y) and zN (y, t) = zn(y), for any t ∈ (tn−1, tn). (99)
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Proceeding likewise, for any φ̃ ∈ X2,∫ T

0

∫
Ω

φ+
N (y, t)− φ−N (y, t)

∆t
φ̃(y, t) dydt+

∫ T

0

∫
Ω

(
u+
N · ∇yφ

+
N

)
φ̃ dydt

+

∫ T

0

∫
Ω

D2 ∇yφ
+
N · ∇yφ̃ dydt+ τ0

∫ T

0

∫
Ω

φ+
N

(∫
S2×R+

ψ−N drdη

)
φ̃ dydt

= 0. (100)

However, to evaluate the limit ∆t→ 0, we need some additional convergence results
about the approximations. First, let us define the maps,

Λ1[ψ](y, t) =

∫
S2×R+

ψ(r, η,y, t) drdη,

Λ2[ψ](r, η,y, t) =

∫ ∞
r

ψ(r′, η,y, t) dr′, for any ψ ∈ L2(0, T ;L2
α).

(101)

We have the following lemma:

Lemma 3.2. Let φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that

0 ≤ ψ0 ≤ C0e
−αr, a.e in Q (102)

with C0 > 0 a constant.

For {ψN}N and
{
ψ±N
}
N

, constructed by virtue of Lemma 3.1, there exists ψ ∈
L2(0, T ;V )∩L∞(0, T ;L2

α), positive, such that, for N → +∞ we have the following
convergence, up to a subsequence of N :

ψ±N ⇀ ψ ∗ − weakly in L∞(0, T ;L2
α), (103)

A1/2∇ηψ+
N ⇀ A1/2∇ηψ weakly in L2(0, T ;L2

α), (104)

r1/2ψ+
N ⇀ r1/2ψ weakly in L2(0, T ;L2

α), (105)

Λ1[ψ−N ] ⇀ Λ1[ψ] weakly in L2((0, T )× Ω), (106)

Λ2[ψ−N ] ⇀ Λ2[ψ] weakly in L2(0, T ;L2
α). (107)

Proof of lemma 3.2. It is clear from (57) that

ψ+
N is bounded in L2(0, T ;V ) (108)

and
ψ±N is bounded in L∞(0, T ;L2

α). (109)

We then deduce that

ψ−N ◦ zN is bounded in L∞(0, T ;L2
α). (110)

From (57) one infers

ψ+
N − ψ

−
N ◦ zN → 0 in the norm of L2(0, T ;L2

α). (111)

Then there exists ψ+ ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2
α) and ψ− ∈ L∞(0, T ;L2

α) such
that, up to a subsequence in N we have

ψ+
N ⇀ ψ+ weakly in L2(0, T ;V ) (112)

ψ±N ⇀ ψ± ∗ −weakly in L∞(0, T ;L2
α), (113)
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and

ψ−N ◦ zN ⇀ ψ+ ∗ −weakly in L∞(0, T ;L2
α). (114)

On the other hand we have

xn(y)− y = χn(tn; tn−1,y)− χn(tn−1; tn−1,y)

= ∆t
∂

∂t
χn(ξ; tn−1,y)

= ∆t un(χn(ξ; tn−1,y)).

(115)

This implies

‖xN (y, t)− y‖L∞(]0,T [×Ω) ≤ ∆t ‖u‖L∞(]0,T [×Ω) (116)

Now, for any ψ̃ ∈ C∞0 (Q× Ω×]0, T [), with the help of (116) and (109), we obtain∣∣∣∣∣
∫ T

0

∫
Ω×Q

[
ψ−N (r, η,y, t)− ψ−N (r, η, zN (y, t), t)

]
ψ̃(r, η,y, t) dqdydt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω×Q

ψ−N (r, η,y, t)
[
ψ̃(r, η,y, t)− ψ̃(r, η,xN (y, t), t)

]
dqdydt

∣∣∣∣∣
≤ C∆t ‖u‖L∞([0,T ]×Ω) ‖ψ̃‖C1 .

(117)

We deduce that ψ−N −ψ
−
N ◦ zN → 0 in the sense of distributions D′(Q×]0, T [). This

leads to the conclusion that ψ+ = ψ−, and we denote by ψ the common value ψ+

or ψ−. Therefore (103), (104) and (105) are proved. Let now ϕ ∈ L2((0, T )× Ω)∫ T

0

∫
Ω

(
Λ1ψ

−
N − Λ1ψ

)
ϕ(y, t) dydt

=

∫ T

0

∫
Ω×Q

ψ−Nϕe
−αr dqdydt−

∫ T

0

∫
Ω×Q

ψϕe−αr dqdydt

→ 0, as N → +∞

(118)

since ϕe−αr ∈ L2
α. Now, invoking (103), proves (106). Finally, let ψ̃ ∈ L2(0, T ;L2

α)
and with the help of (105) we get∫ T

0

∫
Ω×Q

(
Λ2ψ

+
N − Λ2ψ

)
ψ̃ dqdydt

=

∫ T

0

∫
Ω×Q

rψ+
N ψ̃ dqdydt−

∫ T

0

∫
Ω×Q

rψψ̃ dqdydt

→ 0, as N → +∞.

(119)

Which proves (107). The positivity of ψ follows from the positivity of ψn for any
n. This ends the proof.

We now focus on the convergence of the φN sequence.

Lemma 3.3. Let φ0 ∈ L∞(Ω), φ0 ≥ 0 and ψ0 ∈ L2
α such that

0 ≤ ψ0 ≤ C0e
−αra.e in Q (120)

with C0 > 0 a constant.

For {φN}N and
{
φ±N
}
N

, constructed by virtue of Lemma 3.1, there exists φ ∈
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L2(0, T ;H1) ∩ L∞(0, T ;L2) positive such that we have the following convergence,
up to a subsequence of N :

∇yφ
+
N ⇀ ∇yφ weakly L2(0, T ;L2) (121)

φ±N , φN → φ strongly L2(0, T ;L2(Ω)) (122)

Proof of lemma 3.3. From (58), we deduce that

φ+
N is bounded in L2(0, T ;H1(Ω)), (123)

φ±N is bounded in L∞(0, T ;L2
α) (124)

and

φ−N is bounded in L2(δ, T ;H1(Ω)) for any δ ∈]0, T [. (125)

Since we have

φN =
tn − t

∆t
φ−N +

t− tn−1

∆t
φ+
N

we deduce that

φN is bounded in L∞(0, T ;L2
α) (126)

and

φN is bounded in L2(δ, T ;H1(Ω)) for any δ ∈]0, T [. (127)

It follows there exists a φ ∈ L2(0, T ;H1)∩L∞(0, T ;L2) such that (121) is satisfied.
On the other hand, from the equality

∂φN
∂t

=
φn − φn−1

∆t
on [tn−1, tn] (128)

and from (47) we deduce that for any φ̂ ∈ H1(Ω) we have∫
Ω

∂φN
∂t

φ̂ dy = −
∫

Ω

u+
N · ∇yφ

+
N φ̂ dy −D2

∫
Ω

∇yφ
+
N · ∇yφ̂ dy

− τ0
∫

Ω

φ+
N

(∫
S2×R+

ψ−N drdη

)
φ̂ dy (129)

Using (123) and (109), gives

∂φN
∂t

is bounded in L2(0, T ; (H1(Ω))′). (130)

Then, up to a subsequence of N , we have

φN → φ strongly in L2(δ, T ;L2(Ω)), for any δ ∈ ]0, T [. (131)

Let us now prove that

φN → φ strongly in L2(0, T ;L2(Ω)). (132)

We fix ε > 0 and we have for any δ ∈ ]0, T [:∫ T

0

‖φN − φ‖2L2(Ω) dt =

∫ δ

0

‖φN − φ‖2L2(Ω) dt+

∫ T

δ

‖φN − φ‖2L2(Ω) dt

≤ 2Cδ +

∫ T

δ

‖φN − φ‖2L2(Ω) dt

(133)
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where C is an upper bound for ‖φN‖L∞(0,T ;L2) and ‖φ‖L∞(0,T ;L2). Now taking
δ = ε

4C we obtain from (131) that for N large enough∫ T

δ

‖φN − φ‖2L2(Ω) dt ≤
ε

2
, (134)

which proves (132). From (58) one gets

φ+
N − φ

−
N → 0 strongly in L2(0, T ;L2(Ω)). (135)

Using the fact that

φN − φ+
N =

t− tn
∆t

(φ+
N − φ

−
N ) (136)

and

φN − φ−N =
t− tn−1

∆t
(φ+
N − φ

−
N ) (137)

leads to

φN − φ±N → 0 strongly in L2(0, T ;L2(Ω)). (138)

This ends the proof.

3.3. Final stage of the proof of the main result. In the following we let

N → +∞ in (98) and (100) with ψ̃ ∈ C∞c ((−T, T ) × Ω × S2 × [0,+∞)) and φ̃ ∈
C∞c ((−T, T ) × Ω × S2 × [0,+∞)), respectively. We now prove that ψ and φ given
by Lemmas 3.2 and 3.3 satisfy the variational equalities (37) and (38), respectively.
Since ∆t is small enough, we have∫ T

0

∫
Ω×Q

ψ+
N (r, η,y, t)− ψ−N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdydt

= −
∫ T

0

∫
Ω×Q

ψ−N (r, η,y, t)
ψ̃(r, η,xN (y, t), t)− ψ̃(r, η,y, t−∆t)

∆t
dqdydt

− 1

∆t

∫ ∆t

0

∫
Ω×Q

ψ0(r, η,y)ψ̃(r, η,y, t−∆t) dqdydt.

(139)

Smoothness of ψ̃ entails

1

∆t

∫ ∆t

0

∫
Ω×Q

ψ0(r, η,y)ψ̃(r, η,y, t−∆t) dqdydt→
∫

Ω×Q
ψ0ψ̃(t = 0) dqdy, (140)

and

ψ̃(r, η,y, t)− ψ̃(r, η,y, t−∆t)

∆t
→ ∂

∂t
ψ̃(r, η,y, t) strongly in L2(0, T ;L2

α). (141)

We also have

ψ̃(r, η,xn(y), t)− ψ̃(r, η,y, t)

∆t
= ∇yψ̃(r, η,y + θ1(xn(y)− y), t) · ξN , (142)

with θ1 ∈]0, 1[ and

ξN =
xn(y)− y

∆t
. (143)
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Since xn(y) = χn(tn−1, tn,y) we have

ξN =
χn(tn−1, tn,y)− χn(tn, tn,y)

∆t

= −∂χ
n

∂t
(tn−1 + θ2∆t, tn,y)

= −un(χn(tn−1 + θ2∆t, tn,y)),

(144)

with θ2 ∈]0, 1[. Then

ψ̃(r, η,xn(y), t)− ψ̃(r, η,y, t)

∆t

= −∇yψ̃(r, η,y + θ1(xn(y)− y), t) · un(χn(tn−1 + θ2∆t, tn,y)). (145)

On the other hand, for any s ∈ [tn−1, tn]

χn(s; tn,y)− y = χn(s; tn,y)− χn(tn; tn,y),

=
∂χn

∂t
(tn + θ3(s− tn), tn,y)(s− tn),

= un(χn(tn + θ3(s− tn), tn,y))(s− tn),

(146)

with θ3 ∈]0, 1[, then

|χn(s; tn,y)− y| ≤ |s− tn| ‖u‖L∞(Ω×]0,T [). (147)

Then one deduces from (145) and (147):

ψ̃(r, η,xN (y, t), t)− ψ̃(r, η,y, t)

∆t
→ −u(t,y) · ∇yψ̃(r, η,y, t), (148)

strongly in L2(0, T ;L2
α). Next, from (139), (140), (141) and (148) one gets∫ T

0

∫
Ω×Q

ψ+
N (r, η,y, t)− ψ−N (r, η, zN (y, t), t)

∆t
ψ̃(r, η,y, t) dqdydt

→ −
∫ T

0

∫
Ω×Q

ψ

(
∂

∂t
ψ̃ + u · ∇yψ̃

)
dqdydt−

∫
Ω×Q

ψ0ψ̃(t = 0) dqdy. (149)

Now, from the strong convergences

∇yu+
N → ∇yu, (150)

g(∇yu+
N ,u

+
N , η)→ g(∇yu,u, η), (151)

and the fact that

φ−N → φ, (152)

one easily calculates the limit in (98) and gets (37). Moreover,∫ T

0

∫
Ω

φ+
N (y, t)− φ−N (y, t)

∆t
φ̃(y, t) dydt

→ −
∫

Ω

ψ0ψ̃(t = 0) dy −
∫ T

0

∫
Ω

φ
∂

∂t
φ̃ dydt. (153)

Calculating the limit in (100) easily leads to (38).
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4. Conclusions. Understanding polymer dynamics under different experimental
conditions is of importance for the laboratory biologists. In this work we studied the
influence of an external velocity field on the polymer-fibrils fragmentation (scission)
and lengthening process. To the best of our knowledge this type of study has never
been taken into account in the mathematical modelling of this problem. And even
if our approach is at its early stage of development, we managed to obtain a rather
good generalization of the existing models using more realistic assumptions when
adapted to the prion study.

In this work, we generalized the corresponding Fokker-Planck-Smoluchowski par-
tial differential equation for rigid rods in order to account for the fragmenta-
tion/lengthening process adapted for prion proliferation. Moreover, we have in-
troduced a set of two equations on monomers and polymers with a known flow. We
prove existence and positivity of weak solutions to the system with assumptions on
the rates and distribution kernel. The proof is based on variational formulation, a
semi-discretization in time, and we obtain estimations which allow us to pass to the
limit. To achieve this, we introduced a suitable functional framework (see section
2.1).

The matter of existence of solutions to the full system (i.e. considering the time
dependence of monomers together with the Navier-Stokes equations given in section
1.3) will be adressed in a future work.

Acknowledgments. The authors gratefully acknowledge Dr. Jean-Pierre Liau-
tard, directeur de recherche à l’INSERM, Université de Montpellier 2, France, for
providing the image in figure 1 and for useful talks on biology of prions.

Appendix. Let M ∈ M3(R), η ∈ S2, we shall compute in spherical coordinates
according to the base (eθ, eϕ, er)

∇η · Pη⊥Mη = ∇η ·Mη −∇η · (Mη · η)η.

Note that in spherical coordinates, η = er and for F a vector value function,

∇η · F = ∂θFθ +
cos θ

sin θ
Fθ +

1

sin θ
∂ϕFϕ + 2Fr,

with Fk = F · ek, for k = θ, ϕ, r. According to the derivative of the vector of the
base, see Appendix II [13] and the fact that

∂kMer · ej = M∂ker · ej +Mer · ∂kej ,

assumed that F = Mer, then

∇η ·Mer = Meθ · eθ +Meϕ · eϕ.

Next, take F = (Mer · er)er, it is clear that

Fθ = (Mer · er)(er · eθ) = 0, and Fϕ = (Mer · er)(er · eϕ) = 0,

thus

∇η · (Mer · er)er = 2Mer · er.
Finally,

∇η · Pη⊥Mη = Meθ · eθ +Meϕ · eϕ − 2Mer · er.
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