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Avant propos.

La durée de l’examen est de 3h. Aucun document et aucune calculatrice ne sont autorisés durant
l’épreuve. L’usage des téléphones est prohibé. La répartition en durée de chacun des exercices, et
le barème (sur 40 points) ne sont donnés qu’à titre indicatif. La justification des réponses et un soin
particulier de la présentation seront demandés et pris en compte lors de la notation.

Questions de cours (30 minutes) (8 points)

1. (4 points) Soit f : R2 ! R et g : R2 ! R deux fonctions de classe C 1 sur R2. On considère
le système différentiel suivant :

(S1)

8
><

>:

dx1(t)

dt
= f(x1(t), x2(t)),

dx2(t)

dt
= g(x1(t), x2(t)).

On suppose que ce système admet un équilibre noté (x⇤
1, x

⇤
2) 2 R2. On note A la matrice

suivante

A =

 
@f

@x1
(x⇤

1, x
⇤
2)

@f

@x2
(x⇤

1, x
⇤
2)

@g

@x1
(x⇤

1, x
⇤
2)

@g

@x2
(x⇤

1, x
⇤
2)

!
.

(a) Ecrire le système linéarisé de (S1) autour de l’équilibre (x⇤
1, x

⇤
2), et expliquer comment

on l’obtient.

(b) Enoncer sans les démontrer les propriétés liant les valeurs propres de la matrice A et la
stabilité de l’équilibre (x⇤

1, x
⇤
2) pour le système (S1).

2. (4 points) Soit ↵ et � deux paramètres réels, soit A la matrice carrée définie par

A =

✓
↵ �
�� ↵

◆
,

On considère le système différentiel linéaire suivant

(S2) X 0(t) = AX(t).

On s’intéresse à la stabilité et au type de l’équilibre 0R2 = (0, 0)T pour le système (S2),
quand t ! +1. Donner un exemple de valeur de (↵, �) pour laquelle 0R2 est
(a) un nœud stable,

(b) un foyer stable,

(c) un foyer instable,

(d) un centre.

1



Exercice 1 (40 minutes) (8 points)

1. On considère le système différentiel suivant

(S3)

⇢
x0(t) = �2x(t) + y(t)
y0(t) = �x(t)

, t 2 R.

(a) Déterminer toutes les solutions de (S3).

(b) Etudier le comportement de ces solutions quand t ! +1.

(c) Déterminer la solution de (S3) vérifiant x(0) = 1, y(0) = �1.

2. Déterminer la solution du problème de Cauchy suivant :

(C3)

⇢
x0(t) = �2x(t) + y(t), x(0) = 1,
y0(t) = �x(t) + t, y(0) = �1.

Exercice 2 (40 minutes) (8 points)

On considère le système non linéaire suivant

(S4)

⇢
x0(t) = x(t) � y(t)
y0(t) = x(t)2 � 4

, t 2 R.

1. Montrer que pour tout (x0, y0) 2 R2, le problème de Cauchy
⇢

x0(t) = x(t) � y(t), x(0) = x0,
y0(t) = x(t)2 � 4, y(0) = y0.

admet une unique solution maximale, définie sur un intervalle ouvert I .

2. Montrer que le système (S4) admet exactement deux équilibres, que l’on déterminera.

3. Etudier la stabilité de ces deux équilibres. Donner leur type.

4. Esquisse du portrait de phase. Faire figurer les éléments suivants sur une ébauche de portrait
de phase pour le système (S4) :

(a) les deux points d’équilibres,

(b) les courbes le long desquelles le champ de vecteur est horizontal ou vertical,

(c) quelques flèches représentant le champ de vecteur dans les zones délimitées par les
courbes précédentes,

(d) quelques orbites, au voisinage des points d’équilibre,

(e) dans le cas d’un point selle, indiquer les directions remarquables au voisinage du point
(déterminer pour cela les vecteurs propres de la matrice jacobienne en ce point d’équi-
libre).

Exercice 3 (1 heure 10) (16 points)

On considère l’équation différentielle suivante

(E5) y00(t) + y(t)3 = 0.

1. Montrer que si y est solution de (E5) sur un intervalle I , alors �y est aussi solution de (E5)
sur I .
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2. Mettre (E5) sous la forme d’un système différentiel non linéaire X 0(t) = f(X(t)) où X =
(y, y0)T et f : R2 ! R2 est une fonction que l’on déterminera.

3. Soit (y0, y00) 2 R2. Montrer qu’il existe une unique solution maximale X , définie sur un
intervalle ouvert J , au problème de Cauchy :

X 0(t) = f(X(t)), X(0) = (y0, y
0
0)

T .

4. On considère maintenant le problème de Cauchy associé à (E5) :

(C5) y00(t) + y(t)3 = 0, y(0) = y0, y
0(0) = y00.

Montrer qu’il existe une unique solution maximale y au problème de Cauchy (C5), définie
sur l’intervalle ouvert J .

5. On définit la fonction H : R2 ! R par H(x1, x2) =
1

4
(x1)

4 +
1

2
(x2)

2. Montrer que pour
tout t 2 J ,

H(y(t), y0(t)) = H(y0, y
0
0).

6. En déduire que y et y0 sont bornées sur J .

7. En déduire que toute solution de X 0(t) = f(X(t)) (et donc toute solution de (E5)) est
globale.

Dans toute la suite de l’exercice, on fixe (y0, y00) 2 R2 \ {(0, 0)} et on considère y la solution du
problème de Cauchy (C5) correspondante.

8. Montrer que si y s’annule en t0 2 R, alors y0(t0) 6= 0. En déduire que si y(t0) = 0, alors il
existe un intervalle ouvert I

t0 contenant t0 tel que y(t) 6= 0 pour tout t dans I
t0 \ {t0}. Ainsi

les zéros de y sont isolés.

9. Le but de cette question est de montrer que pour tout a 2 R, y admet un zéro dans l’inter-
valle [a,+1[. Pour cela, on raisonne par contradiction en supposant que y(t) 6= 0 pour tout
t 2 [a,+1[.

(a) Expliquer pourquoi, sans perte de généralité, on peut supposer que y(t) > 0 pour tout
t 2 [a,+1[.

(b) Montrer que y0 est alors strictement décroissante sur [a,+1[. En déduire qu’elle admet
une limite finie y01 lorsque t tend vers +1.

(c) Montrer que y admet également une limite finie lorsque t tend vers +1.

(d) En déduire que y01 = 0. Quel est le signe de y0 sur [a,+1[ ?

(e) Montrer que y0(t)  y0(a)� y(a)3(t� a) pour tout t 2 [a,+1[.

(f) Conclure en soulevant une contradiction.

10. Les questions 8. et 9. ont permis de montrer qu’il existe une suite strictement croissante et
tendant vers +1 de zéros de y. Soient t0 < t1 < t2 trois zéros consécutifs de y. On suppose
que y0(t0) > 0. Quel est le signe de y0 en t1 ? En t2 ? Mêmes questions si y0(t0) < 0.

11. Montrer que y0(t2) = y0(t0). On pourra utiliser la fonction H .

12. Soit T = t2 � t0. Montrer que la fonction y est T -périodique.
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Corrigé

Questions de cours

1. (a) Notons X = (x1, x2)
T , F : R2 ! R2, F (X) = (f(X), g(X))

T , et X⇤
= (x⇤

1, x
⇤
2)

T .
Alors, par définition d’un équilibre, on a F (X⇤

) = 0. De plus, F est de classe C 1 sur
R2 donc par la formule de Taylor-Young, on a pour tout X 2 R2,

F (X) = F (X⇤
) +DF (X⇤

)(X �X⇤
) + g(X �X⇤

)

= A(X �X⇤
) + g(X �X⇤

), avec g(X �X⇤
) =

o
X!X⇤

(kX �X⇤k).

Ainsi, si X est solution de (S1) sur un intervalle I , en notant Y : t 7! X(t) �X⇤, on
a, pour tout t 2 I ,

Y 0
(t) = AY (t) + g(Y (t)).

Le système linéarisé au voisinage de l’équilibre X⇤ s’obtient en négligeant le reste du
développement de Taylor précédent, il s’écrit

Y 0
(t) = AY (t).

(b) Notons �1 et �2 les valeurs propres de A (dans C). On a les deux résultats suivants :
– Si Re�1 < 0 et Re�2 < 0, alors l’équilibre (x⇤

1, x
⇤
2) est asymptotiquement stable

pour le système (S1).
– Si Re�1 > 0 ou Re�2 > 0, alors l’équilibre (x⇤

1, x
⇤
2) est instable pour le système

(S1).
Si Re�1  0 et Re�2 = 0 (ou Re�2  0 et Re�1 = 0), on ne sait pas conclure quant
à la stabilité de (x⇤

1, x
⇤
2) pour le système (S1).

2. (a) Pour ↵ = �1 et � = 0, A = �I2, 0R2 est un noeud stable pour (S2).

(b) Pour ↵ = �1 et � = 1, A =

✓
�1 1

�1 �1

◆
, les valeurs propres de A sont �1+i et �1�i.

Elles ont une partie imaginaire non nulle et une partie réelle strictement négative donc
0R2 est un foyer stable.

(c) Pour ↵ = 1 et � = 1, A =

✓
1 1

�1 1

◆
, les valeurs propres de A sont 1 + i et 1� i. Elles

ont une partie imaginaire non nulle et une partie réelle strictement positive donc 0R2 est
un foyer instable,

(d) Pour ↵ = 0 et � = 1, A =

✓
0 1

�1 0

◆
, les valeurs propres de A sont i et �i. Elles sont

purement imaginaires donc 0R2 est un centre.
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Exercice 1 (40 minutes) (8 points)

1. (a) Notons A =

✓
�2 1

�1 0

◆
. Son polynôme caratéristique est PA(�) = (� + 1)

2. Cette

matrice a donc une valeur propre double, égale à �1.
On cherche le noyau de A + I2. On obtient facilement qu’il est de dimension 1 et
engendré par le vecteur v1 = (1, 1)T .
On cherche maintenant v2 2 R2 tel que Av2 = �v2 + v1 (réduction de A sous la forme
d’un bloc de Jordan). On obtient facilement que v2 = (1, 2)T convient.

On note P =

✓
1 1

1 2

◆
. Alors P�1

=

✓
2 �1

�1 1

◆
, et on a

A = P

✓
�1 1

0 �1

◆
P�1.

Notons J =

✓
�1 1

0 �1

◆
. Alors

etA = PetJP�1
= P

✓
e�t te�t

0 e�t

◆
P�1

=

✓
(1� t)e�t te�t

�te�t
(1 + t)e�t

◆
.

Les solutions de (S3) sont données par : pour tout t 2 R,
✓
x(t)
y(t)

◆
= etA

✓
x(0)
y(0)

◆
=

✓
(1� t)e�tx(0) + te�ty(0)
�te�tx(0) + (1 + t)e�ty(0)

◆
.

(b) Par croissances comparées, on obtient pour toute donnée initiale (x(0), y(0)), le com-
portement suivant :

lim

t!+1
x(t) = 0, lim

t!+1
y(t) = 0.

(c) Avec x(0) = 1, y(0) = �1, on obtient la solution suivante : pour tout t 2 R,
✓
x(t)
y(t)

◆
=

✓
(1� 2t)e�t

�(1 + 2t)e�t

◆
.

2. On s’intéresse maintenant à une équation non homogène. On connaît déjà les solutions de
l’équation homogène, il reste à trouver une solution particulière. La méthode la plus rapide,
au vu du second membre, est de la trouver à la main (sinon on peut utiliser la formule de
Duhamel, ou la variation de la constante). L’équation est de la forme

✓
x0
(t)

y0(t)

◆
= A

✓
x(t)
y(t)

◆
+

✓
0

t

◆
,

on cherche donc une solution dont les composantes sont des polynômes de degré 1 :
✓
xp(t)
yp(t)

◆
=

✓
at+ b
ct+ d

◆
.

On injecte dans l’équation, et on obtient a = 1, b = �2, c = 2, d = �3.
Ainsi les solutions sont de la forme✓

x(t)
y(t)

◆
= etA

✓
↵
�

◆
+

✓
t� 2

2t� 3

◆
, (↵, �) 2 R2.

On détermine ensuite ↵ et � pour que les conditions initiales soient satisfaites : x(0) = 1,
y(0) = �1. On obtient la solution suivante, définie sur R,

✓
x(t)
y(t)

◆
=

✓
(3� t)e�t

+ t� 2

(2� t)e�t
+ 2t� 3

◆
.
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Exercice 2 (40 minutes) (8 points)

1. On définit F : R2 ! R2 par F (x, y) = (x � y, x2 � 4). Cette fonction est de classe C 1

sur R2, donc par le théorème de Cauchy-Lipschitz, pour tout (x0, y0) 2 R2, le problème de
Cauchy ⇢

x0
(t) = x(t) � y(t), x(0) = x0,

y0(t) = x(t)2 � 4, y(0) = y0,

admet une unique solution maximale, définie sur un intervalle ouvert I .

2. Soit (x⇤, y⇤) 2 R2. (x⇤, y⇤) est un équilibre pour le système (S4) si et seulement si x⇤�y⇤ =
0 et (x⇤

)

2 � 4 = 0. Il y a donc exactement deux équilibres : (2, 2) et (�2,�2).

3. On calcule la jacobienne de F en tout point (x, y) de R2 :

JF (x, y) =

✓
1 �1

2x 0

◆
.

Etude en (2, 2) :

JF (2, 2) =

✓
1 �1

4 0

◆
, les valeurs propres de JF (2, 2) sont 1±i

p
15

2 . (2, 2) est donc un point

d’équilibre instable pour le système (S4), c’est un foyer.
Etude en (�2,�2) :

JF (�2,�2) =

✓
1 �1

�4 0

◆
, les valeurs propres de JF (�2,�2) sont �± =

1±
p
17

2 , l’une est

positive, l’autre négative. (�2,�2) est donc un point d’équilibre instable pour le système
(S4), c’est un point selle.

4. Esquisse du portrait de phase.

Pour le point selle, on obtient deux vecteurs propres associés aux valeurs propres de la matrice
JF (�2,�2) par e1 = (1,�4/�+)

T et e2 = (1,�4/��)
T . On obtient la figure ci-dessous

pour le portrait de phase. Les vecteurs propres sont ici normalisés, et les flèches représentant
le champ de vecteurs F (x, y) sont réduites d’un facteur 5.

x

y

x = �2
x = 2

y = x

e2

e1
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Exercice 3 (1 heure 10) (16 points)

1. Soit y une solution de (E5) sur un intervalle I . Alors (�y)00 + (�y)3 = �y00 � y3 = 0 sur I ,
donc �y est solution de (E5) sur I .

2. La fonction y est solution de (E5) sur un intervalle I si, et seulement si X = (y, y0)T est
solution sur I de X 0

(t) = f(X(t)) où f : R2 ! R2 est définie par f(x1, x2) = (x2,�(x1)
3
)

T .

3. La fonction f est de classe C 1 sur R2. Le théorème de Cauchy-Lipschitz implique donc que
le problème de Cauchy X 0

(t) = f(X(t)), X(0) = (y0, y
0
0)

T admet une unique solution X
définie sur un intervalle ouvert J contenant 0.

4. D’après les réponses aux questions 2. et 3. il existe une unique solution maximale y au
problème de Cauchy (C5), définie sur l’intervalle ouvert J .

5. La fonction H est de classe C 1 sur R2 et les fonctions y et y0 sont de classe C 1 sur J . La
fonction t 7! H(y(t), y0(t)) est donc continûment dérivable sur J et on a, pour tout t 2 J :

d

dt
H(y(t), y0(t)) =

@H

@x1
(y(t), y0(t))y0(t) +

@H

@x2
(y(t), y0(t))y00(t)

= y(t)3y0(t) + y0(t)y00(t) = y0(t)
�
y00(t) + y(t)3

�
= 0.

Comme J est un intervalle, on a pour tout t 2 J , H(y(t), y0(t)) = H(y0, y
0
0).

6. On déduit de la question précédente que pour tout t 2 J , |y(t)| 
p
2H(y0, y

0
0)

1/4 et |y0(t)| p
2H(y0, y

0
0)

1/2. Donc y et y0 sont bornées sur J .

7. Soit X une solution de X 0
(t) = f(X(t)) définie sur un intervalle J et soit t0 2 J . On déduit

de la question précédente que

sup

t2J
k X(t) k1 ↵, où ↵ =

p
2max

�
H(y(t0), y

0
(t0))

1/4, H(y(t0), y
0
(t0))

1/2
�
.

Ainsi pour tout t 2 J , la solution X(t) reste dans la boule fermée de centre 0R2 et de rayon ↵
(pour la norme k · k1). Cette boule étant compacte dans R2, par la contraposée du théorème
des bouts, on obtient que sup J = +1 et inf J = �1 i.e. toute solution de X 0

(t) = f(X(t))
est globale sur R. D’après la question 4. on en déduit que toute solution de (E5) est aussi
globale sur R.

8. Si y(t0) = y0(t0) = 0, alors la fonction y est aussi solution sur R du problème de Cauchy
suivant : y00(t) + y(t)3 = 0, 8t 2 R, y(t0) = 0, y0(t0) = 0. Elle coïncide donc avec son
unique solution maximale qui est la fonction identiquement nulle sur R, ce qui contredit le
fait que (y(0), y0(0)) 6= (0, 0). Conclusion, si y s’annule en t0 2 R, alors nécessairement
y0(t0) 6= 0. Soit maintenant t0 tel que y(t0) = 0. Alors, y0(t0) 6= 0 et par continuité de y0,
il existe un intervalle ouvert It0 contenant t0, sur lequel y0 est du signe de y0(t0) et |y0(t)| �
|y0(t0)|/2 > 0. Il vient alors pour tout t 2 It0 ,

|y(t)| =
����
Z t

t0

y0(s)ds

���� � |t� t0||y0(t0)|/2.

Ainsi, y(t) 6= 0 pour tout t dans It0 \ {t0}. On peut ajouter que y(t) change de signe en t0.

9. (a) Comme y est continue et ne s’annule par sur [a,+1[, elle est de signe constant sur cet
intervalle. On peut traiter uniquement le cas y(t) > 0 sur [a,+1[ pour aboutir à une
contradiction. En effet, le cas y(t) < 0 s’en déduit car on a vu à la question 1. que la
fonction �y est alors une solution du problème de Cauchy avec pour conditions initiales
y(0) = �y0, y0(0) = �y00, et elle est strictement positive sur [a,+1[. On aboutira donc
également à une contradiction en se ramenant au cas positif.
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(b) Comme y(t) > 0 sur [a,+1[, on a y00(t) = �y(t)3 < 0 sur [a,+1[. La fonction y0

est donc strictement décroissante sur [a,+1[. Comme elle est bornée (c.f. question 6.),
elle admet donc une limite finie y01 losrque t ! +1.

(c) D’après la question 5. on a pour tout t 2 R,
1

4

(y(t))4 +
1

2

(y0(t))2 = H(y0, y
0
0). Comme

y est strictement positive sur [a,+1[, on a : pour tout t � a,

y(t) =
p
2

✓
H(y0, y

0
0)�

1

2

(y0(t))2
◆ 1

4

.

On en déduit que y admet également une limite finie lorsque t tend vers +1.

(d) Si y01 6= 0, on a |y(t)| ⇠ |y01|t au voisinage de +1, ce qui contredit le fait que y est
bornée sur R. Donc y01 = 0. La fonction y0 est strictement décroissante et tend vers 0 à
l’infini, elle est donc strictement positive sur [a,+1[.

(e) Comme y0 > 0 sur [a,+1[, y est strictement croissante sur [a,+1[. En conséquence,
pour tout t � a, y(t) � y(a) donc y(t)3 � y(a)3 soit y00(t)  �y(a)3. Il vient alors :
pour tout t 2 [a,+1[,

y0(t) = y0(a) +

Z t

a

y00(s)ds  y0(a)� y(a)3(t� a).

(f) L’inégalité ci-dessus implique que y0(t) tend vers �1 lorsque t ! +1, ce qui contre-
dit le fait que y0 est bornée sur R. Ainsi, l’hypothèse de départ, à savoir que y ne s’annule
pas sur [a,+1[, est fausse.

10. On a y(t0) = y(t1) = 0. Par le théorème de Rolle, il existe ¯t 2]t0, t1[ tel que y0(¯t) = 0. De
plus, comme y0(t0) > 0 et que t0 et t1 sont deux zéros consécutifs de y, on en déduit que
y(t) > 0 sur ]t0, t1[, puis que y00(t) = �y(t)3 < 0 sur ]t0, t1[. Ainsi, y0 est strictement dé-
croissante sur ]t0, t1[, ce qui implique que y0(t1) < y0(¯t) = 0. Par un raisonnement similaire,
on montre que y0(t2) > 0. Si y0(t0) < 0, alors y0(t1) > 0 et y0(t2) < 0.

11. On sait que H(y(t2), y
0
(t2)) = H(y(t0), y

0
(t0)). Comme y(t0) = y(t2) = 0, ceci implique

que y0(t0)
2
= y0(t2)

2. Comme on a montré à la question précédente que y0(t0) et y0(t2) ont
même signe, on en déduit que y0(t0) = y0(t2).

12. Soit ↵ = y0(t0). D’après la question précédente, les fonctions t 7! y(t) et t 7! y(t+ T ) sont
toutes deux solutions du problème de Cauchy suivant : y00(t) + y(t)3 = 0, 8t 2 R, y(t0) =
0, y0(t0) = ↵. Elles coïncident donc sur R ce qui veut dire que y est T -périodique.
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