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Avant propos.

La durée de I’examen est de 3h. Aucun document et aucune calculatrice ne sont autorisés durant
I’épreuve. L'usage des téléphones est prohibé. La répartition en durée de chacun des exercices, et
le baréme (sur 40 points) ne sont donnés qu’a titre indicatif. La justification des réponses et un soin
particulier de la présentation seront demandés et pris en compte lors de la notation.

Questions de cours (30 minutes) (8 points)

1. (4 points) Soit f : R*> — Ret g : R? — R deux fonctions de classe €' sur R%. On considere
le systeme différentiel suivant :

dl’l(t) . " -
o | Ga = e
20— g0, m2(0),

On suppose que ce systtme admet un équilibre noté (x3, r5) € R% On note A la matrice
suivante

) )
(a) Ecrire le systéme linéarisé de (.1 ) autour de I’équilibre (z7, 23), et expliquer comment
on I’obtient.

(b) Enoncer sans les démontrer les propriétés liant les valeurs propres de la matrice A et la
stabilité de I’équilibre (x}, x3) pour le systeme (.7).
2. (4 points) Soit « et 5 deux parametres réels, soit A la matrice carrée définie par

_( o B
=( 5 a)
On considere le systeme différentiel lin€aire suivant
(S) X'(t) = AX(1).
On s’intéresse 2 la stabilité et au type de 1’équilibre Ogz = (0,0)7 pour le systeme (%),
quand ¢ — +o00. Donner un exemple de valeur de («, ) pour laquelle Og2 est
(a) un nceud stable,
(b) un foyer stable,

(c) un foyer instable,

(d) un centre.



Exercice 1 (40 minutes) (8 points)

1. On considere le systeme différentiel suivant

2'(t) = —2z(t) + y(t)
(yii) {y’(t) _ —x(t) , t e R.

(a) Déterminer toutes les solutions de (-#3).
(b) Etudier le comportement de ces solutions quand ¢ — +o0.
(c) Déterminer la solution de (-#3) vérifiant x(0) = 1, y(0) = —1.
2. Déterminer la solution du probleme de Cauchy suivant :
@) { x/’(t) = —2z(t) + y(t), =(0) =1,
y'(t) = —z(t) + ¢t y0) =-1

Exercice 2 (40 minutes) (8 points)

On considere le systeme non linéaire suivant
) = at) — y(t
() {x() (t) vt LR

1. Montrer que pour tout (g, %) € R?, le probleme de Cauchy

{x’(t) = zt) — y(t), 2(0) =,
yt) = x(t)* — 4, y(0) = vo.

admet une unique solution maximale, définie sur un intervalle ouvert /.

2. Montrer que le systeme (.¥;) admet exactement deux équilibres, que 1’on déterminera.

3. Etudier la stabilité de ces deux équilibres. Donner leur type.

4. Esquisse du portrait de phase. Faire figurer les éléments suivants sur une ébauche de portrait

de phase pour le systeme (.%}) :

(a) les deux points d’équilibres,

(b) les courbes le long desquelles le champ de vecteur est horizontal ou vertical,

(c) quelques fleches représentant le champ de vecteur dans les zones délimitées par les

courbes précédentes,

(d) quelques orbites, au voisinage des points d’équilibre,

(e) dans le cas d’un point selle, indiquer les directions remarquables au voisinage du point
(déterminer pour cela les vecteurs propres de la matrice jacobienne en ce point d’équi-

libre).

Exercice 3 (1 heure 10) (16 points)

On considere I’équation différentielle suivante

(&) y'(t) +y(t)* = 0.

1. Montrer que si y est solution de (&5) sur un intervalle 7, alors —y est aussi solution de (&)

sur /.



. Mettre (&5) sous la forme d’un systeme différentiel non linéaire X'(t) = f(X(¢)) ou X =

(y,y" )" et f : R* — R? est une fonction que 1’on déterminera.

Soit (yo,ys) € R? Montrer qu’il existe une unique solution maximale X, définie sur un
intervalle ouvert ./, au probleme de Cauchy :

X'(t) = f(X(1), X(0) = (vo, )"

. On considere maintenant le probleme de Cauchy associé a (&5) :

(%) y"(t) +y(t)° =0, y(0) = w0, ¥ (0) = yp.

Montrer qu’il existe une unique solution maximale y au probleme de Cauchy (%5), définie
sur I'intervalle ouvert J.

1 1
. On définit la fonction H : R?* — R par H(z,x9) = 1(931)4 + 5(:)32)2. Montrer que pour

toutt € J,
H(y(t),y'(t)) = H(yo, yo)-

6. En déduire que y et y’ sont bornées sur J.

7. En déduire que toute solution de X'(t) = f(X(¢)) (et donc toute solution de (&5)) est

globale.

Dans toute la suite de I’exercice, on fixe (yo,y,) € R? \ {(0,0)} et on considere y la solution du
probléme de Cauchy (%}) correspondante.

8.

10.

11.
12.

Montrer que si y s’annule en ¢y € R, alors y/'(ty) # 0. En déduire que si y(to) = 0, alors il
existe un intervalle ouvert /;, contenant ¢, tel que y(¢) # 0 pour tout ¢ dans I, \ {to}. Ainsi
les zéros de y sont isolés.

. Le but de cette question est de montrer que pour tout a € R, y admet un zéro dans I’inter-

valle [a, +ool. Pour cela, on raisonne par contradiction en supposant que y(¢) # 0 pour tout
t € [a,+ool.

(a) Expliquer pourquoi, sans perte de généralité, on peut supposer que y(¢) > 0 pour tout
t € [a,+o0.

(b) Montrer que ¥’ est alors strictement décroissante sur [a, +oo[. En déduire qu’elle admet
une limite finie y lorsque ¢ tend vers +o0.

(c) Montrer que y admet également une limite finie lorsque ¢ tend vers +oc.
(d) En déduire que y,, = 0. Quel est le signe de ¥/’ sur [a, +o0[ ?

(e) Montrer que ¥/ (t) < y/'(a) — y(a)3(t — a) pour tout t € [a, +00].

(f) Conclure en soulevant une contradiction.

Les questions 8. et 9. ont permis de montrer qu’il existe une suite strictement croissante et
tendant vers 4-o0o de zéros de y. Soient ty < ¢; < t9 trois zéros consécutifs de y. On suppose
que y'(t9) > 0. Quel est le signe de ' en t; ? En t5 ? Mémes questions si 3/ (¢y) < 0.

Montrer que y'(t2) = ¥/ (to). On pourra utiliser la fonction H.

Soit T' = t; — tg. Montrer que la fonction y est T-périodique.
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Corrigé

Questions de cours

1. (a) Notons X = (z1,22)T, F : R? = R?, F(X) = (f(X),g(X)T, et X* = (a7}, 23)T.
Alors, par définition d’un équilibre, on a F'(X*) = 0. De plus, F est de classe € sur
R? donc par la formule de Taylor-Young, on a pour tout X € R?,

F(X) = F(X*) + DF(X*)(X — X*) + g(X — X*)

= A(X — X"+ g(X — XY, avec g(X — X*) = o (|X — X*|).

0
X—=X*
Ainsi, si X est solution de (.#}) sur un intervalle /, en notant Y : ¢ — X (¢) — X*, on

a, pour tout t € I,
Y/(t) =AY (t) +g(Y(1)).

Le systeme linéarisé au voisinage de I’équilibre X* s’obtient en négligeant le reste du
développement de Taylor précédent, il s’écrit

Y'(t) = AY (1).

(b) Notons \; et \; les valeurs propres de A (dans C). On a les deux résultats suivants :
- Si ReA; < 0et Rely < 0, alors 1’équilibre (x7, x3) est asymptotiquement stable
pour le systeme (.77 ).
— Si ReA; > 0ouReAy > 0, alors ’équilibre (z7, x3) est instable pour le systeme
(1)
SiReA <0etRedy =0 (ouRe Ay < 0etReA; = 0), on ne sait pas conclure quant
a la stabilité de (z7, z3) pour le systeme (.7]).
2. (a) Poura= —1letf =0, A= —1I, Oge est un noeud stable pour (.73).
-1 1
-1 -1
Elles ont une partie imaginaire non nulle et une partie réelle strictement négative donc
Ogr2 est un foyer stable.

(b) Poura=—letf=1,A= ( , les valeurs propres de A sont —1+iet —1—i.

1 1
-1 1
ont une partie imaginaire non nulle et une partie réelle strictement positive donc Og2 est
un foyer instable,

(¢c) Poura=1letf=1A= , les valeurs propres de A sont 1 + ¢ et 1 — . Elles

(d) Poura=0etfg =1, A= ( 0 1) , les valeurs propres de A sont ¢ et —i. Elles sont

-1 0
purement imaginaires donc Og2 est un centre.



Exercice 1 (40 minutes) (8 points)

1.

(a) Notons A = —2 1>. Son polyndme caratéristique est P4(\) = (A + 1)2. Cette

-1 0
matrice a donc une valeur propre double, égale a —1.

On cherche le noyau de A + I5. On obtient facilement qu’il est de dimension 1 et
engendré par le vecteur v; = (1,1)7.

On cherche maintenant v, € R? tel que Avy = —v5 + v; (réduction de A sous la forme
d’un bloc de Jordan). On obtient facilement que v, = (1,2)7 convient.

(11 4 (2 -1
OnnoteP—(1 2).AlorsP —(_1 1),etona
B -1 1 _1
aer (P )

-1 1
Notons J = ( 0 _1>. Alors

A o1l pfet tet\ o1 [((1—t)e? te™?
¢r=berk _P(O e_t)P _( —te™t (14t )"

Les solutions de (.#3) sont données par : pour tout ¢ € R,

() =< () = (Gt S0 T hene)

(b) Par croissances comparées, on obtient pour toute donnée initiale (x(0), y(0)), le com-
portement suivant :
lim z(t) =0, lim y(t) =0.

t—+o00 t—+o00

(c¢) Avec z(0) =1, y(0) = —1, on obtient la solution suivante : pour tout ¢ € R,

(i) = ().

2. On s’intéresse maintenant a une équation non homogene. On connait déja les solutions de

I’équation homogene, il reste a trouver une solution particuliere. La méthode la plus rapide,
au vu du second membre, est de la trouver a la main (sinon on peut utiliser la formule de
Duhamel, ou la variation de la constante). L’équation est de la forme

(), [(z(t) 0
(i) =) + (1),
on cherche donc une solution dont les composantes sont des polyndmes de degré 1 :
(xp(t)) B (at + b)
yp(t))  \et+d)’
On injecte dans I’équation, et on obtienta = 1, b = —2,c =2, d = —3.
Ainsi les solutions sont de la forme

(ng = (g) + (Qtt__zg) , (a, ) € RZ.

On détermine ensuite « et J pour que les conditions initiales soient satisfaites : z(0) = 1,
y(0) = —1. On obtient la solution suivante, définie sur R,

() - (Enacs)

2



Exercice 2 (40 minutes) (8 points)

1. On définit F : R*> — R? par F(z,y) = (z — y,2* — 4). Cette fonction est de classe ¢
sur R?, donc par le théoréme de Cauchy-Lipschitz, pour tout (zg,39) € R?, le probleme de

Cauchy
{ () = xt) — yt), x(0) =,
yt) = =t - 4 y(0) = yo,
admet une unique solution maximale, définie sur un intervalle ouvert /.
2. Soit (z*,y*) € R2. (x*,y*) est un équilibre pour le systtme (.7}) si et seulement si z* — y* =
0et (z*)? —4 = 0.1y a donc exactement deux équilibres : (2,2) et (—2, —2).

3. On calcule la jacobienne de F en tout point (z,y) de R? :

e =5, '),

Etude en (2,2) :
1 -1
4 0
d’équilibre instable pour le systéme (.7} ), ¢’est un foyer.
Etude en (—2, —2) :

1 -1
JF(_2a_2) = —4 0

positive, 1’autre négative. (—2, —2) est donc un point d’équilibre instable pour le systeme
(-#1), ¢’est un point selle.

Jr(2,2) = ( , les valeurs propres de Jp(2,2) sont % (2,2) est donc un point

, les valeurs propres de Jp(—2,—2) sont AL = li;/ﬁ, I’une est

4. Esquisse du portrait de phase.
Pour le point selle, on obtient deux vecteurs propres associés aux valeurs propres de la matrice
Jr(—=2,-2) par e; = (1,—4/X )T et e; = (1,—4/X_)T. On obtient la figure ci-dessous
pour le portrait de phase. Les vecteurs propres sont ici normalisés, et les fleches représentant
le champ de vecteurs F'(x,y) sont réduites d’un facteur 5.




Exercice 3 (1 heure 10) (16 points)

1.

0.

Soit y une solution de (&5) sur un intervalle I. Alors (—y)” + (—y)* = —y” —y* =0 sur I,
donc —y est solution de (&5) sur I.

La fonction ¥ est solution de (&) sur un intervalle I si, et seulement si X = (y,4')T est
solution sur I de X'(t) = f(X(¢)) ot f : R? — R? estdéfinie par f(x1, 22) = (z2, —(21)?)”.

. La fonction f est de classe ¢! sur R?. Le théoréme de Cauchy-Lipschitz implique donc que

le probleéme de Cauchy X'(t) = f(X(t)), X(0) = (yo,ys)" admet une unique solution X
définie sur un intervalle ouvert J contenant 0.

D’apres les réponses aux questions 2. et 3. il existe une unique solution maximale y au
probleme de Cauchy (%5 ), définie sur I’intervalle ouvert .J.

. La fonction H est de classe ¢! sur R? et les fonctions y et 4" sont de classe €' sur J. La

fonction ¢t — H(y(t),y'(t)) est donc continiment dérivable sur .J et on a, pour tout ¢t € J :

L H (). (1)) = g—gw» y () (1) + g—iw(w, y ()" (1)

di
= ()’ () + o' (B)y"(t) = ' (t) (¥"(t
)

Comme J est un intervalle, on a pour tout t € J, H(y(t),y'(t)) = H(yo, y})-

On déduit de la question précédente que pour tout t € J, |y(t)| < v2H (yo, yh)* et |y (t)| <
V'2H (o, y4)'/?. Donc y et 3/ sont bornées sur J.

Soit X une solution de X'(t) = f(X(t)) définie sur un intervalle J et soit ¢, € J. On déduit
de la question précédente que

sup I X(1) o< @, 0t = V2max (H(y(to), 4/ (o))", H(y(to), 4/ (t0))''*) -

Ainsi pour tout t € J, la solution X () reste dans la boule fermée de centre O2 et de rayon «
(pour la norme || - ||o.). Cette boule étant compacte dans R?, par la contraposée du théoréme
des bouts, on obtient que sup J = +oo etinf J = —oo i.e. toute solution de X'(t) = f(X(t))
est globale sur R. D’apres la question 4. on en déduit que toute solution de (&%) est aussi
globale sur R.

Siy(tg) = y'(ty) = 0, alors la fonction y est aussi solution sur R du probleme de Cauchy
suivant : y”(t) + y(t)®> = 0, Vt € R, y(ty) = 0, y/(to) = 0. Elle coincide donc avec son
unique solution maximale qui est la fonction identiquement nulle sur R, ce qui contredit le
fait que (y(0),'(0)) # (0,0). Conclusion, si y s’annule en ¢, € R, alors nécessairement
y'(to) # 0. Soit maintenant ¢, tel que y(to) = 0. Alors, y/(tg) # 0 et par continuité de ¢/,
il existe un intervalle ouvert /;, contenant ¢, sur lequel 3’ est du signe de /() et |y/(t)| >
|Y/(to)|/2 > 0.1l vient alors pour tout t € Iy,

/t: y(s)ds

Ainsi, y(t) # 0 pour tout ¢ dans I, \ {to}. On peut ajouter que y(¢) change de signe en t.

> |t — to] |y ()] /2.

ly(®)| =

(a) Comme y est continue et ne s’annule par sur [a, +0oc], elle est de signe constant sur cet
intervalle. On peut traiter uniquement le cas y(¢) > 0 sur [a, +oo[ pour aboutir a une
contradiction. En effet, le cas y(¢) < 0 s’en déduit car on a vu a la question 1. que la
fonction —y est alors une solution du probleme de Cauchy avec pour conditions initiales
y(0) = —yo, ¥ (0) = —yj}, et elle est strictement positive sur [a, +00[. On aboutira donc
également a une contradiction en se ramenant au cas positif.

4



10.

11.

12.

(b) Comme y(t) > 0 sur [a,+oo[, on a y”(t) = —y(t)*> < 0 sur [a, +oo[. La fonction 3/
est donc strictement décroissante sur [a, +oo[. Comme elle est bornée (c.f. question 6.),
elle admet donc une limite finie y/_ losrque ¢ — +o0.

1

1
(c) D’apres la question 5. on a pour tout ¢ € R, Z(y(t))4 + E(y'(t))2 = H(yo, y)- Comme

y est strictement positive sur [a, +oo[, on a : pour tout t > a,

o(6) = V2 (Hm )~ 50/)?)

On en déduit que y admet également une limite finie lorsque ¢ tend vers +-o0.

(d) Siyl, # 0,ona |y(t)] ~ |y,|t au voisinage de +oo, ce qui contredit le fait que y est
bornée sur R. Donc y., = 0. La fonction y’ est strictement décroissante et tend vers 0 a
Iinfini, elle est donc strictement positive sur [a, +00].

(e) Comme 3’ > 0 sur [a, +00], y est strictement croissante sur [a, +0o[. En conséquence,
pour tout ¢ > a, y(t) > y(a) donc y(t)* > y(a)? soit y”(t) < —y(a)3. 1 vient alors :
pour tout t € [a, +00],

ww:mw+/y%wmsw@—mw%—@.

(f) L’inégalité ci-dessus implique que /(¢) tend vers —oo lorsque ¢ — 400, ce qui contre-
dit le fait que ¢ est bornée sur R. Ainsi, I’hypothese de départ, a savoir que y ne s’annule
pas sur [a, +00[, est fausse.

On a y(tg) = y(t1) = 0. Par le théoreme de Rolle, il existe ¢ €]tg, 1] tel que y/(t) = 0. De
plus, comme y/(ty) > 0 et que ¢y et t; sont deux zéros consécutifs de y, on en déduit que
y(t) > 0 sur ]tg, 1], puis que y”(t) = —y(t)® < 0 sur Jto, t;[. Ainsi, 3/’ est strictement dé-
croissante sur |to, t1[, ce qui implique que y/(¢1) < %/(f) = 0. Par un raisonnement similaire,
on montre que y'(t2) > 0. Si y/(to) < 0, alors ¢/ (¢1) > 0 et y/(t2) < O.

On sait que H(y(t2),y'(t2)) = H(y(to),y'(to)). Comme y(ty) = y(t2) = 0, ceci implique
que y'(t9)* = y/(t2)*. Comme on a montré a la question précédente que y'(fo) et y'(t) ont
méme signe, on en déduit que y'(ty) = v/ (t2).

Soit aw = y/ (o). D apres la question précédente, les fonctions ¢ — y(t) et t — y(t + T') sont
toutes deux solutions du probleme de Cauchy suivant : 3" (t) +y(t)> = 0, Vt € R, y(ty) =
0, ¥'(to) = . Elles coincident donc sur R ce qui veut dire que y est T-périodique.



