Exam on Numerical Analysis of ODEs-3BIM

June 21, 2023
This is a 45 minutes exam. Document : only one sheet (hand written) is allowed. No calculator, no phone are allowed. It is necessary to justify and carefully present the answers.

Exercise 1 (15 minutes) (6 points)

1. (1 point) Remind the s-stage Runge-Kutta general explicit method as well as the Butcher table
2. (1 point) Remind the consistency of order at least 2 for a one-step explicit method. Explain which equality should be verified to get this method exactly of order 2 .
3. (1 point) Give the expression of function ϕ for the general s-stage Runge-Kutta method and prove that it is of order at least 1 if and only if

$$
\sum_{i=1}^{s} b_{i}=1
$$

4. (1 point) Write the expression of $\frac{\partial \phi}{\partial h}(t, x, h)$ then $\frac{\partial \phi}{\partial h}(t, x, h=0)$.
5. (2 points) Deduce that the general s-stage Runge-Kutta method is of order at least 2 if and only if we have also

$$
\sum_{i=1}^{s} b_{i} c_{i}=\frac{1}{2} \quad \text { et } \quad \sum_{i=1}^{s} b_{i} \sum_{j=1}^{i-1} a_{i j}=\frac{1}{2}
$$

Exercise 2 (30 minutes) (14 points)

We consider the following Cauchy problem : find $u \in \mathscr{C}^{1}([0,1], \mathbb{R})$ such that

$$
\left(\mathscr{S}_{1}\right)\left\{\begin{array}{l}
u^{\prime}(t)=-150 u(t)+30 \\
u(0)=1
\end{array}\right.
$$

1. Part 1 : exact solution of $\left(\mathscr{S}_{1}\right)$ (4 points)
(a) (1.5 point) Give the order of the equation of $\left(\mathscr{S}_{1}\right)$. Specify if it is linear or not, autonomous or not? Justify your answer.
(b) $\left(1.5\right.$ point) Compute the exact solution of $\left(\mathscr{S}_{1}\right)$.
(c) (1 point) What is the limit of $u(t)$ when t tends to $+\infty$?
2. Part 2 : explicit Euler method (5 points)
(a) (1 point) Write the explicit one step Euler method for $\left(\mathscr{S}_{1}\right)$.
(b) (1 point) Recognize a classic type of sequence for $\left(u_{n}\right)_{n \in \mathbb{N}}$.
(c) (1 point) Compute an expression of u_{n} in function of n and h. Give a detailed computation.
(d) (1 point) Assume that $h=1 / 25$. Compute u_{n}, then $\lim _{n \rightarrow+\infty}\left|u_{n}\right|$.
(e) (1 point) What can we conclude about the A-stability of the method? Explain.
(f) (1 point) Give the maximal value $h>0$ such that $\lim _{n \rightarrow+\infty}\left|u_{n}\right|$ corresponds to the one of question (c) or Part 1.

3. Part 3 : implicit Euler method 5 points)

Answer questions (a) to (e) of part 2, replacing explicit method by implicit method. Does question f make sense in this part 3 ? Justify your answers.

