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Préambule :

Indiquez sur la copie vos NOM et PRENOM. La justification des réponses et un soin
particulier apporté a la présentation sont demandés et seront pris en compte lors de
la notation.

Le sujet comporte 2 exercices indépendants.

Exercice 1. 35 minutes - 6 points
Les deux parties sont indépendantes.

1. Partie 1.
On considére 'équation différentielle x'(¢) = f(x(¢)) avec f(x) = (4 —2x)(x +1)%x°.

(a) Déterminer en le justifiant : ordre de cette équation, si elle est autonome
ou pas, si elle est linéaire ou pas.

(b) Montrer que les équilibres de cette équation sont O et 2 et —1 .
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(c) Déterminers’il s’agit des équilibres localement asymptotiquement stables,
instables ou shunt (positifs ou négatifs).

(d) Dessiner le portrait de phase, puis quelques trajectoires représentatives des
différents cas.

2. Partie 2.
On considere I'équation différentielles suivante

sin(2¢)x'(t) + 2 cos(2t)x(t) = ¢, avec x(1) = 1.

(a) Déterminer en le justifiant : ordre de cette équation, si elle est autonome
ou pas, si elle est linéaire ou pas.

(b) Résoudre cette équation.

Exercice 2. 10 minutes - 4 points On consideére les trois courbes suivantes :

1. (2 points) Dites laquelle correspondrait a 'équation différentielle x'(z) = f(x(¢))
avec f(x) = x(x— 1)?(x +2).

2. (2 points) En déduire les équilibres de cette équation, leur stabilité, le portrait
de phase, et des courbes représentatives.
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