

Année universitaire 2020-2021 Semestre 1

Licence Sciences pour la Santé

Niveau de licence :	Première année
Titre de l'enseignement :	Mathématiques pour la Santé
Nom des responsables :	L. Pujo-Menjouet
Date de l'épreuve :	Mardi 15 décembre 2020
Durée de l'épreuve	45 minutes

Documents et cours autorisés : OUI □ NON ⊠

Préambule:

Indiquez sur la copie vos **NOM et PRÉNOM**. La justification des réponses et un soin particulier apporté à la présentation sont demandés et seront pris en compte lors de la notation.

Le sujet comporte 2 exercices indépendants.

Exercice 1. Question de cours - 10 minutes - 4 points

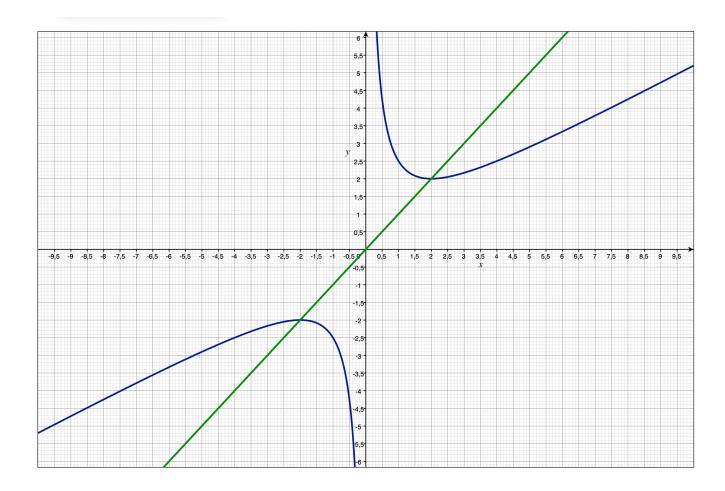
- 1. (1 point) Donner la définition d'un équilibre x^* pour l'équation $x_{n+1} = f(x_n), n \in \mathbb{N}$.
- 2. (1 point) Si $f'(x^*) \neq 1$ et $f'(x^*) \neq -1$, donner les conditions sur la dérivée de f pour que x^* soit :
 - (a) (0.5 point) Localement asymptotiquement stable.
 - (b) (0.5 point) Instable.
- 3. (2 points) Quelles conditions doit-on vérifier si $f'(x^*) = 1$ pour que x^* soit :
 - (a) (1 point) Localement asymptotiquement stable.
 - (b) (1 point) Instable.
- 4. (1 point) (**Bonus**) Même question que 3(a) et 3(b) si $f'(x^*) = -1$.

Exercice 2. 35 minutes - 6 points

Considérons l'équation récurrente non linéaire

(*E*)
$$x_{n+1} = f(x_n), f(x_n) = x_n - \frac{x_n^2 - 4}{2x_n}$$
 avec $n \in \mathbb{N}$.

- 1. (1 point) Expliquer pourquoi cette équation est non linéaire.
- 2. (1 point) (**Bonus**) Montrer par récurrence que si $x_0 \neq 0$ alors $x_n \neq 0$ pour $n \in \mathbb{N}$.
- 3. (1 point) Montrer qu'il existe deux équilibres qui sont -2 et 2.
- 4. (1 point) Montrer que pour tout $x \neq 0$, la dérivée première du second membre de (\mathscr{E}_1) est $f'(x) = \frac{2x^2 8}{4x^2}$.
- 5. (1.5 point) En déduire alors la stabilité ou l'instabilité des deux équilibres.
- 6. (1.5 point) Sur le graphe ci-dessous, identifier les cours et les équilibres, puis montrer l'attractivité ou la répulsivité des équilibres en prenant les conditions initiales suivantes : $x_0 = -1$ et $x_0 = 1$ en prenant des couleurs différentes.



Numéro de la feuille d'examen à reporter ci-dessous :

N°

Licence sciences pour la santé Examen session 1 - 15 DÉCETIBRE 2020 -Mathématiques pour la santé

Correction

Exercice 1.

- 1. Un point x* ou domaine de définition de f est un point d'equilible de l'équation $x_{n+1} = f(x_n)$ soi c'est un point fixe de f c'est à duie que $f(x^*) = x^*$
- 2. On suppose f'(x*) \$1 et f'(x*) \$-1
 - a. In (f'(x*)) < 1 alors x*est asymptotiquement stable
 - 6. si | f'(x*) | >1 " " " vistable
- 3. Si f'(x)=1
 - a. 5: f"(x*)=0 et f"(x*)<0 alax x* est asymptoti-quement stable
 - 6. Si f"(x*) to also x + est instable
 - Si f"(x *) = 0 et f"(x *) > 0 alas x * est installe
 - 4. BONUS: S. F'(x*)=1
 - a. S: -2 f'''(x*) _3 f''(x*) <0 alos x*est asymptotiquement 6. Si 1)0 alos x* st instalce stable

2 Exercise 2: (8) $x_{n+1} = x_n - \frac{x_n^2 - x_n^2}{2x_n}$ Gregor $f: x_{n+1} \times \frac{x_n^2 - x_n^2}{2x_n}$ 1 (8) we detect the de to form x_n

1. (E) ne s'ecut pr de le forme xn+, = ax+ b

anc (E) n'est par lineaire

2. Supposono x to montions P: "x, to" four tout new

· par n=0: c'est visi for hypothise (xo to)

Maporous Ple maie (xe to) pour un actoir enter le montions que Plex, est vrais (c'ét à die Xex, to)

on xx+1 = xx - xx2-4 = 2xx = 2xx +0

12244 24 > 0 some to

Par consequent Xe+1 to

· Conclusion Pr 3+ vais fair tout nEN.

3. $f(x) = x - \frac{x^2 - y}{2x}$ les equilibres $x \notin Q$ et $x \notin R(x^*)$

ici Oq=12* et f(x4)=x*(=) x*-x=6=x*

t) xx24=0

t) X*24=6

(=), x = e

(=) x = 2 (=) x = 2 (+ = - 2

Il existe done 2 equilibres: x *= 2 et x *= -2

Numéro de la feuille d'exa	men
à reporter ci-dessous :	
N(3)	

4 Pour determiner la stabilité de ce equilits, determinois:
f'(x).
Soit $x \in \mathbb{R}^+$, $f'(x) = 1 - \frac{2x \cdot 2x - (x^2 + 1)}{4x^2}$
4x2
$= 4x^2 - 4x^2 + 2(x^2 + 1)$
- 2x ² -8 - 4x2
= 2x - 8
4 1/2
5. en x = 2
f'(2) = 0 10/1 anc x4 est asymptotiquement stable
en x_*=0
f'(-2)=0 0/<1 " "
6. fair le dessuis su le graphe.