Université Claude Bernard, Lyon 1

Fondamentaux des mathématiques I

Licence Sciences & Technologies Séquences Maths- Prépa- Info et Eco - Automne 2016

Examen Session 2 (2 heures) 22 juin 2017

Aucun document et aucune calculatrice ne sont autorisés durant l'épreuve. L'usage des téléphones est prohibé.

La justification des réponses et un soin particulier apporté à la présentation sont demandés et seront pris en compte lors de la notation.

Exercice 1 (10 minutes) (5 points)

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

- 1. (2.5 points) Écrire à l'aide de quantificateurs la propriété "f est strictement croissante".
- 2. (2.5 points) Écrire à l'aide de quantificateurs la propriété "f n'est pas strictement croissante".

Exercice 2 (30 minutes) (11 points)

Soient f et q définies par

- 1. (3 point 0.5 chaque) Calculer f(0), f(4), g(0), g(1), g(2), g(3).
- 2. (3 points 0.5 point chaque) Étudier l'injectivité, la surjectivité et la bijectivité de f et de g.
- 3. (2 points 1 point chaque) Préciser les applications $g \circ f$ et $f \circ g$.
- 4. (3 points 0.5 chaque) Pour chacune des applications $g \circ f$ et $f \circ g$, dire si elle est injective, surjective, bijective.

Exercice 3 (40 minutes) (10 points)

Soit $f:[0,+\infty[\to\mathbb{R}$ une application continue telle que f(0)=0. On suppose que f est dérivable sur $]0,+\infty[$ et dérivable à droite en 0 avec f'(0)=0. On désigne par g l'application de \mathbb{R}^+ dans \mathbb{R} définie par

$$\left\{ \begin{array}{ll} g(x) = & f(x)/x, & \text{pour tout} \ \, x > 0, \\ g(0) = & 0. \end{array} \right.$$

- 1. (a) (1 point) Justifier que g est continue sur $]0, +\infty[$.
 - (b) (1 point) En observant que pour tout x>0, g(x)=(f(x)-f(0))/x, déterminer $\lim_{x\to 0^+}g(x).$
 - (c) (1 point) En déduire que g est continue sur $[0, +\infty[$.
- 2. (2 points 1 et 1) Expliquer pourquoi g est dérivable sur $]0, +\infty[$. Montrer ensuite que

$$\forall x \in]0, +\infty[, \quad g'(x) = \frac{f'(x)}{x} - \frac{f(x)}{x^2}.$$

- 3. (5 points) On suppose désormais que f' est croissante sur $]0, +\infty[$.
 - (a) (1 point) Rappeler le théorème des accroissements finis.
 - (b) (1 point) Appliquer ce théorème à f sur l'intervalle]0, x[, où x > 0 est donné.
 - (c) (2 points) Montrer alors qu'il existe $c \in]0, x[$ tel que $g'(x) = \frac{f'(x) f'(c)}{x}$.
 - (d) (1 point) Que peut-on en déduire pour la croissance de g sur $[0, +\infty[$? (Bonus de 1 point si discussion en 0).

Exercice 4 (20 minutes) (7 points)

On considère des réels a,c,p tels que $a,c,p\in]0,1[$ et $a^2+c^2=1.$ On s'intéresse dans cet exercice aux solutions de l'équation du second degré dans $\mathbb C$:

$$(a^2 - x)(1 - x) + pc^2 = 0.$$

- 1. (1 point) Montrer que le discriminant de cette équation est $\Delta=c^2(c^2-4p)$.
- 2. (2 points) Dans le cas $\Delta > 0$, montrer que les deux solutions réelles λ_1, λ_2 vérifient $|\lambda_i| < 1, i = 1, 2$.
- 3. (1 point) Dans le cas $\Delta=0$, montrer que la solution réelle λ vérifie $|\lambda|<1$.
- 4. (3 points)Lorsque $\Delta < 0$ on note z et \overline{z} les deux solutions complexes conjuguées de l'équation, avec $z \in \mathbb{C}$.
 - (a) (1.5 point) Montrer que $z\overline{z} = a^2 + pc^2$.
 - (b) (1.5 point) En déduire que |z| < 1.

Exercice 5 (20 minutes) (8 points)

Soient a, b, c trois réels fixés. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\begin{cases} u_0, v_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}^*, \ u_{n+1} = au_n, \quad v_{n+1} = bu_n + cv_n \end{cases}$$

- 1. (1 point) Montrer que, pour tout $n \in \mathbb{N}$, $u_n = a^n u_0$.
- 2. (3 points) Montrer que, pour tout $n \in \mathbb{N}^*$, $v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k b a^{n-1-k} u_0$.

- 3. (a) (2.5 points) Déduire de ce qui précède que $v_n = c^n v_0 + b u_0 \frac{a^n c^n}{a c}$ quand $a \neq c$.
 - (b) (1.5 point) Que vaut v_n quand a = c?
- 4. Bonus (+2 points) : discuter de la limite de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ suivant les valeurs de a,b et c.

Examen Session 2 (2 heures) 22 juin 2017

Corrigé

Exercice 1 (10 minutes)

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

- 1. Écrire à l'aide de quantificateurs la propriété "f est strictement croissante".
- 2. Écrire à l'aide de quantificateurs la propriété "f n'est pas strictement croissante".

Solution.

- 1. $\forall x \forall y (x < y \rightarrow f(x) < f(y))$.
- 2. non $\forall x \forall y (x < y \rightarrow f(x) < f(y))$ (on pourrait utiliser le symbôle \neg à la place de non), ou bien $\exists x \exists y (x < y \text{ et } f(x) \ge f(y))$ (on pourrait utiliser \land à la place de et).

Exercice 2 (30 minutes)

Soient f et q définies par

- 1. Calculer f(0), f(4), g(0), g(1), g(2), g(3).
- 2. Étudier l'injectivité, la surjectivité et la bijectivité de f et de g.
- 3. Préciser les applications $g \circ f$ et $f \circ g$.
- 4. Pour chacune des applications $g \circ f$ et $f \circ g$, dire si elle est injective, surjective, bijective.

Solution.

- 1. f(0) = 0, f(4) = 8, g(0) = 0, g(2) = 1, g(3) = 1.
- 2. f est injectif (si 2x = 2y alors x = y), non surjectif (1 n'est pas dans l'image) ni bijectif. g n'est pas injectif (g(2) = g(3)) ni bijectif, mais surjectif $(g^{-1}(\{x\}) = \{2x, 2x + 1\})$.
- 3. $(g \circ f)(n) = n$ et $(f \circ g)(n) = \begin{cases} n, & \text{si } n \text{ pair }; \\ n-1, & \text{si } n \text{ impair.} \end{cases}$
- 4. $g \circ f$ est l'identité, donc injectif, surjectif et bijectif. $f \circ g$ n'est pas injectif (puisque g ne l'est pas) ni surjectif (puisque f ne l'est pas), ni donc bijectif.

Exercice 3 (40 minutes)

Soit $f:[0,+\infty[\to\mathbb{R}$ une application continue telle que f(0)=0. On suppose que f est dérivable sur $]0,+\infty[$ et dérivable à droite en 0 avec f'(0)=0. On désigne par g l'application de \mathbb{R}^+ dans \mathbb{R} définie par

$$\begin{cases} g(x) = f(x)/x, & \text{pour tout } x > 0, \\ g(0) = 0. \end{cases}$$

- 1. (a) Justifier que g est continue sur $]0, +\infty[$.
 - (b) En observant que pour tout x > 0, g(x) = (f(x) f(0))/x, déterminer $\lim_{x \to 0^+} g(x)$.
 - (c) En déduire que g est continue sur $[0, +\infty[$.
- 2. Expliquer pourquoi q est dérivable sur $]0, +\infty[$. Montrer ensuite que

$$\forall x \in]0, +\infty[, \quad g'(x) = \frac{f'(x)}{x} - \frac{f(x)}{x^2}.$$

- 3. On suppose désormais que f' est croissante sur $]0, +\infty[$.
 - (a) Rappeler le théorème des accroissements finis.
 - (b) Appliquer ce théorème à f sur l'intervalle [0, x[, où x > 0 est donné.
 - (c) Montrer alors qu'il existe $c \in]0, x[$ tel que $g'(x) = \frac{f'(x) f'(c)}{x}$.
 - (d) Que peut-on en déduire pour la croissance de g sur $[0, +\infty[$?

Solution.

- 1. (a) f et $x \mapsto 1/x$ sont continues sur $]0, \infty[$, et leur produit g = f(x)/x aussi.
 - (b)

$$\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = f'(0) = 0,$$

puisque f(0) = 0 et f est dérivable à droite avec f'(0) = 0.

- (c) Puisque $g(0) = 0 = \lim_{x \to 0^+} g(x)$ et g est continue sur $]0, \infty|$, on a que g est continue sur $[0, \infty[$.
- 2. Si f et h sont dérivable en x, alors f/h est dérivable en x avec $(f/h)'(x) = \frac{f'(x)h(x) f(x)h'(x)}{h(x)^2}$. Pour h(x) = x ceci donne que q est dérivable sur $]0, \infty[$ avec

$$g'(x) = \frac{f'(x) \cdot x - f(x) \cdot 1}{x^2} = \frac{f'(x)}{x} - \frac{f(x)}{x^2}.$$

- 3. (a) Soient a < b réels et $f : [a, b] \to \mathbb{R}$ continue, et dérivable sur]a, b[. Alors il y a $c \in]a, b[$ tel que $f'(c) = \frac{f(b) f(a)}{b a}$.
 - (b) f est continue sur [0, x] et dérivable sur]0, x[. D'après le TAF il existe $c \in]0, x[$ avec

$$f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = g(x).$$

(c) On a d'après 2. et 3.b que

$$g'(x) = \frac{f'(x)}{x} - \frac{f(x)}{x^2} = \frac{f'(x)}{x} - \frac{f(x)/x}{x} = \frac{f'(x)}{x} - \frac{f'(c)}{x} = \frac{f'(x) - f'(c)}{x}.$$

(d) Puisque f' est croissante sur $]0,\infty[$, on a $f'(x) \geq f'(c)$ et $g'(x) \geq 0$. Donc g est croissante sur $[0,\infty[$.

Exercice 4 (20 minutes)

On considère des réels a,c,p tels que $a,c,p\in]0,1[$ et $a^2+c^2=1.$ On s'intéresse dans cet exercice aux solutions de l'équation du second degré dans $\mathbb C$:

$$(a^2 - x)(1 - x) + pc^2 = 0.$$

- 1. Montrer que le discriminant de cette équation est $\Delta=c^2(c^2-4p)$.
- 2. Dans le cas $\Delta > 0$, montrer que les deux solutions réelles λ_1, λ_2 vérifient $|\lambda_i| < 1$, i = 1, 2.
- 3. Dans le cas $\Delta = 0$, montrer que la solution réelle λ vérifie $|\lambda| < 1$.
- 4. Lorsque $\Delta<0$ on note z et \overline{z} les deux solutions complexes conjuguées de l'équation, avec $z\in\mathbb{C}.$
 - (a) Montrer que $z\overline{z} = pc^2$.
 - (b) En déduire que |z| < 1.

Solution. L'équation est $x^2 - (a^2 + 1)x + a^2 + pc^2 = 0$.

1. On a

$$\Delta = (-a^2 - 1)^2 - 4(a^2 + pc^2) = (c^2 - 2)^2 - 4(1 - c^2 + pc^2)$$
$$= c^4 - 4c^2 + 4 - 4 + 4c^2 - 4pc^2 = c^2(c^2 - 4p).$$

- 2. On a $(a^2 \lambda_i)(1 \lambda_i) = -pc^2 < 0$, et un des deux facteurs est strictement négatif, l'autre strictement positif. Puisque $0 < a^2 = 1 c^2 < 1$ on a $a^2 < \lambda_i < 1$, ce qui implique $|\lambda_i| < 1$.
- 3. Même raisonnement, avec λ à la place de λ_i .
- 4. (a) $z\bar{z} = \text{terme constant} = a^2 + pc^2$.
 - (b) Donc $|z|^2=z\bar{z}=a^2+pc^2< a^2+c^2=1$, ce qui donne |z|<1.

Exercice 5 (20 minutes)

Soient a, b, c trois réels fixés. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$\begin{cases} u_0, v_0 \in \mathbb{R} \\ \forall n \in \mathbb{N}^*, \ u_{n+1} = au_n, \quad v_{n+1} = bu_n + cv_n \end{cases}$$

- 1. Montrer que, pour tout $n \in \mathbb{N}$, $u_n = a^n u_0$.
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$, $v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k ba^{n-1-k} u_0$.
- 3. (a) Déduire de ce qui précède que $v_n = c^n v_0 + b u_0 \frac{a^n c^n}{a c}$ quand $a \neq c$.
 - (b) Que vaut v_n quand a = c?
- 4. Bonus : discuter de la limite de $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ suivant les valeurs de a,b et c.

Solution.

1. Par récurrence sur $n \in \mathbb{N}$.

Initialisation: $u_0 = a^0 u_0$.

Hérédité : Si $u_n = a^n u_0$, alors $u_{n+1} = a u_n = a a^n u_0 = a^{n+1} u_0$.

Conclusion: Donc $u_n = a^n u_0$ pour tout $n \in \mathbb{N}$.

2. Par récurrence sur $n \in \mathbb{N}^*$.

Initialisation :
$$v_1 = bu_0 + cv_0 = c^1v_0 + \sum_{k=0}^{0} c^k ba^{1-1-k}u_0$$
.
Hérédité : Si $v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k ba^{n-1-k}u_0$, alors

$$v_{n+1} = bu_n + cv_n = ba^n u_0 + c(c^n v_0 + \sum_{k=0}^{n-1} c^k ba^{n-1-k} u_0)$$

$$= c^{n+1} v_0 + c^0 ba^n u_0 + \sum_{k=0}^{n-1} c^{k+1} ba^{n-1-k} u_0$$

$$= c^{n+1} v_0 + c^0 ba^n u_0 + \sum_{k=1}^{n} c^k ba^{n-k} u_0 = c^{n+1} v_0 + \sum_{k=0}^{n} c^k ba^{n-k} u_0.$$

Conclusion: Donc $v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k b a^{n-1-k} u_0$ pour tout $n \in \mathbb{N}^*$.

3. (a) D'après la formule pour la somme géométrique, on a pour $a \neq c$ que

$$v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k b a^{n-1-k} u_0 = c^n v_0 + b a^{n-1} u_0 \sum_{k=0}^{n-1} k = 0^{n-1} (c/a)^k$$
$$= c^n v_0 + b a^{n-1} u_0 \frac{1 - (c/a)^n}{1 - (c/a)} = c^n v_0 + b u_0 \frac{a^n - c^n}{a - c}.$$

(b) Si a = c on a

$$v_n = c^n v_0 + \sum_{k=0}^{n-1} c^k b a^{n-1-k} u_0 = c^n v_0 + \sum_{k=0}^{n-1} b c^{n-1} u_0 = c^n v_0 + nbc^{n-1} u_0.$$

4. Si |a| < 1 on a $\lim_{n \to \infty} u_n = 0$. Si a = 1 la suite $(u_n)_n$ est constante $u_n = u_0$. Si a = -1, elle oscillate between u_0 et $-u_0$. Si |a| > 1 la suite $(u_n)_n$ diverge sauf pour $u_0 = 0$.

Soit d'abord $a \neq c$. Si |a|, |c| < 1, alors la suite $(v_n)_n$ converge vers 0. Si a = 1 et |c| < 1, elle converge vers $bu_0/(1-c)$. Si |a| < 1 et c = 1, elle converge vers $v_0 + bu_0/(1-a)$. Sinon, elle ne converge pas, sauf si $u_0 = 0$ et $c \in]-1,1]$, ou si $u_0 = v_0 = 0$, ou encore si $v_0 = bu_0/(a-c)$ et $a \in]-1,1]$.

Enfin, soit a = c. Si |c| < 1 la suite converge vers 0. Si b = 0 et c = 1 elle est constante $v_n = v_0$. Sinon elle diverge sauf pour $v_0 = u_0 = 0$.