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Feuille 4 : Sur les applications

Exercice 1

1. Soient les fonctions f et g de R dans R définies par f(x) = 3x+ 1 et g(x) = x2 − 1
Calculer f ◦ g et g ◦ f . Que peut-on déduire de la composition de fonctions ?

2. Dans les exemples suivants, déterminer deux fonctions u et v telles que h = u ◦ v :

h1(x) =
√
3x− 1 h2(x) = sin(x+

π

2
) h3(x) =

1

x+ 7

Exercice 2 Soit la fonction
f : R −→ R

x %→ f(x) = 2x+ 1

Déterminer (f ◦ f ◦ f ◦ f · · · ◦ f)(x) (où f apparaît n fois) en fonction de n ∈ N
∗ et de x ∈ R.

Exercice 3 Soit une application affine f de R dans R. Montrez que si on a f ◦ f = f , alors f admet un
point fixe (i.e. il existe un x ∈ R solution de l’équation f(x) = x).

Exercice 4

1. On note f l’application de R vers R définie par : pour tout x réel, f(x) = 2x+3. Pour m ∈ R, on note
gm l’application de R vers R définie par : pour tout x réel, gm(x) = mx− 1.

Calculer f ◦ gm et gm ◦ f , puis déterminer {m ∈ R | gm ◦ f = f ◦ gm}.
2. Soit E un ensemble et soit u, v deux applications de E dans E. On suppose que u ◦ v = v ◦ u. Montrer

que si α est un point fixe de u, alors v(α) est lui aussi un point fixe de u.

3. Pour a ∈ R \ {1} et b ∈ R, on note ha,b l’application de R vers R définie par : pour tout x réel,
ha,b(x) = ax+ b puis E = {ha,b | a ∈ R \ {1}, b ∈ R}.
a) Montrer que pour tout h ∈ E , h possède un et un seul point fixe.
b) Montrer que pour tous h, k ∈ E , (h ◦ k = k ◦ h) ⇒ (h et k ont le même point fixe).
c) Peut-on remplacer le ⇒ par un ⇐⇒ dans la question précédente ?

Exercice 5 Les applications suivantes sont-elles injectives, surjectives, bijectives ?

1.
f : R −→ R

x %→ x2
; 2.

f : R −→ R+

x %→ x2
; 3.

f : N −→ N

n %→ n
; 4.

f : R+ −→ R

x %→ 2x

5.
f : R −→ R

x %→ 8x+ 3
; 6.

f : R −→ {14}
x %→ 14

; 7.
f : {17} −→ {12; 17}

x %→ 17
8.

f : R∗
+ −→ R

x %→
1

x

9.
f : {0} −→ {0}

x %→ 0
; 10.

f : {1} −→ {1/2}

x %→
1

x+ 1

; 11.
f : N −→ N

n %→ n+ 1
; 12.

g : Z −→ Z

n %→ n+ 1

13.
h : R2 −→ R

2

(x, y) %→ (x+ y, x− y)
; 14.

k : R− {1} −→ R

x %→
x+ 1

x− 1
.

Exercice 6 Soit a et b deux réels, avec b ̸= 0.
1) On définit h1 : R → R par h1(x) = a− x. Vérifier que h1 ◦ h1 = Id.

2) On veut définir une application h2 : R\{a} → R\{a} par h2(x) =
b

x− a
+a. Justifier que cette définition

est possible, puis montrer que h2 ◦ h2 = Id.
3) Montrer que h2 est bijective.

Exercice 7 Soient les ensembles A,B,C et D, et les applications f : A → B, g : B → C et h : C → D.
1. Montrer que : g ◦ f injective =⇒ f injective et que g ◦ f surjective =⇒ g surjective.

2. Montrer que :

(

g ◦ f et h ◦ g sont bijectives

)

⇐⇒
(

f, g et h sont bijectives

)

.
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Exercice 8 Les applications suivantes sont-elles injectives, surjectives ?

tan :]− π/2,π/2[→ R; tan|[0,π2 ]
→ R; tan|

]−3π
2 ,

−π

2 [
→ R.

Exercice 9 Soit f l’application de l’ensemble {1, 2, 3, 4} dans lui-même définie par f(1) = 4, f(2) = 1,
f(3) = 2, f(4) = 2. Déterminer f(A) lorsque A = {1}, A = {1, 3}, A = {3, 4}, A = {}, puis déterminer
f−1(B) lorsque B = {2}, B = {1, 2}, B = {3}.

Exercice 10 Décrire (sans démonstration rigoureuse) les ensembles qui suivent.
1. tan({0}) ; 2. sin−1({2}) ; 3. f−1([0, 1]) pour f : R → R, x %→ x2 ;
4. f−1([0, 1]) pour f : [−1/2, 4/3] → R, x %→ x2 ; 5. f−1([0, 1]) pour f : R+ → R, x %→ x2 ;
6. (cos|[0,π])

−1([0, 1]) ; 7. (cos|[3,7])
−1([0, 1]) ; 8. cos−1([0, 1]) ;

9. exp(]−∞, 2]) ; 10. exp−1([−1, e]) 11. ln(R−) ; 12. ln−1([3,+∞[).

Exercice 11 Soient E et F deux ensembles et soit f : E → F . Soient également B1, B2 deux parties de F
et A1, A2 deux parties de E

1) Démontrer que B1 ⊂ B2 =⇒ f−1(B1) ⊂ f−1(B2). La réciproque est-elle vraie ?
2) Démontrer que f(A1 ∩A2) ⊂ f(A1) ∩ f(A2). L’inclusion réciproque est-elle vraie ?
3) Démontrer que f(A1 ∪A2) = f(A1) ∪ f(A2).

Exercice 12 Soit f : X → Y . Montrer que les conditions suivantes sont équivalentes :
i) f est injective ;
ii) Pour tous A1, A2 parties de X, on a f(A1 ∩A2) = f(A1) ∩ f(A2).

Exercice 13 Soit l’application f : E → F où E et F sont des ensembles finis.
Pour b ∈ F on note mb le nombre d’antécédents de b.

1) Que vaut
∑

b∈F

mb ?

2) Montrer que f injective =⇒ Card(E) ≤ Card(F ).
3) Montrer que f surjective =⇒ Card(F ) ≤ Card(E).

Exercice 14 Soit f : E → F . Montrer que les assertions suivantes sont équivalentes :
i) ∃G ⊂ F telle que la restriction de f : E → G existe et est bijective ;
ii) f est injective.

Exercice 15 Soit l’application f : N → Z telle que f(2k) = k et f(2k + 1) = −k − 1.
Montrer que f définit une bijection de N vers Z.

Exercice 16 Soient X,Y deux ensembles et f : X → Y une application.

1. Montrer que f est injective si et seulement si, pour tout ensemble W et pour tout g : W → X et tout
h : W → X, on a f ◦ g = f ◦ h ⇐⇒ g = h.

2. Montrer que f est surjective si et seulement si, pour tout ensemble Z et pour tout g : Y → Z et tout
h : Y → Z, on a g ◦ f = h ◦ f ⇐⇒ g = h.

Exercice 17 Soit f : R → R définie par f(x) =
2x

1 + x2
.

1) f est-elle injective ? surjective ?

2) Montrer que f(R) = [−1, 1].

3) Montrer que la restriction g : [−1, 1] → [−1, 1] définie par g(x) = f(x) est une bijection.

4) Retrouver ce résultat en étudiant les variations de f .
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Exercice 1

1) Les deux composées demandées vont de R vers R. Soit x un réel, on calcule successivement :

(f ◦ g)(x) = f [g(x)] = 3(x2 − 1) + 1 = 3x2 − 2 et (g ◦ f)(x) = g[f(x)] = (3x2 + 1)2 − 1 = 9x4 + 6x2.

Pour le “que peut-on déduire”, sans doute attend-on une remarque sur la non-commutation de f et g. Pour
la faire correctement, il ne suffit pas de constater qu’on a trouvé deux expressions différentes : peut-être
(aussi improbable soit-ce) expriment-elles la même fonction de deux façons différentes ! Le plus sûr est tout
de même de constater que (f ◦ g)(0) = −2 ̸= 0 = (g ◦ f)(0). Une fois cette explicitation faite, il ne fait plus
de doute que f ◦ g ̸= g ◦ f .
2) L’énoncé ne précisant pas les ensembles de départ et d’arrivée, on s’autorisera -même si ce n’est pas
totalement rigoureux- d’en faire autant. Ceci posé, on constate sans mal qu’on peut utiliser u1(x) =

√
x,

u2(x) = 3x− 1, v1(x) = sinx, v2(x) = x+
π

2
, u3(x) = 1/x et v3(x) = x+ 7. Procéder ainsi est souvent utile

(par exemple pour étudier des sens de variation avec économie de calculs) ; on doit quand même noter qu’en
dehors des réponses “intelligentes” fournies ci-avant, on peut aussi, si on est pervers, fournir des réponses

idiotes mais parfaitement correctes, par exemple u2(x) = sin(x +
π

3
) et v2(x) = x+

π

6
. Mais à quoi bon ?

Exercice 2

Pour x ∈ R, on calcule successivement : (f ◦ f)(x) = f(2x+ 1) = 2(2x+ 1) + 1 = 4x+ 3 puis

(f ◦ f ◦ f)(x) = f [(f ◦ f)(x)] = f(4x+ 3) = 2(4x+ 3) + 1 = 8x+ 7.

Soit x ∈ R. Notons (Hn) l’énoncé suivant :

(Hn)“f
n(x) = 2nx+ 2n − 1”

* L’énoncé (H1) est vrai, car 21x+ 21 − 1 = 2x− 1 = f(x).
* Soit n ≥ 1 un entier, supposons (Hn). On peut alors calculer :

fn+1(x) = f [fn(x)] = f(2nx+ 2n − 1) = 2(2nx+ 2n − 1) + 1 = 2n+1x+ 2n+1 − 2 + 1 = 2n+1x+ 2n+1 − 1.

et l’énoncé (Hn+1) est également vérifié.
On a ainsi montré que pour tout n ≥ 1, (Hn) ⇒ (Hn+1).
* Par application du principe de récurrence, on en déduit que pour tout n ≥ 1, (Hn) est vrai.

Exercice 3

Supposons f ◦ f = f . Alors f [f(0)] = (f ◦ f)(0) = f(0) et f(0) est donc un point fixe de f . (La question
n’utilise pas le caractère affine de f !).

Exercice 4

1) Soit m un réel. Les deux applications à calculer vont toutes deux de R vers R. Pour x réel, on calcule
sans mal :

(f ◦ gm)(x) = 2(mx− 1) + 3 = 2mx+ 1 et (gm ◦ f)(x) = m(2x+ 3)− 1 = 2mx+ 3m− 1.

Notons A l’ensemble à déterminer. Si m est élément de A, alors en particulier (f ◦ gm)(0) = (gm ◦ f)(0) soit
1 = 3m − 1 ce qui se produit si et seulement si m = 2/3. Réciproquement, si m = 2/3, alors 3m − 1 = 1,
et les deux applications f ◦ gm et gm ◦ f sont toutes deux représentées par la même formule x (→ 2mx + 1
et sont donc égales (elles ont par ailleurs les mêmes ensembles de départ et d’arrivée), donc 2/3 ∈ A. On
conclut que A = {2/3}.
2) Soit α un point fixe de u. On calcule alors v(α) = v[u(α)] = (v ◦u)(α) = (u ◦ v)(α) = u[v(α)]. Ceci prouve
que v(α) est laissé fixe par u.



3) a) Soit h ∈ E . Notons a ̸= 1 et b deux réels tels que pour tout x réel on ait h(x) = ax + b. Soit α ∈ R.
α est fixe pour h ⇐⇒ aα+ b = α ⇐⇒ (a− 1)α = −b ⇐⇒ α = b/(1− a). On constate ainsi qu’il y
a un et un seul point fixe pour h.

b) Soit h et k deux éléments de E qui commutent. Notons α l’unique point fixe de h. En appliquant la
question 2 à h, k et α, on constate que k(α) est aussi un point fixe de h. Vu l’unicité du point fixe de
h, on en déduit que α = k(α), et donc que α est aussi le point fixe de k.

c) La réponse est oui. Pour le montrer, soit h et k deux éléments de E qui ont le même point fixe ; notons
a ̸= 1, c ̸= 1, b et d quatre réels tels que pour tout x réel on ait h(x) = ax + b et k(x) = cx + d. Un
calcul simple -on peut presque le faire mentalement, après l’expérience de la question 1, dès lors qu’on
ne cherche pas à expliciter les deux constantes qui y apparaissent- assure qu’il existe deux constantes
réelles e et f telles que pour tout x réel, (h ◦ k)(x) = acx+ e et (k ◦ h)(x) = acx+ f . Notons α le point
fixe commun de h et k. Alors (h ◦ k)(α) = h[k(α)] = h(α) = α ; de la même façon, α est également fixe
par k ◦ f . On conclut que α = acα+ e = acα+ f puis que e = f puis que h ◦ k = k ◦ h

Exercice 5

1) f n’est pas injective car f(−1) = f(1), elle n’est donc pas bijective. Elle n’est pas surjective car −1 n’a
pas d’antécédent.

2) f n’est pas injective car f(−1) = f(1), elle n’est donc pas bijective. Soit y ∈ R+, et posons x =
√
y. On

constate que f(x) = (
√
y)2 = y : x est donc un antécédent de y. Ceci prouve que f est surjective.

3) On reconnâıt ici l’application identique, notoirement bijective (et donc injective et surjective).

4) Soit x1 et x2 deux réels positifs tels que f(x1) = f(x2), soit 2x1 = 2x2. En divisant par 2, on conclut que
x1 = x2 : l’application f est donc injective. En revanche, le réel −2 n’a pas d’antécédent (l’équation 2x = −2,
d’inconnue x, n’a manifestement pas de solution positive), et f n’est pas surjective, donc pas bijective.

5) Soit y un réel. Pour x réel,

f(x) = y ⇐⇒ 8x+ 3 = y ⇐⇒ 8x = y − 3 ⇐⇒ x = (y − 3)/8.

On conclut que y possède un antécédent et un seul, et ceci prouve que f est bijective - et aussi, c’est fatal,
injective et surjective.

6) f n’est pas injective car f(−1) = f(1), elle n’est donc pas bijective. Soit y ∈ {14}, et donc y = 14. On
constate que f(0) = 14 = y et que y possède donc au moins un antécédent : f est donc surjective.

7) Soit x1 et x2 deux éléments de {17} tels que f(x1) = f(x2). Puisqu’ils appartiennent à {17}, x1 et x2 sont
tous deux égaux à 17, et donc égaux entre eux. f est donc injective. En revanche, l’élément 12 de l’ensemble
d’arrivée n’a pas d’antécédent, et f n’est pas surjective, donc pas bijective.

8) Soit x1 et x2 deux réels strictement positifs tels que f(x1) = f(x2), soit 1/x1 = 1/x2. En prenant les
inverses, on obtient x1 = x2 et on conclut à l’injectivité. En revanche, l’élément −1 de l’ensemble d’arrivée
n’a pas d’antécédent, f n’est donc pas surjective, et pas non plus bijective.

9) Soit y un élément de l’ensemble d’arrivée {0}, et donc y = 0. L’unique élément de l’ensemble de départ,
à savoir 0, est un antécédent de y, qui en possède donc un et un seul. Ceci prouve que f est bijective - et
aussi, c’est vendu avec, injective et surjective. On notera que cette preuve peut se recopier à l’identique pour
n’importe quelle application dont les ensembles de départ et d’arrivée n’ont chacun qu’un seul élément.

10) Les ensembles de départ et d’arrivée n’ont chacun qu’un élément, on n’a plus qu’à recopier la preuve
écrite à la question précédente en remplaçant les deux premiers 0 qui y figurent par des 1/2 et le troisième
par un 1. Pour éviter la répétition, on remplacera aussi “vendu avec” par “incontournable”.

11) Soit n1 et n2 deux entiers positifs tels que f(n1) = f(n2), soit n1 + 1 = n2 + 1. En soustrayant 1, on
conclut que n1 = n2 : l’application f est donc injective. En revanche, l’élément 0 de l’ensemble d’arrivée n’a
pas d’antécédent, f n’est donc pas surjective, et pas non plus bijective.

12) Soit r un entier relatif. Pour n ∈ Z,

f(n) = r ⇐⇒ n+ 1 = r ⇐⇒ n = r − 1.



On conclut que r possède un antécédent et un seul, et ceci prouve que f est bijective - et aussi, c’est
automatique, injective et surjective.

13) Soit (s, t) un couple de réels. Pour (x, y) ∈ R2,

f((x, y)) = (s, t) ⇐⇒
{

x+ y = s
x− y = t

⇐⇒

⎧

⎨

⎩

x =
s+ t

2

y =
s− t

2

On conclut que (s, t) possède un antécédent et un seul, et ceci prouve que f est bijective -et aussi, dans la
foulée, injective et surjective.

14) Soit x1 et x2 deux réels différents de 1 tels que f(x1) = f(x2), c’est-à-dire
x1 + 1

x1 − 1
=

x2 + 1

x2 − 1
. En effectuant

les produits en croix, on obtient : x1x2+x2−x1−1 = x1x2+x1−x2−1 puis x2−x1 = x1−x2 et finalement
x1 = x2 : l’application f est donc injective. En revanche, considérons l’élément y = 1 de l’ensemble d’arrivée ;
soit x ∈ R \ {1}. Alors f(x) = 1 entrâıne x+1 = x− 1 donc 1 = −1 qui est manifestement impossible. C’est
donc que y = 1 n’a pas d’antécédent, et que f n’est pas surjective, donc pas non plus bijective.

Exercice 6

1) Pour h1, les choses sont simples : pour x réel, on calcule h1(h1(x)) = a − (a− x) = a + x − a = x. On
conclut que h1 ◦ h1 = Id.

2) Pour h2, une première difficulté est de décoder l’implicite dans la question : que signifie “peut définir une
application” ? Cela invite en pratique à se pencher sur l’ensemble de départ proposé -c’est généralement
creux et ici c’est creux- et, plus subtilement, à regarder de près ce qu’on nous propose comme ensemble
d’arrivée.
Tout d’abord, pour x ∈ R \ {a}, la formule proposée pour définir h2(x) a bien un sens (on ne divise pas par
zéro). Il n’y aurait donc aucun problème à définir par cette formule une application de R \ {a} vers R.
Mais on nous demande implicitement de vérifier une chose supplémentaire, à savoir que la formule fournit
bien un élément de R \ {a} et qu’on “peut” donc restreindre l’ensemble d’arrivée à R \ {a}.

Une fois qu’on a compris ce qu’il fallait faire, l’exécution est assez simple : pour x dans R \ {a}, le réel
b

x− a

n’est pas nul (à cause de l’hypothèse b ̸= 0), donc le réel
b

x− a
+ a n’est pas égal à a ; autrement dit il

appartient bien à R \ {a}.
Ce préalable étant posé, l’examen de h2 ◦ h2 est aussi facile que celui de h1 ◦ h1 réalisé plus haut. Il est tout
de même prudent ici de constater que tant son ensemble de départ que son ensemble d’arrivée est R \ {a}.
Une fois ceci observé, on calcule, pour x dans ce domaine :

h2[h2(x)] =
b

(

b
x−a

+ a
)

− a
=

b
b

x−a

+ a = (x− a) + a = x.

3) En notant très provisoirement k2 = h2, l’information selon laquelle h2 ◦ h2 = Id fournit aussi les informa-
tions k2 ◦ h2 = h2 ◦ k2 = Id. Mais un théorème bien connu nous affirme que l’existence d’un tel k2 entrâıne
la bijectité de h2.

Exercice 7

Supposons g ◦ f injective, et soit x1, x2 deux éléments de A tels que f(x1) = f(x2). En appliquant g on
obtient (g ◦ f)(x1) = (g ◦ f)(x2), puis vu l’injectivité de g ◦ f on conclut que x1 = x2. L’application f est
donc injective.
Supposons g ◦ f surjective, et soit z un élément de C. Par la surjectivité de g ◦ f , on peut introduire un
x ∈ A tel que (g ◦ f)(x) = z. Ceci peut être réécrit comme g[f(x)] = z ; on constate alors que f(x) est un
antécédent de z par g. L’application g est donc surjective.
Supposons g ◦ f et h ◦ g bijectives, donc injectives et surjectives. Par le deuxième item de l’exercice, g est
surjective ; en appliquant la preuve du premier item à g et h, g est bijective. Une fois qu’on sait ça, on peut
utiliser la bijection réciproque g−1 ; comme f est égale à la composée g−1 ◦ (g ◦ f), qui est une composée de
deux bijections, elle est aussi bijective. De même h, puisqu’on peut l’écrire h = (h ◦ g) ◦ g−1.



Exercice 8

1) Injective et surjective.

2) Injective, mais pas surjective.

3) Injective et surjective.

Exercice 9

On ne peut guère en dire plus que donner les réponses justes, qui sont {4}, {2, 4}, {2} et {}, puis {3, 4},
{2, 3, 4} et {}.

Exercice 10

1) {0}.
2) {}.
3) [−1, 1].

4) [−1/2, 1].

5) [0, 1].

6) [0,
π

2
].

7) [
3π

2
, 7].

8)
⋃

k∈Z

[(2k − 1)
π

2
, (2k + 1)

π

2
].

9) ]0, e2].

10) ]−∞, 1].

11) Cette question n’a aucun sens : c’est un piège grossier.

12) [e3,+∞[.

Exercice 11

1) Supposons B1 ⊂ B2, et soit x ∈ f−1(B1). Alors f(x) ∈ B1, donc f(x) ∈ B2, donc x ∈ f−1(B2). L’inclusion
est prouvée.
La réciproque peut être fausse : on peut -par exemple- reprendre l’exemple de l’exercice 9, avec B1 = {2, 3}
et B2 = {2}.
2) Soit y ∈ f(A1 ∩A2). On peut introduire un x ∈ A1 ∩A2 tel que f(x) = y. Comme x est dans A1, on voit
que y ∈ f(A1). De même, la présence dans A2 de x entrâıne que y ∈ f(A2). On conclut que y ∈ f(A1)∩f(A2).
L’inclusion est prouvée.
L’inclusion réciproque peut être fausse : toujours dans le même exemple, essayer A1 = {3} et A2 = {4}.
3) On va montrer la double inclusion.
Soit dans un premier temps un y ∈ f(A1 ∪A2). On peut introduire un x ∈ A1 ∪A2 pour lequel f(x) = y. Si
x est dans A1, y est dans f(A1) et donc dans f(A1) ∪ f(A2) ; sinon c’est que x est dans A2, mézalor y est
dans f(A2) et donc là encore dans f(A1) ∪ f(A2). L’inclusion est prouvée.
Soit dans un second temps un y ∈ f(A1) ∪ f(A2). Si y est dans f(A1), on peut introduire un x de A1 et
donc a fortiori de A1 ∪A2 tel que f(x) = y ; si y n’y est pas il est dans f(A2) et on peut faire pareil avec un
x de A2. Dans les deux cas on a prouvé que y ∈ f(A1 ∪ A2), donc l’inclusion réciproque.

Exercice 12

Montrons d’abord que i) implique ii). On suppose f injective.
Soit A1 et A2 deux parties de E. L’inclusion f(A1∩A2) ⊂ f(A1)∩f(A2) a été prouvée à l’exercice précédent,
passons à l’autre. Soit donc un y ∈ f(A1) ∩ f(A2). Comme y est dans f(A1), on peut introduire un x1 ∈ A1

tel que f(x1) = y. De même un x2 dans A2 tel que f(x2) = y. On voit alors que f(x1) = f(x2) et, ça tombe
bien tout de même, f est injective. On conclut que x1 = x2 et donc x1 = x2 ∈ A1 ∩A2. L’élément y est donc
l’image d’un élément de A1 ∩ A2, et donc y ∈ f(A1 ∩A2). L’inclusion manquante ne l’est plus.



Montrons maintenant que ii) implique i). Il est pratique de le faire par contraposition, supposons donc f non
injective et montrons l’existence de parties A1 et A2 pour lesquelles l’égalité proposée est vraie. Ce n’est pas
bien difficile : il suffit de calquer l’exemple fourni au 2 de l’exercice précédent dans ce contexte légèrement
plus abstrait. Puisque f n’est pas bijective, on peut introduire deux éléments distincts x1 et x2 de X qui ont
la même image par f , disons y. Il suffit pour conclure d’observer que f({x1} ∩ {x2}) = f({}) = {} tandis
que f({x1}) ∩ f({x2}) = {y} ∩ {y} = {y} : ce n’est pas la même chose.

Exercice 13

1) La somme proposée est le nombre total d’éléments de E qui sont antécédents de quelqu’un. Mais, dans
une application, tous les éléments de l’ensemble de départ sont antécédents de quelqu’un, à savoir de leur
image. La réponse attendue était donc CardE.
On peut trouver ça un peu littéraire, craindre l’entourloupe. On peut faire plus formel si ça peut rassurer :
pour (a, b) ∈ E×F , notons ϵa,b le nombre entier qui, par définition, vaut 1 si b = f(a) et 0 sinon. Alors pour
tout a ∈ E,

∑

b∈F

ϵa,b =
∑

b∈F
b=f(a)

ϵa,b +
∑

b∈F
b̸=f(a)

ϵa,b =
∑

b∈F
b=f(a)

1 +
∑

b∈F
b̸=f(a)

0 = Card{b ∈ F | b = f(a)} = 1

tandis que pour tout b ∈ F ,

∑

a∈E

ϵa,b =
∑

a∈E
f(a)=b

ϵa,b +
∑

a∈E
f(a)̸=b

ϵa,b =
∑

a∈E
f(a)=b

1 +
∑

a∈E
f(a)̸=b

0 = Card{a ∈ E | f(a) = b} = mb

et donc,

∑

b∈F

mb =
∑

b∈F

(

∑

a∈E

ϵa,b

)

=
∑

a∈E

(

∑

b∈F

ϵa,b

)

=
∑

a∈E

1 = CardE.

2) Supposons f injective. Alors pour tout b dans F , on a l’inégalité : mb ≤ 1. Sommons ceci sur b : on obtient
∑

b∈F mb ≤
∑

b∈F 1, et donc CardE ≤ CardF .

3) Supposons f surjective. Alors pour tout b dans F , on a l’inégalité : 1 ≤ mb. Sommons ceci sur b : on
obtient

∑

b∈F 1 ≤
∑

b∈F mb, et donc CardF ≤ CardE.

Exercice 14

Montrons que i) implique ii). Supposons i) vraie ; on peut introduire un ensemble G comme dans l’énoncé
de i, et on peut noter g la restriction de f de E vers G. Soit alors x1 et x2 deux éléments de E tels que
f(x1) = f(x2). Par définition d’une restriction, on a g(x1) = f(x1) et g(x2) = f(x2), donc g(x1) = g(x2).
Or g est bijective, donc injective, donc x1 = x2. On conclut que f est injective.
Montrons que ii) implique i). Supposons f injective, et notons G = f(E). Il est possible de définir la
restriction g de f de E vers G puisque f(E) ⊂ G. Soit maintenant x1 et x2 dans E tels que g(x1) = g(x2).
Par définition d’une restriction, on a g(x1) = f(x1) et g(x2) = f(x2), donc f(x1) = f(x2). Or f est supposée
injective, donc x1 = x2. On conclut que g est injective. Soit maintenant un y ∈ G. Comme G = f(E), on
peut introduire un x ∈ E tel que f(x) = y. Par définition d’une restriction, g(x) = f(x), donc on a aussi
g(x) = y et on a trouvé un antécédent de y par g. Ceci prouve que g est surjective.

Exercice 15

On va commencer par montrer un résultat préparatoire.
Soit n un entier naturel. Si n est pair, et s’écrit donc sous la forme 2k il est immédiat vu la définition de f
que f(n) est positif ou nul. Supposonsau contraire n impair. L’entier n peut alors se mettre sous la forme
2k + 1 avec k entier naturel ; son image est alors −k − 1 ≤ −1 < 0.
On a donc montré l’équivalence suivante :

Pour tout n ∈ N, n est pair ⇐⇒ 0 ≤ f(n).



Soit r un entier relatif (élément de Z), cherchons les antécédents de r par l’application f .
* Premier cas : si r ≥ 0. Vu le résultat préparatoire, les antécédents de r sont à rechercher parmi les nombres
pairs, c’est-à-dire les nombres de la forme 2k, k ∈ N. Soit k ∈ N, alors f(2k) = r ⇐⇒ k = r : l’entier r
possède donc un et un seul antécédent par f (à savoir 2r).
* Deuxième cas : si r < 0. Vu le résultat préparatoire, les antécédents de r sont à rechercher parmi les
nombres impairs, c’est-à-dire les nombres de la forme 2k + 1, k ∈ N. Soit k ∈ N, alors f(2k + 1) = r ⇐⇒
−k − 1 = r ⇐⇒ k = −r − 1. Notons de plus que comme r < 0 est entier, on a l’inégalité r ≤ −1 donc
1 ≤ −r donc 0 ≤ −r − 1 et donc −r − 1 ∈ N. On a ainsi trouvé un et un seul antécédent pour r par f (à
savoir 2(−r − 1) + 1 = −2r − 1).
Dans chaque cas, r possède un et un seul antécédent : l’application f est donc une bijection.
Remarque : a posteriori, maintenant qu’on a trouvé des formules explicites pour l’antécédent unique de r,
une autre piste de rédaction de la solution est visible, tentante et peut être explorée avec succès : on définit
une application g : Z → N par g(r) = 2r si 0 ≤ r et g(r) = −2r − 1 si r < 0 puis on vérifie avec soin que
g ◦ f = IdN et f ◦ g = IdZ.

Exercice 16

1) * Supposons f injective. Soit W un ensemble, g : W → X et h : W → X deux applications. Il est clair
que g = h entrâıne f ◦ g = f ◦ h, examinons l’implication directe. Pour ce faire, supposons que f ◦ g = f ◦ h.
Soit w ∈ W , on a alors f [g(w)] = (f ◦ g)(w) = (f ◦ h)(w) = f [h(w)]. Comme l’application f est injective, on
en déduit que g(w) = h(w). Ceci étant prouvé pour un w arbitraire, on en déduit que g = h.
* On va procéder par contraposition. Supposons f non injective. Il existe alors deux éléments x1 et x2

distincts dans X tels que f(x1) = f(x2). Posons alors W = {0}, notons g : W → X l’application définie
par g(0) = x1 et h : W → X l’application définie par h(0) = x2. Comme x1 et x2 sont distincts, g et h
sont distinctes ; pourtant (f ◦ g)(0) = f(x1) = f(x2) = (f ◦ h)(0). Les W , g et h qu’on vient de construire
fournissent un exemple où l’équivalence “f ◦ g = f ◦ h ⇐⇒ g = h” est fausse. C’est ce qu’on cherchait.

2) * Supposons f surjective. Soit Z un ensemble, g : X → Z et h : X → Z deux applications. Il est clair que
g = h entrâıne g ◦ f = h ◦ f , examinons l’implication directe. Pour ce faire, supposons que g ◦ f = h ◦ f . Soit
y ∈ Y , comme f est surjective, on peut introduire un x ∈ X tel que f(x) = y. On a alors g(y) = g[f(x)] =
(g ◦ f)(x) = (h ◦ f)(x) = h[f(x)] = h(y). Ceci étant prouvé pour un y arbitraire, on en déduit que g = h.
* On va procéder par contraposition. Supposons f non surjective. On peut alors introduire un élément y0 ∈ Y
dépourvu d’antécédent. Posons alors Z = {0, 1}, notons g : Y → Z l’application définie par g(y) = 1 si y a au
moins un antécédent et g(y) = 0 sinon, et notons h : Y → Z l’application constante qui prend la valeur 1 en
tout y ∈ Y . Comme g(y0) = 0 et h(y0) = 1 sont distincts, g et h sont distinctes ; pourtant pour tout x ∈ X ,
(g◦f)(x) = g[f(x)] = 1 (puisque f(x) a au moins l’antécédent x) et (h◦f)(x) = h[f(x)] = 1, donc g◦f = h◦f .
Les Z, g et h qu’on vient de construire fournissent un exemple où l’équivalence “g ◦ f = h ◦ f ⇐⇒ g = h”
est fausse. C’est ce qu’on cherchait.

Exercice 17

1) On constate que f(
1

2
) = f(2) =

4

5
. Le réel 4/5 possède donc au moins deux antécédents : f n’est donc pas

injective. Pour la surjectivité, autant attendre la question suivante, on y verra que 2 n’a pas d’antécédent,
et ça sera réglé.

2) Soit y un réel, on va en rechercher les antécédents. Soit x ∈ R. Le réel x est un antécédent de y si et
seulement si :

2x

1 + x2
= y ⇐⇒ y(1 + x2) = 2x ⇐⇒ yx2 − 2x+ y = 0. (E)

On traite dans un premier temps le cas particulier où y = 0 ; dans ce cas l’équation se réduit à −2x = 0 et
on constate si on ne l’avait vu directement que 0 est un antécédent de y = 0, et accessoirement que c’est le
seul.



Supposons dans un second temps que y ̸= 0. Vu comme une équation d’inconnue x, (E) est alors une
équation du deuxième degré, dont le discriminant est 4 − 4y2. Lorsque y2 est inférieur ou égal à 1, c’est-
à-dire lorsque y ∈ [−1, 0[∪]0, 1], ce discriminant est positif ou nul, et l’équation (E) admet au moins une
solution réelle ; autrement dit y a au moins un antécédent. Lorsque, au contraire, y2 est strictement supérieur
à 1, le discriminant de (E) est strictement négatif, et y ne possède donc aucun antécédent.
En faisant la synthèse des cas étudiés, on constate que y possède au moins un antécédent si et seulement si
y ∈ [−1, 1]. Autrement dit f(R) = [−1, 1].

3) On commence comme à la question précédente, à ceci près qu’on n’écrit pas “Soit x ∈ R” mais plutôt
“Soit x ∈ [−1, 1]”. Les calculs démarrent de la même façon, on constate toujours de la même façon que 0
possède un et un seul antécédent, et on calcule de la même façon le discriminant de (E). C’est là que les
choses se corsent car nous avons désormais à résoudre (E) dans [−1, 1] et non plus dans R, ce qui se déroule
moins automatiquement. Il peut être prudent de traiter à part les cas particuliers y = −1 et y = 1 ; en
écrivant explicitement (E) dans chacun de ces deux cas, on constate que chacun de ces y possède un et un
seul antécédent dans [−1, 1] (respectivement x = −1 et x = 1). Reste à traiter le cas où y ∈] − 1, 0[∪]0, 1[.
Dans ce cas, l’équation (E) est du second degré à discriminant strictement positif, et admet donc deux
solutions réelles. Le produit de celles-ci est égal à y/y = 1 : elles sont donc inverses l’une de l’autre. Mais si
deux nombres réels (distincts) sont inverses l’un de l’autre, l’un est de valeur absolue strictement inférieure
à 1 et l’autre de valeur absolue strictement supérieure à 1. Parmi les solutions réelles de (E), il y en a donc
une et une seule qui est dans [−1, 1], ce qui prouve bien que y possède un et un seul antécédent.

4) On dérive g et on constate que pour tout x de [−1, 1], g′(x) existe et vaut
2(1− x2)

(1 + x2)2
. Ce réel g′(x) est

manifestement positif, et même strictement positif si x n’est pas l’une des bornes de l’intervalle de définition.
On applique alors un “théorème de la bijection” plus ou moins connu dans ses souvenirs d’analyse, ou qu’on
verra en décembre.


