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Feuille 4 : Sur les applications

Exercice 1

1. Soient les fonctions f et g de R dans R définies par f(z) =3z + 1 et g(x) = 22 — 1
Calculer fog et go f. Que peut-on déduire de la composition de fonctions ?

2. Dans les exemples suivants, déterminer deux fonctions u et v telles que h =uowv :

1
T+ 7

hi(z) = V32 —1 hy(z) = sin(z + g) hs(x) =

f*R —R

Exercice 2 Soit la fonction v o f(m) =20 +1

Déterminer (fo fo fo f---of)(x) (ou f apparait n fois) en fonction de n € N* et de z € R.

Exercice 3 Soit une application affine f de R dans R. Montrez que si on a f o f = f, alors f admet un
point fixe (i.e. il existe un z € R solution de 'équation f(z) = z).

Exercice 4

1. On note f lapplication de R vers R définie par : pour tout x réel, f(x) = 2z + 3. Pour m € R, on note
gm application de R vers R définie par : pour tout x réel, g, (x) = mz — 1.
Calculer f o g, et g, o f, puis déterminer {m € R | g, 0o f = fogn}.

2. Soit E un ensemble et soit u, v deux applications de E dans E. On suppose que v ov = v o u. Montrer
que si v est un point fixe de u, alors v(«) est lui aussi un point fixe de wu.

3. Pour a € R\ {1} et b € R, on note h,y 'application de R vers R définie par : pour tout z réel,
hap(z) = ax + b puis € = {hqy | a € R\ {1}, b € R}.
a) Montrer que pour tout h € £, h posséde un et un seul point fixe.
b) Montrer que pour tous h, k € £, (hok =koh) = (h et k ont le méme point fixe).
¢) Peut-on remplacer le = par un <= dans la question précédente ?

Exercice 5 Les applications suivantes sont-elles injectives, surjectives, bijectives ?

1 f R —R 9 AR — Ry 3 f*N —N 4 f*Ry —R
' z =z ' r =zt ' n —n '’ ' T — 2T
f:R —R fiR — {14} f7 — {12:17} foRy —R
5. 6. T 8. 1
r —8x+3 x — 14 x — 17 A
X
{0} — {0} foA1y —{1/2} f:N —N 9:Z —%Z
9. ; 10. 1 ; 11. ; 12.
r 0 — n —n+1l n —n+1l
z+1
.2 2 E:R—-—{1} —R
13, PR —R .14 z+1

Exercice 6 Soit a et b deux réels, avec b # 0.
1) On définit h; : R — R par hi(x) = a — x. Vérifier que hy o hy = Id.

b
2) On veut définir une application hs : R\ {a} — R\ {a} par ho(x) = —— +a. Justifier que cette définition
r—a

est possible, puis montrer que hy o hy = Id.
3) Montrer que hs est bijective.

Exercice 7 Soient les ensembles A, B,C et D, et les applications f: A— B, g: B—>Cet h:C — D.
1. Montrer que : g o f injective = f injective et que g o f surjective = g surjective.

2. Montrer que : [ go f et h o g sont bijectives | <= | f, g et h sont bijectives).
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Exercice 8 Les applications suivantes sont-elles injectives, surjectives ?

tan :| — /2, 7/2[— R; tany, . — R; tanh_?ﬂr e R.
5
Exercice 9 Soit f lapplication de l’ensemble {1, 2, 3, 4} dans lui-méme définie par f(1) = 4, f(2) =1
f(3) =2, f(4) = 2. Déterminer f(A) lorsque A = {1}, A = {1,3}, A = {3,4}, A = {}, puis déterminer
f~YB) lorsque B = {2}, B = {1,2}, B = {3}.

Exercice 10 Décrire (sans démonstration rigoureuse) les ensembles qui suivent.

1. tan({O}) 2. sin ' ({2}); 3. f74[0,1]) pour f: R — R,z +— z?;

4 Yo, ])p ur f:[-1/2,4/3] = R,z — z%; 5. f74[0,1]) pour f: Rt = R,z — z%;
6. (cosjjor) 1 ([0,1]); 7 (cosyiz)'([0,1]); 8. cos™'([0,1]);

9. exp(] — 00,2]); 10. exp }([~1,¢€]) 11. In(R_); 12. In~Y([3, +o0]).

Exercice 11 Soient F et F' deux ensembles et soit f : F — F. Soient également B, By deux parties de F’
et A1, As deux parties de E
1) Démontrer que By C By = f~(B;) C f~'(By). La réciproque est-elle vraie ?
2) Démontrer que f(A; N As) C f(A1) N f(Az). L'inclusion réciproque est-elle vraie ?
3) Démontrer que f(A; U A2) = f(A1) U f(A2).

Exercice 12 Soit f: X — Y. Montrer que les conditions suivantes sont équivalentes :
i) f est injective;
ii) Pour tous A;, As parties de X, on a f(A; N As) = f(A1) N f(A2).

Exercice 13 Soit I'application f: F — F ou E et F' sont des ensembles finis.
Pour b € F on note my le nombre d’antécédents de b.

1) Que vaut Zmb?
beF
2) Montrer que f injective = Card(E) < Card(F).

3) Montrer que f surjective =—> Card(F') < Card(FE).

Exercice 14 Soit f : E — F. Montrer que les assertions suivantes sont équivalentes :
i) 3G C F telle que la restriction de f : F — G existe et est bijective;
ii) f est injective.

Exercice 15 Soit l'application f: N — Z telle que f(2k) =k et f(2k+1) = —k — 1.
Montrer que f définit une bijection de N vers Z.

Exercice 16 Soient X,Y deux ensembles et f: X — Y une application.
1. Montrer que f est injective si et seulement si, pour tout ensemble W et pour tout g : W — X et tout
h:W—=X ona fog=foh < g=h.

2. Montrer que f est surjective si et seulement si, pour tout ensemble Z et pour tout g : Y — Z et tout
h:Y —-Z onagof=hof < g=h.

2z

Exercice 17 Soit f : R — R définie par f(x) = 522
x

1) f est-elle injective ? surjective ?

2) Montrer que f(R) =[—1,1].

3) Montrer que la restriction g : [—1,1] — [—1, 1] définie par g(x) = f(z) est une bijection.
)

4) Retrouver ce résultat en étudiant les variations de f.



Exercice 1

1) Les deux composées demandées vont de R vers R. Soit « un réel, on calcule successivement :

(fo9)() = flg(a)] = 3(a? — 1) + 1= 3a% — 2 et (g0 f)(x) = g[f(@)] = (32 +1)2 = 1 = 9 + 6.

Pour le “que peut-on déduire”, sans doute attend-on une remarque sur la non-commutation de f et g. Pour
la faire correctement, il ne suffit pas de constater qu’on a trouvé deux expressions différentes : peut-étre
(aussi improbable soit-ce) expriment-elles la méme fonction de deux fagons différentes! Le plus str est tout
de méme de constater que (f o0 ¢)(0) = —2 # 0 = (g o f)(0). Une fois cette explicitation faite, il ne fait plus
de doute que fog#go f.

2) L’énoncé ne précisant pas les ensembles de départ et d’arrivée, on s’autorisera -méme si ce n’est pas
totalement rigoureux- d’en faire autant. Ceci posé, on constate sans mal qu’on peut utiliser ui(x) =/,

7r

ug(x) =3x — 1, v1(z) =sinz, va(x) =2 + 5 us(x) = 1/x et v3(x) = x4 7. Procéder ainsi est souvent utile
(par exemple pour étudier des sens de variation avec économie de calculs) ; on doit quand méme noter qu’en

dehors des réponses “intelligentes” fournies ci-avant, on peut aussi, si on est pervers, fournir des réponses
1 . . . i 7T NN .
idiotes mais parfaitement correctes, par exemple uq(x) = sin(z + 5) et va(z) =z + s Mais & quoi bon ?

Exercice 2
Pour z € R, on calcule successivement: (f o f)(x) = f(2zx+1) =22z + 1) + 1 = 4z + 3 puis

(fofof)e) = fl(fo f)@)] = f(dr+3) =24z +3) + 1 =8z +T.
Soit « € R. Notons (H,,) I’énoncé suivant :

(Hn)“fn(x) — 277,:1; + 2n _ 177

* Lénoncé (Hi) est vrai, car 2'z + 21 — 1 =22 — 1 = f(x).
* Soit n > 1 un entier, supposons (H,). On peut alors calculer :

i (x) = f[f"(2)] = fFRx+2" — 1) =2(2"x + 2" — 1)+ 1 =2"FTlg y2ntl —2 4 1 =27ty 4 ontl 1,

et I'énoncé (H,,11) est également vérifié.
On a ainsi montré que pour tout n > 1, (H,) = (Hp41)-
* Par application du principe de récurrence, on en déduit que pour tout n > 1, (H,,) est vrai.

Exercice 3
Supposons f o f = f. Alors f[f(0)] = (f o £)(0) = f(0) et f(0) est donc un point fixe de f. (La question
n’utilise pas le caractere affine de f!).

Exercice 4

1) Soit m un réel. Les deux applications & calculer vont toutes deux de R vers R. Pour z réel, on calcule
sans mal :

(fogm)(x)=2(mx—1)+3=2ma+1et (gmo f)(x) =m(2zx+3)—1=2mz+3m — 1.

Notons A I’ensemble & déterminer. Si m est élément de A, alors en particulier (f o g, )(0) = (gm © £)(0) soit
1 =3m — 1 ce qui se produit si et seulement si m = 2/3. Réciproquement, si m = 2/3, alors 3m — 1 =1,
et les deux applications f o g,, et g, o f sont toutes deux représentées par la méme formule = — 2mz + 1
et sont donc égales (elles ont par ailleurs les mémes ensembles de départ et d’arrivée), donc 2/3 € A. On
conclut que A = {2/3}.

2) Soit v un point fixe de u. On calcule alors v(a) = v[u(a)] = (vou)(a) = (uov)(a) = ufv(a)]. Ceci prouve
que v(«) est laissé fixe par w.



3) a) Soit h € £. Notons a # 1 et b deux réels tels que pour tout z réel on ait h(x) = ax + b. Soit a € R.
a est fixe pour h <= aa+b=a < (a—1l)a=-b < a=1>b/(1—a). On constate ainsi qu’il y
a un et un seul point fixe pour h.

b) Soit h et k deux éléments de £ qui commutent. Notons a I'unique point fixe de h. En appliquant la
question 2 & h, k et «, on constate que k(«) est aussi un point fixe de h. Vu l'unicité du point fixe de
h, on en déduit que o = k(«), et donc que « est aussi le point fixe de k.

¢) La réponse est oui. Pour le montrer, soit h et k& deux éléments de £ qui ont le méme point fixe ; notons
a#1,¢c#1,betdquatre réels tels que pour tout x réel on ait h(x) = ax + b et k(z) = cx + d. Un
calcul simple -on peut presque le faire mentalement, apres ’expérience de la question 1, des lors qu’on
ne cherche pas a expliciter les deux constantes qui y apparaissent- assure qu’il existe deux constantes
réelles e et f telles que pour tout x réel, (hok)(x) = acx + e et (koh)(xz) = acx + f. Notons «a le point
fixe commun de h et k. Alors (h o k)(a) = hlk(a)] = h(a) = 5 de la méme fagon, « est également fixe
par ko f. On conclut que a@ = aca 4+ e = aca + f puis que e = f puis que hok =koh

Exercice 5

1) f n’est pas injective car f(—1) = f(1), elle n’est donc pas bijective. Elle n’est pas surjective car —1 n’a
pas d’antécédent.

2) f n'est pas injective car f(—1) = f(1), elle n’est donc pas bijective. Soit y € R*, et posons z = /y. On
constate que f(z) = (\/5)2 =y : x est donc un antécédent de y. Ceci prouve que f est surjective.

3) On reconnait ici 'application identique, notoirement bijective (et donc injective et surjective).

4) Soit x1 et x5 deux réels positifs tels que f(z1) = f(x2), soit 221 = 2x2. En divisant par 2, on conclut que
x1 = 9 : Papplication f est donc injective. En revanche, le réel —2 n’a pas d’antécédent (I’équation 2z = —2,
d’inconnue z, n’a manifestement pas de solution positive), et f n’est pas surjective, donc pas bijective.

5) Soit y un réel. Pour x réel,

flx)=y < 8x+3=y <= 8r=y—3 < z=(y—3)/8.

On conclut que y possede un antécédent et un seul, et ceci prouve que f est bijective - et aussi, c’est fatal,
injective et surjective.

6) f n’est pas injective car f(—1) = f(1), elle n’est donc pas bijective. Soit y € {14}, et donc y = 14. On
constate que f(0) = 14 = y et que y posséde donc au moins un antécédent : f est donc surjective.

7) Soit a1 et 22 deux éléments de {17} tels que f(x1) = f(x2). Puisqu’ils appartiennent a {17}, z1 et xo sont
tous deux égaux a 17, et donc égaux entre eux. f est donc injective. En revanche, I’élément 12 de ’ensemble
d’arrivée n’a pas d’antécédent, et f n’est pas surjective, donc pas bijective.

8) Soit 1 et xo deux réels strictement positifs tels que f(x1) = f(x2), soit 1/z1 = 1/z2. En prenant les
inverses, on obtient x1 = xo et on conclut a 'injectivité. En revanche, 1’élément —1 de ’ensemble d’arrivée
n’a pas d’antécédent, f n’est donc pas surjective, et pas non plus bijective.

9) Soit y un élément de I'ensemble d’arrivée {0}, et donc y = 0. L’unique élément de I’ensemble de départ,
a savoir 0, est un antécédent de y, qui en possede donc un et un seul. Ceci prouve que f est bijective - et
aussi, ¢’est vendu avec, injective et surjective. On notera que cette preuve peut se recopier a I'identique pour
n’importe quelle application dont les ensembles de départ et d’arrivée n’ont chacun qu’un seul élément.

10) Les ensembles de départ et d’arrivée n’ont chacun qu’'un élément, on n’a plus qu’a recopier la preuve
écrite & la question précédente en remplagant les deux premiers 0 qui y figurent par des 1/2 et le troisieme
par un 1. Pour éviter la répétition, on remplacera aussi “vendu avec” par “incontournable”.

11) Soit n; et ng deux entiers positifs tels que f(n1) = f(n2), soit n; + 1 = ns + 1. En soustrayant 1, on
conclut que n; = no : application f est donc injective. En revanche, 1’élément 0 de ’ensemble d’arrivée n’a
pas d’antécédent, f n’est donc pas surjective, et pas non plus bijective.

12) Soit 7 un entier relatif. Pour n € Z,

fn)=r = n+l=r < n=r—-1.



On conclut que r possede un antécédent et un seul, et ceci prouve que f est bijective - et aussi, c’est
automatique, injective et surjective.

13) Soit (s,t) un couple de réels. Pour (z,y) € R2,

s+t

— Tr =
flly) = (5,t) = {ﬁff{j;i = 52
2

On conclut que (s,t) possede un antécédent et un seul, et ceci prouve que f est bijective -et aussi, dans la
foulée, injective et surjective.

1+ 1 ) +1
Xr1 — 1 B T —
les produits en croix, on obtient: 122+ 22— 21 —1 = 122+ 21 — 25 — 1 puis o — x1 = 1 — T2 et finalement
r1 = T : application f est donc injective. En revanche, considérons I’élément y = 1 de I’ensemble d’arrivée;
soit x € R\ {1}. Alors f(z) = 1 entraine x +1 = z — 1 donc 1 = —1 qui est manifestement impossible. C’est
donc que y = 1 n’a pas d’antécédent, et que f n’est pas surjective, donc pas non plus bijective.

. En effectuant

14) Soit 27 et x2 deux réels différents de 1 tels que f(x1) = f(z2), c’est-a-dire

Exercice 6

1) Pour hq, les choses sont simples : pour x réel, on calcule hy(h1(z)) =a—(a—2) =a+ 2 —a ==z On
conclut que hy o hy =1d.

2) Pour hg, une premiére difficulté est de décoder I'implicite dans la question : que signifie “peut définir une
application” 7 Cela invite en pratique a se pencher sur l’ensemble de départ proposé -c’est généralement
creux et ici c’est creux- et, plus subtilement, & regarder de preés ce qu’on nous propose comme ensemble
d’arrivée.

Tout d’abord, pour z € R\ {a}, la formule proposée pour définir ho(x) a bien un sens (on ne divise pas par
zéro). Il n’y aurait donc aucun probléme & définir par cette formule une application de R\ {a} vers R.
Mais on nous demande implicitement de vérifier une chose supplémentaire, & savoir que la formule fournit
bien un élément de R\ {a} et qu’'on “peut” donc restreindre I'ensemble d’arrivée & R\ {a}.

Une fois qu’on a compris ce qu’il fallait faire, exécution est assez simple : pour z dans R\ {a}, le réel
T —a

b
n’est pas nul (& cause de 'hypothese b # 0), donc le réel + a n’est pas égal a a; autrement dit il
Tr—a

appartient bien a R\ {a}.

Ce préalable étant posé, I'examen de ho o ho est aussi facile que celui de hy o by réalisé plus haut. Il est tout
de méme prudent ici de constater que tant son ensemble de départ que son ensemble d’arrivée est R\ {a}.
Une fois ceci observé, on calcule, pour z dans ce domaine :

b b
=—ta=(r—a)t+a=ux

(z—fa—i—a)—a 7—a

3) En notant trés provisoirement ko = ho, U'information selon laquelle hy o ho = Id fournit aussi les informa-
tions kg 0 ho = hy o ks = Id. Mais un théoreme bien connu nous affirme que 'existence d’un tel ko entraine
la bijectité de hs.

halhs ()] =

Exercice 7

Supposons g o f injective, et soit x1, xo deux éléments de A tels que f(z1) = f(x2). En appliquant g on
obtient (g o f)(z1) = (g o f)(x2), puis vu l'injectivité de g o f on conclut que x; = x5. L’application f est
donc injective.

Supposons g o f surjective, et soit z un élément de C. Par la surjectivité de g o f, on peut introduire un
x € A tel que (go f)(x) = z. Ceci peut étre réécrit comme g[f(x)] = z; on constate alors que f(z) est un
antécédent de z par g. L’application ¢ est donc surjective.

Supposons g o f et h o g bijectives, donc injectives et surjectives. Par le deuxieme item de I’exercice, g est
surjective ; en appliquant la preuve du premier item a g et h, g est bijective. Une fois qu’on sait ¢a, on peut
utiliser la bijection réciproque g—!; comme f est égale & la composée g=1 o (go f), qui est une composée de

deux bijections, elle est aussi bijective. De méme h, puisqu’on peut 'écrire h = (ho g) o g~*.



Exercice 8

1) Injective et surjective.

2) Injective, mais pas surjective.
3) Injective et surjective.

Exercice 9
On ne peut guere en dire plus que donner les réponses justes, qui sont {4}, {2,4}, {2} et {}, puis {3,4},

(2,3,4) et {}.

Exercice 10

i i
8) kgz[(% g, 2k +1)3]-

9) 10, €.

10) | — o0, 1].

11) Cette question n’a aucun sens: c’est un piége grossier.
12) [e3, +ool.

Exercice 11

1) Supposons By C Ba, et soit x € f~1(By). Alors f(z) € By, donc f(z) € B, donc x € f~1(Bs). L’inclusion
est prouvée.

La réciproque peut étre fausse : on peut -par exemple- reprendre ’exemple de Iexercice 9, avec B; = {2, 3}
et B2 = {2}

2) Soit y € f(A1 N Ag). On peut introduire un z € A; N Az tel que f(z) = y. Comme x est dans A;, on voit
que y € f(A1). De méme, la présence dans As de x entraine que y € f(As). On conclut que y € f(A1)Nf(A2).
L’inclusion est prouvée.

L’inclusion réciproque peut étre fausse : toujours dans le méme exemple, essayer A1 = {3} et A = {4}.

3) On va montrer la double inclusion.

Soit dans un premier temps un y € f(A; U As). On peut introduire un « € A; U A pour lequel f(z) =y. Si
x est dans A;, y est dans f(A;) et donc dans f(A1) U f(Az) ; sinon c’est que x est dans Ay, mézalor y est
dans f(Az) et donc 14 encore dans f(A;) U f(Asz). L’inclusion est prouvée.

Soit dans un second temps un y € f(A;) U f(A2). Si y est dans f(A;), on peut introduire un x de A; et
donc a fortiori de A; U Ay tel que f(x) = y; siy n'y est pas il est dans f(A3) et on peut faire pareil avec un
x de Ag. Dans les deux cas on a prouvé que y € f(A4; U As), donc l'inclusion réciproque.

Exercice 12

Montrons d’abord que i) implique ii). On suppose f injective.

Soit A; et Ay deux parties de E. L’inclusion f(A1NAs) C f(A1)Nf(Az2) a été prouvée a I'exercice précédent,
passons a lautre. Soit donc un y € f(A1) N f(Az2). Comme y est dans f(A;), on peut introduire un z; € A
tel que f(z1) = y. De méme un a2 dans As tel que f(x2) = y. On voit alors que f(x1) = f(x2) et, ¢a tombe
bien tout de méme, f est injective. On conclut que x1 = x2 et donc x71 = x5 € A3 N As. L’élément y est donc
Iimage d’un élément de A; N Az, et donc y € f(A; N Az). L’inclusion manquante ne Pest plus.



Montrons maintenant que ii) implique i). Il est pratique de le faire par contraposition, supposons donc f non
injective et montrons I'existence de parties A; et As pour lesquelles I’égalité proposée est vraie. Ce n’est pas
bien difficile : il suffit de calquer ’exemple fourni au 2 de I'exercice précédent dans ce contexte légerement
plus abstrait. Puisque f n’est pas bijective, on peut introduire deux éléments distincts x1 et o de X qui ont
la méme image par f, disons y. Il suffit pour conclure d’observer que f({z1} N{z2}) = f({}) = {} tandis
que f({z1}) N f{z2}) = {y} N{y} = {y}: ce n’est pas la méme chose.

Exercice 13

1) La somme proposée est le nombre total d’éléments de FE qui sont antécédents de quelqu’un. Mais, dans
une application, tous les éléments de ’ensemble de départ sont antécédents de quelqu’un, a savoir de leur
image. La réponse attendue était donc Card E.

On peut trouver ¢a un peu littéraire, craindre I’entourloupe. On peut faire plus formel si ¢a peut rassurer :
pour (a,b) € E x F, notons €, le nombre entier qui, par définition, vaut 1 si b = f(a) et 0 sinon. Alors pour
tout a € E,

Slar= D €t D eap= > 1+ > 0=Cad{be F | b=f(a)} =1

beF beF beF beF €
b=f(a) b7 f(a) b=f(a) b# f(a)

tandis que pour tout b € F',

Zea,bz Z €ap + Z €ab = Z 1+ Z 0=Card{a € E | f(a)=b} =myp

a€E acE acE a€E a€EE
fla)=b fla)#b fla)=b fla)#b

et donc,

S5 (Sen) = 5 (S - S coin

beF beF \a€FE a€E \beF a€l

2) Supposons f injective. Alors pour tout b dans F', on a I'inégalité: my, < 1. Sommons ceci sur b: on obtient
D oper My < Y yep 1, et done Card B < Card F

3) Supposons [ surjective. Alors pour tout b dans F, on a l'inégalité : 1 < my. Sommons ceci sur b: on
obtient ), 1 < >, pmyp, et donc Card ' < Card E.

Exercice 14

Montrons que i) implique ii). Supposons i) vraie; on peut introduire un ensemble G comme dans 1’énoncé
de i, et on peut noter g la restriction de f de F vers G. Soit alors x1 et zo deux éléments de E tels que
f(xz1) = f(x2). Par définition d’une restriction, on a g(x1) = f(z1) et g(x2) = f(x2), donc g(z1) = g(x2).
Or g est bijective, donc injective, donc 1 = x2. On conclut que f est injective.

Montrons que ii) implique i). Supposons f injective, et notons G = f(F). Il est possible de définir la
restriction g de f de F vers G puisque f(E) C G. Soit maintenant x; et x5 dans E tels que g(z1) = g(x2).
Par définition d’une restriction, on a g(z1) = f(z1) et g(z2) = f(x2), donc f(x1) = f(a2). Or f est supposée
injective, donc 1 = x2. On conclut que g est injective. Soit maintenant un y € G. Comme G = f(FE), on
peut introduire un = € E tel que f(x) = y. Par définition d’une restriction, g(x) = f(x), donc on a aussi
g(x) =y et on a trouvé un antécédent de y par g. Ceci prouve que g est surjective.

Exercice 15

On va commencer par montrer un résultat préparatoire.

Soit n un entier naturel. Si n est pair, et s’écrit donc sous la forme 2k il est immédiat vu la définition de f
que f(n) est positif ou nul. Supposonsau contraire n impair. L’entier n peut alors se mettre sous la forme
2k + 1 avec k entier naturel ; son image est alors —k —1 < -1 < 0.

On a donc montré ’équivalence suivante :

Pour tout n € N, n est pair < 0< f(n).



Soit r un entier relatif (élément de Z), cherchons les antécédents de r par application f.

* Premier cas: si 7 > 0. Vu le résultat préparatoire, les antécédents de r sont & rechercher parmi les nombres
pairs, c’est-a-dire les nombres de la forme 2k, k € N. Soit k € N, alors f(2k) =r <= k = r: lentier r
possede donc un et un seul antécédent par f (& savoir 2r).

* Deuxiéme cas: si 7 < 0. Vu le résultat préparatoire, les antécédents de r sont & rechercher parmi les
nombres impairs, ¢’est-a-dire les nombres de la forme 2k + 1, k € N. Soit k € N, alors f(2k+ 1) =r —
—k—1=r <= k= —r —1. Notons de plus que comme r < 0 est entier, on a l'inégalité r < —1 donc
1< —rdonc0< —r—1etdonc —r—1¢& N. On a ainsi trouvé un et un seul antécédent pour r par f (a
savoir 2(—r — 1)+ 1= —2r —1).

Dans chaque cas, r possede un et un seul antécédent : 'application f est donc une bijection.

Remarque : a posteriori, maintenant qu’on a trouvé des formules explicites pour I’antécédent unique de r,
une autre piste de rédaction de la solution est visible, tentante et peut étre explorée avec succes: on définit
une application g: Z — N par g(r) = 2r si 0 < r et g(r) = —2r — 1 si r < 0 puis on vérifie avec soin que
go f=Idn et fog=1dz.

Exercice 16

1) * Supposons [ injective. Soit W un ensemble, g: W — X et h: W — X deux applications. Il est clair
que g = h entraine fog = f o h, examinons I'implication directe. Pour ce faire, supposons que fog = foh.
Soit w € W, on a alors flg(w)] = (fog)(w) = (foh)(w) = f[h(w)]. Comme Papplication f est injective, on
en déduit que g(w) = h(w). Ceci étant prouvé pour un w arbitraire, on en déduit que g = h.

* On va procéder par contraposition. Supposons f non injective. Il existe alors deux éléments x1 et o
distincts dans X tels que f(z1) = f(x2). Posons alors W = {0}, notons g: W — X Dapplication définie
par g(0) = x1 et h: W — X Papplication définie par h(0) = x2. Comme z7 et x5 sont distincts, g et h
sont distinctes ; pourtant (f o g)(0) = f(x1) = f(x2) = (f o h)(0). Les W, g et h qu’on vient de construire
fournissent un exemple ou I’équivalence “fog= foh <= g = h" est fausse. C’est ce qu’on cherchait.

2) * Supposons [ surjective. Soit Z un ensemble, g: X — Z et h: X — Z deux applications. Il est clair que
g = h entraine go f = ho f, examinons I'implication directe. Pour ce faire, supposons que go f = h o f. Soit
y €Y, comme f est surjective, on peut introduire un x € X tel que f(z) = y. On a alors g(y) = g[f(z)] =
(go f)(x) = (ho f)(x) = h[f(x)] = h(y). Ceci étant prouvé pour un y arbitraire, on en déduit que g = h.

* On va procéder par contraposition. Supposons f non surjective. On peut alors introduire un élément yy € Y’
dépourvu d’antécédent. Posons alors Z = {0, 1}, notons ¢g: Y — Z l’application définie par g(y) = 1 si y a au
moins un antécédent et g(y) = 0 sinon, et notons h: Y — Z Papplication constante qui prend la valeur 1 en
tout y € Y. Comme ¢(yo) = 0 et h(yo) = 1 sont distincts, g et h sont distinctes ; pourtant pour tout =z € X,
(gof)(z) = g[f(x)] =1 (puisque f(z) a au moins 'antécédent x) et (hof)(x) = h[f(x)] = 1, donc gof = hof.
Les Z, g et h qu’on vient de construire fournissent un exemple ou I'équivalence “go f = ho f < g=~h"
est fausse. C’est ce qu’on cherchait.

Exercice 17

1 4
1) On constate que f(§) = f(2) = —. Le réel 4/5 posséde donc au moins deux antécédents: f n’est donc pas
injective. Pour la surjectivité, autant attendre la question suivante, on y verra que 2 n’a pas d’antécédent,
et ca sera réglé.

2) Soit y un réel, on va en rechercher les antécédents. Soit € R. Le réel x est un antécédent de y si et
seulement si :

2x 9 9
——— =y <= y(l+2°) =22 <= yz* —2x+y=0. E
T2 =Y y( ) Y Y (E)
On traite dans un premier temps le cas particulier ou y = 0; dans ce cas ’équation se réduit & —2z = 0 et
on constate si on ne ’avait vu directement que 0 est un antécédent de y = 0, et accessoirement que c’est le

seul.



Supposons dans un second temps que y # 0. Vu comme une équation d’inconnue z, (F) est alors une
équation du deuxieme degré, dont le discriminant est 4 — 4y2. Lorsque y? est inférieur ou égal & 1, c’est-
a-~dire lorsque y € [—1,0[U]0,1], ce discriminant est positif ou nul, et ’équation (F) admet au moins une
solution réelle ; autrement dit ¥ a au moins un antécédent. Lorsque, au contraire, y2 est strictement supérieur
a 1, le discriminant de (E) est strictement négatif, et y ne possede donc aucun antécédent.

En faisant la synthese des cas étudiés, on constate que y possede au moins un antécédent si et seulement si

€ [-1,1]. Autrement dit f(R)=[-1,1].

3) On commence comme & la question précédente, & ceci prés qu’on n’écerit pas “Soit € R” mais plutot
“Soit x € [—1,1]". Les calculs démarrent de la méme fagon, on constate toujours de la méme fagon que 0
posséde un et un seul antécédent, et on calcule de la méme facon le discriminant de (E). C’est 1a que les
choses se corsent car nous avons désormais & résoudre (E) dans [—1,1] et non plus dans R, ce qui se déroule
moins automatiquement. Il peut étre prudent de traiter a part les cas particuliers y = —1 et y = 1; en
écrivant explicitement (E) dans chacun de ces deux cas, on constate que chacun de ces y possede un et un
seul antécédent dans [—1,1] (respectivement x = —1 et = 1). Reste a traiter le cas ou y €] — 1,0[U]0, 1].
Dans ce cas, I’équation (F) est du second degré & discriminant strictement positif, et admet donc deux
solutions réelles. Le produit de celles-ci est égal & y/y = 1: elles sont donc inverses I'une de 'autre. Mais si
deux nombres réels (distincts) sont inverses I'un de Pautre, 'un est de valeur absolue strictement inférieure
a 1 et Pautre de valeur absolue strictement supérieure a 1. Parmi les solutions réelles de (E), il y en a donc
une et une seule qui est dans [—1, 1], ce qui prouve bien que y possede un et un seul antécédent.

2(1 — 2?)

1+

4) On dérive g et on constate que pour tout x de [—1,1], ¢’(z) existe et vaut Byel Ce réel ¢'(z) est
x

manifestement positif, et méme strictement positif si x n’est pas I'une des bornes de 'intervalle de définition.
On applique alors un “théoréme de la bijection” plus ou moins connu dans ses souvenirs d’analyse, ou qu’on
verra en décembre.



