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Feuille 9 : Polynômes

Exercice 9-1
On note Pn = (1 +X)(1 +X2)(1 +X4)...(1 +X2n). Calculer les coefficients de Pn.

CORRECTION
On montre par récurrence que les coefficients de Pn sont tous égaux à 1. Pour n ∈ N notons A(n) la
proposition “Pn = 1 +X +X2 + . . .+X2n+1−1”.

P0 = 1 +X donc A(0) est vraie. Soit n ∈ N, et supposons A(n) vraie. Alors

Pn+1 = Pn(1 +X2n+1
) = Pn +X2n+1

(1 +X +X2 + . . .+X2n+1−1)

= 1 +X +X2 + . . .+X2n+1−1 +X2n+1
+ . . .+X2n+1−1+2n+1

= 1 +X +X2 + . . .+X2n+2−1,

d’où A(n+ 1) est vraie. On en déduit que A(n) est vraie pour tout n ∈ N.

Exercice 9-2
Déterminer tous les polynômes P de R[X] vérifiant les relations suivantes :
1. P (X2 + 1) = P (X) 2. P (2X + 1) = P (X)

CORRECTION
On cherche des polynômes P 6= 0. Donc, on pose degP = n ≥ 0.

1. En supposant l’égalité, et en regardant les degrés, on trouve que

degP (X2 + 1) = 2n = n = degP .

Cela implique que n = 0 et donc P (X) = a, avec a ∈ R. D’autre côté, si P est un polynôme constant,
la rélation est facilement vérifiée.
Donc, la rélation est vérifiée pour tous et seuls les polynômes constants.

2. Soit P (X) = anX
n + an−1X

n−1 + . . . + a1X + a0, avec aj ∈ R pour tout 0 ≤ j ≤ n. Le coefficient
dominant du polynôme composé P (2X+1) est alors an2n. Par égalité, il faut alors an = an2n ; cela est
vrai si et seulement si 2n = 1, et donc si et seulement si n = 0 (autrement dit, ak = 0 pour tout k ≥ 1).
Encore une fois, on trouve que tous et seuls les polynômes qui vérifient l’égalité sont les polynômes
constants : il existe a ∈ R tel que P (X) = a.

Exercice 9-3
Pour a, b réels, on note Pa,b = X4 + 2aX3 + bX2 + 2X + 1. Pour quelles valeurs de a et b le polynôme Pa,b
est-il le carré d’un polynôme de R[X] ?

CORRECTION
Si P = Q2 est le carré d’un polynôme, alors Q est nécessairement de degré 2, et son coefficient dominant
est égal à 1 ou est égal à −1. Dans le premier cas, on peut donc écrire Q(X) = X2 + cX + d. On a alors
Q2(X) = X4+2cX3+(2d+c2)X2+2cdX+d2. Par identification, on doit avoir 2c = 2a, 2d+c2 = b, 2cd = 2
et d2 = 1. On trouve donc c = a et d = ±1. Si d = 1, alors c = 1, et donc a = 1 et b = 3. Si d = −1, alors
c = −1, a = −1 et b = −1. Les deux solutions sont donc P1(X) = X4 +2X3 +3X2 +2X+1 = (X2 +X+1)2

et P2(X) = X4 − 2X3 −X2 + 2X + 1 = (X2 −X − 1)2.
Dans le deuxième cas, on écrit Q(X) = −R(X) avec R(X) = X2 + cX +d, de sorte que Q2(X) = R2(X)

et on retrouve en réalité le cas précédent.
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Exercice 9-4
On considère l’équation suivante dans C[X] : P (2X) = P ′(X)P ′′(X).

1. On note P une solution non nulle de cette équation, δ son degré et a son coefficient dominant.

a) Quel est le degré de P (2X) ? De P ′P ′′ ? En déduire la valeur de δ.

b) Quel est le coefficient dominant de P (2X) ? De P ′P ′′ ? En déduire la valeur de a.

c) Déterminer P .

2. Conclure.

CORRECTION

1. Soient δ = degP ≥ 0 et a ∈ C le coefficient dominant de P .

a) degP (2X) = δ, tandis que degP ′ = δ − 1 et degP ′′ = δ − 2. Donc deg
(
P ′P ′′

)
= 2δ − 3. Il faut

donc δ = 2δ − 3, qui implique δ = 3.

b) En vue de la question précédente, le coefficient dominant de P (2X) est 8a, celui de P ′ est 3a et
celui de P ′′ est 6a. Le coefficient dominant de P ′P ′′ est alors 3a · 6a = 18a2 : pour avoir l’égalité,
il faut donc que 8a = 18a2, c’est-à-dire

a
(
9a− 4

)
= 0 .

La solution a = 0 n’est pas acceptable (sinon, degP < 3), et alors a = 4/9.

c) De façon analogue, si on écrit P (X) = aX3 + bX2 + cX + d et on calcule explicitement les
polynômes P (2X) et

(
P ′P ′′

)
(X), on trouve les égalités

4b = 18ab
2c = 6ac+ 4b2

d = 2bc ,

qui impliquent b = c = d = 0.

2. Donc, le seul polynôme qui vérifie l’égalité donnée est le polynôme P (X) = (4/9)X3.

Exercice 9-5
Quelles sont les racines (dans C et dans R) des polynômes suivants ?

1. X3 − 7X2 + 14X − 8 2. X6 − 4 3. X4 − 13X2 + 36 4. X4 + 6X2 + 25.

CORRECTION

1. 1 est racine évidente deX3−7X2+14X−8. On factorise doncX3−7X2+14X−8 = (X−1)(X2−6X+8)
et on calcule les racines de X2 − 6X + 8 qui sont 2 et 4.

2. X6− 4 = (X3)2− 4 = (X3− 2)(X3 + 2). Dans R chacun de ces facteurs a une unique racine, on trouve
donc deux racines réelles : 3

√
2 et − 3

√
2. Dans C on calcule les racines 3-ièmes de 2 et -2. On trouve au

total 6 racines complexes distinctes : 3
√

2, 3
√

2e
i2π
3 , 3
√

2e
−i2π

3 ,− 3
√

2, 3
√

2e
iπ
3 , 3
√

2e
i5π
3 .

3. On factorise Y 2 − 13Y + 36 = (Y − 9)(Y − 4) et on pour chaque racine y de ce polynôme on résout
X2 = y. On a donc que 3,−3, 2,−2 sont les racines de X4 − 13X2 + 36.

4. On trouve les racines complexes de Y 2 + 6Y + 25 qui sont y1 = 3 + 4i et y2 = 3− 4i et on calcule les
racines carrées de chacun de ces deux nombres complexes. On trouve finalement 4 racines complexes
(non réelles) : 2 + i,−2− i, 2− i,−2 + i.

Exercice 9-6

1. Soit m ≥ 1 un entier. Quelles sont les racines (dans C et dans R) du polynôme Xm − 1 ?

2. Soit n ≥ 1 un entier. Quelles sont les racines (dans C et dans R) du polynôme Xn+Xn−1+ . . .+X+1 ?
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CORRECTION

1. Du chapitre sur les complexes, on sait que les racines complexes du polynôme Xm−1 sont les m racines
m-ièmes de l’unité : {

e2πi k/m
}
k=0,...,m−1

.

De ça, on déduit que :
– si m est impaire, la seule racine réelle est 1 ;
– si m est paire, il y a deux racines réeles, 1 et −1.

2. Soit Q(X) = Xn + Xn−1 + . . . + X + 1. On sait que (X − 1)Q(X) = Xn+1 − 1. Grâce à la question
précédente, on déduit que les racines complexes de Q sont{

e2πi k/m
}
k=1,...,m−1

.

Pour les racines réelles :
– si n est paire, Q n’a pas de racines réelles ;
– si n est impaire, la seule racine réelle de Q est −1.

Exercice 9-7
Montrer que le polynôme X163 + 24X57 − 6 a au moins une racine sur R.

CORRECTION
On considère la fonction f : R→ R définie par f(x) = x163 + 24x57 − 6. Elle est continue sur son domaine.
Puisque f(0) = −6 et limx→∞ f(x) = +∞ par le théroème des valeurs intermédiaires on déduit qu’il existe
un réel x > 0 tel que f(x) = 0. Le polynôme X163 + 24X57 − 6 a donc au moins une racine sur R.

Exercice 9-8
Deux polynômes U et V réels vérifient U(x) sin(x) + V (x) cos(x) = 0 pour tout x > 0. Montrez que U et V
sont tous deux égaux au polynôme nul.

CORRECTION

Pour tout x > 0 et x 6= nπ pour tout n ∈ N, grâce à l’égalité précédente, on peut écrire

U(x) = − cosx

sinx
V (x) .

On en déduit que U a un nombre infini de racines : notamment, pour tout k ∈ N, le nombre réel x = π/2+kπ
est une racine de U . Par le théorème fondamental de l’algèbre, U est donc le polynôme nul. Un raisonnement
analogue montre que aussi V est le polynôme nul.

Exercice 9-9
On définit une suite de polynômes P0 = 2, P1 = X et Pn+2 = XPn+1 − Pn.

1. Déterminer le degré et le coefficient dominant de Pn.
2. Montrer que pour tout z ∈ C∗, Pn(z + 1

z ) = zn + 1
zn .

3. Soit θ ∈ R. Calculer Pn(2 cos θ).
4. Donner les racines de Pn.

CORRECTION

1. Pour n ∈ N, n ≥ 1 on note H(n) la proposition : Pn est de degré n et son coefficient dominant est 1.
On calcule P2 = X2 − 2. Les propositions H(1) et H(2) sont vraies. Soit n ∈ N, n ≥ 2 et supposons
H(k) vraie pour tout k ≤ n. Le degré de XPn est donc n + 1 et le degré de Pn−1 est n − 1, donc le
degré de Pn+1 est n+ 1. Le coefficient dominant de Pn+1 est celui de XPn donc c’est 1. On en déduit
que H(n+ 1) est vraie et donc la propriété est vraie pour tout n ≥ 1.
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2. Pour n ∈ N, n ≥ 1 on note A(n) la proposition : “pour tout z ∈ C∗, Pn(z + 1
z ) = zn + 1

zn .”
Les propositions A(1) et A(2) sont vraies. Soit n ∈ N, n ≥ 2 et supposons A(k) vraie pour tout k ≤ n.
On calcule

Pn+1(z +
1

z
) = (z +

1

z
)Pn(z +

1

z
)− Pn−1(z +

1

z
)

= (z +
1

z
)(zn +

1

zn
)− (zn−1 +

1

zn−1
)

= zn+1 + zn−1 +
1

zn−1
+

1

zn+1
− (zn−1 +

1

zn−1
)

= zn+1 +
1

zn+1
.

On en déduit que A(n+ 1) est vraie et donc la propriété est vraie pour tout n ≥ 1.

3. Pour n ∈ N, on note B(n) la proposition : “Pn(2 cos θ) = 2 cos(nθ)”
Les propositions B(0) et B(1) sont vraies. Soit n ∈ N, n ≥ 1 et supposons B(k) vraie pour tout k ≤ n.
On calcule

Pn+1(2 cos θ) = (2 cos θ)Pn(2 cos θ)− Pn−1(2 cos θ)

= 2(cos θ)2 cos(nθ)− 2 cos(n− 1)θ

= 2(cos θ)2 cos(nθ)− 2 cos(nθ − θ)
= 2(cos θ)2 cos(nθ)− 2 cos(nθ) cos θ − 2 sin(nθ) sin θ

= 2 cos((n+ 1)θ)

On en déduit que B(n+ 1) est vraie et donc la propriété est vraie pour tout n ∈ N.
4. Puisque Pn est de degré n et Pn(2 cos θ) = 2 cos(nθ), on déduit que ses racines (pour n ≥ 1) sont les

réels xk = 2 cos( π2n + 2kπ
n ) pour k = 0, 1 . . . , n− 1.

Exercice 9-10

1. Soient P1, P2 et Q trois polynômes. Montrer que P1 − P2 divise Q(P1)−Q(P2).

2. Soit P un polynôme. Montrer que P (X)−X divise P (P (X))−X.

CORRECTION

1. Ça suffit de montrer que, pour tout n ∈ N, P1 − P2 divise
(
P1

)n − (P2

)n. Pour n = 0, la dernière
expression est le polynôme nul, donc il n’y a rien a montrer. Pour n ≥ 1, cela est une conséquence
immédiate du fait que

Xn − Y n = (X − Y )
(
Xn−1 +Xn−2Y + . . .+Xn−1−kY k + . . .+XY n−2 + Y n−1

)
.

2. On peut écrire
P
(
P (X)

)
−X =

(
P
(
P (X)

)
− P (X)

)
+
(
P (X)−X

)
.

Bien sûr, P (X) −X divise soi-même. D’autre côté, P (X) −X divise aussi P
(
P (X)

)
− P (X), par le

point précédent (l’appliquer avec Q = P , P1 = P et P2(X) = X).

Exercice 9-11
Pour chacun des polynômes suivants, dresser la liste complète des polynômes le divisant dans l’anneau de
polynômes précisé :
1. X + 1 dans R[X] 2. X2 − 1 dans R[X] 3. X2 + 1 dans C[X] 4. X2 + 1 dans R[X]
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CORRECTION

1. 1, X + 1.

2. 1,X − 1, X + 1, X2 − 1.

3. 1, X − i, X + i, X2 + 1.

4. 1, X2 + 1.

Exercice 9-12 Soit n ≥ 1 un entier.

1. Déterminer le reste de la division euclidienne de X5n par X5 − 1.

2. En déduire le reste de la division euclidienne de X99 + 2X42 − 3X35 − 2X27 + 3 par X5 − 1.

CORRECTION

1. Après avoir calculer explicitement les cas n = 0 et n = 1, pour lesquels on a

1 = 0 · (X5 − 1) + 1 et X5 = 1 · (X5 − 1) + 1 ,

on va prouver par récurrence que le reste est toujours égal au polynôme constant 1.
Il suffit l’hérédité, l’initialisation ayant été faite pour n = 0. Soit donc n ≥ 1 ; on suppose qu’il existe
K ∈ R[X] tel que

X5n = K(X) (X5 − 1) + 1 .

On peut alors écrire X5(n+1) = X5X5n, d’où

X5(n+1) = X5
(
K(X) (X5 − 1) + 1

)
= X5K(X) (X5 − 1) + X5 = X5K(X) (X5 − 1) + X5 − 1 + 1

= (X5 − 1)
(
X5K(X) + 1

)
+ 1 .

L’hérédité est donc vérifiée. On en déduit que la propriété est vraie pour tout n ≥ 0.

2. Comme 99 ≡ 4 [5], 42 ≡ 2 [5], 35 ≡ 0 [5] et 27 ≡ 2 [5], de la question précédente on trouve que le reste
est X4 + 2X2 − 3 − 2X2 + 3 = X4.

Exercice 9-13
Soit P un polynôme de R[X]. On note R le reste de sa division euclidienne par X−7. Montrer que R = P (7).

CORRECTION
On écrit la division euclidienne de P par X − 7 : P = Q(X − 7) + R . On en déduit que R est de degré
0, donc une constante. On évalue les fonctions polynômiales x 7→ P (x) et x 7→ Q(x)(x − 7) + R en 7 et on
trouve P (7) = R.

Exercice 9-14
Soient a un nombre réel et n ≥ 1 un entier. On pose A = (X sin a+ cos a)n.
Déterminer le reste de la division euclidienne de A par X2 + 1.

CORRECTION

Soit An(X) := (X sin a+ cos a)n Un calcul direct montre que

A0(X) = 0 · (X2 + 1) + 1

A1(X) = 0 · (X2 + 1) +
(
X sin a + cos a

)
A2(X) = sin2 a (X2 + 1) +

(
X sin(2a) + cos(2a)

)
.
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Si on appelle le reste de la division Rn(X), on va alors montrer par récurrence que, pour tout n ≥ 0, on a

Rn(X) = X sin(na) + cos(na) .

L’initialisation est le cas n = 0, déjà traité ci-dessus. On montre l’hérédité. On suppose alors la propriété
connue pour un certain n ≥ 1 et on va la montrer pour n+ 1.

Pour cela, on écrit An+1(X) = An(X)
(
X sin a + cos a

)
: en utilisant l’hypothèse de récurrence, on voit

tout de suite que le reste de la division est donné par le produit Rn(X)
(
X sin a + cos a

)
. Si on calcule ce

produit, on trouve

Rn(X)
(
X sin a + cos a

)
= X2 sin a sin(na) + X

(
sin a cos(na) + cos a sin(na)

)
+ cos a cos(na)

= sin a sin(na) (X2 + 1) + X sin
(
(n+ a)a

)
+ cos a cos(na) − sin a sin(na)

= sin a sin(na) (X2 + 1) + X sin
(
(n+ a)a

)
+ cos

(
(n+ 1)a

)
.

On en déduit que le reste est donc bien

Rn+1(X) = X sin
(
(n+ a)a

)
+ cos

(
(n+ 1)a

)
,

comme voulu. L’hérédité est donc vérifiée. On peut alors affirmer que la propriété est vraie pour tout n ∈ N.

Exercice 9-15
Effectuer les divisions euclidiennes dans R[X] de
1. 3X5 + 4X2 + 1 par X2 + 2X + 3.
2. 3X5 + 2X4 −X2 + 1 par X3 +X + 2.

CORRECTION

1. 3X5 + 4X2 + 1 = (X2 + 2X + 3)(3X3 − 6X + 3X + 16)− 41X − 47.
2. 3X5 + 2X4 −X2 + 1 = (X3 +X + 2)(3X2 + 2X − 3)− 9X2 −X + 7.

Exercice 9-16
Soit P (X) = X4 − 5X3 + 8X2 − 10X + 12 et Q(X) = X4 + X2 − 2. Déterminer le PGCD de P et Q puis
déterminer deux polynômes U et V tels que PU +QV = PGCD(P,Q).

CORRECTION

On utilise l’algorithme d’Euclide :

P (X) = 1 ·Q(X) −
(
5X3 − 7X2 + 10X − 14

)
Q(X) = =

1

25

(
5X + 7

)
·
(
5X3 − 7X2 + 10X − 14

)
+

24

25

(
X2 + 2

)
5X3 − 7X2 + 10X − 14 =

(
5X − 7

) (
X2 + 2

)
.

Donc PGCD(P,Q) = X2 + 2. En remontant les égalités précédentes, on trouve

X2 + 2 =
25

24
Q(X) − 1

24

(
5X + 7

)
·
(
5X3 − 7X2 + 10X − 14

)
=

25

24
Q(X) +

1

24

(
5X + 7

)
·
(
P (X)−Q(X)

)
=

1

24

(
5X + 7

)
· P (X) − 1

24

(
5X − 18

)
Q(X) .

Donc U(X) = (1/24)
(
5X + 7

)
et V (X) = −(1/24)

(
5X − 18

)
.

Exercice 9-17
Factoriser les polynômes suivants en polynômes irréductibles :
1. Xn +Xn−1 + · · ·X + 1 dans C[X] 2. X11 + 211 dans C[X] puis dans R[X]
3. X4 + 4 dans C[X] puis dans R[X] 4. X4 − j dans C[X], où j = exp(2iπ/3)
5. X8 +X4 + 1 dans R[X] 6. X5 − 1 dans R[X]
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CORRECTION

1. Puisque Xn+1−1 = (X−1)(Xn+Xn−1 + · · ·X+ 1), les racines de Xn+Xn−1 + · · ·X+ 1 sont toutes
les racines n+ 1-ièmes de l’unité sauf 1. On peut donc factoriser sur C[X] :

Xn +Xn−1 + · · ·X + 1 =

n−1∏
k=1

(X − e
i2kπ
n+1 ).

2. X11 + 211 a une unique racine réelle : −2, la factorisation dans R[X] en facteurs irréductibles est

X11 + 211 = (X + 2)(X10 − 2X9 + 4X8 − . . .+ 210).

Dans C[X] on calcule les racines 11-ièmes de −211 on trouve X11 + 211 =
∏11
k=0(X − 2e

i(1+2k)π
11 ).

3. Dans R[X] on a la factorisation X4 + 4 = (X2 + 2)2− 4X2 = (X2 + 2X + 2)(X2− 2X + 2). Dans C[X]
on a X4 + 4 = (X − 1− i)(X − 1 + i)(X + 1− i)(X + 1 + i).

4. On calcule les 4 racines 4-ièmes de j et on obtient

X4 − j =

3∏
k=0

(X − ei(
π
6
+ kπ

2
)) = (X −

√
3

2
− i1

2
)(X +

√
3

2
+ i

1

2
)(X +

1

2
− i
√

3

2
)(X − 1

2
+ i

√
3

2
).

5. X8 +X4 + 1 = (X4 + 1)2 − x4 = (X4 + 1−X2)(X4 + 1 +X2).
D’autre part X4 + 1 + X2 = (X2 + 1)2 − X2 = (X2 + 1 + X)(X2 + 1 − X) et X4 + 1 − X2 =
(X2 + 1)2 − 3X2 = (X2 + 1−

√
3X)(X2 + 1 +

√
3). D’où

X8 +X4 + 1 = (X2 + 1 +X)(X2 + 1−X)(X2 + 1−
√

3X)(X2 + 1 +
√

3).

Ces quatres facteurs sont irréductibles dans R[X] (discriminant négatif).
6. X5− 1 a une unique racine réelle X = 1. Les autres racines sont conjuguées On factorise d’abord dans

R[X] en facteurs irr2́ à 2. On calule les racines 5-ièmes de 1 et on regroupe les facteurs de la forme
(X − z)(X − z̄). On obtient finalement

X5 − 1 = (X − 1)

(
X2 +

(
1

2
+

√
5

2

)
X + 1

)(
X2 +

(
1

2
−
√

5

2

)
X + 1

)
.

Exercice 9-18
Calculer le pgcd des couples de polynômes (P,Q) suivants :

1. P = 6(X − 1)2(X + 2)3(X2 + 1)4 et Q = 15(X − 1)(X + 7)3(X2 + 1),
2. P = X7 + 2X6 −X − 2 et Q = X3 +X2 − 2X,
3. P = nXn+1 − (n+ 1)Xn + 1 et Q = X(X − 1)2(X − 2),
4. P = X5 −X4 +X3 −X2 +X − 1 et Q = X7 +X5 + 8X4 +X3 + 8X2 + 8.

CORRECTION

1. Les deux polynômes sont déjà décomposés en produit de facteurs irreductibles (sur R) : on a alors

PGCD(P,Q) = (X − 1) (X2 + 1) .

2. On voit facilement que

P (X) = X6 (X + 2) − (X + 2) = (X + 2) (X6 − 1) = (X + 2) (X3 − 1) (X3 + 1)

= (X + 2) (X − 1) (X2 +X + 1) (X + 1) (X2 −X + 1)

Q(X) = X (X2 +X − 2) = X (X + 2) (X − 1) .

On en déduit que PGCD(P,Q) = (X − 1) (X + 2).
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3. On a P (0) = 1 6= 0 et P (2) = (n − 1)2n + 1 6= 0, tandis que P (1) = 0. Il reste à voir si 1 est racine
double de P . Pour cela, on calcule

P ′(X) = n (n+ 1)Xn − n (n+ 1)Xn−1 .

Alors, si n = 1, on a P ′(1) 6= 0, d’où PGCD(P,Q) = (X − 1). Au contraire, si n ≥ 2 on trouve
P ′(1) = 0, et donc PGCD(P,Q) = (X − 1)2.

4. On pourrait utiliser l’algorithme d’Euclide. Par contre, ici c’est simple à voir que

P (X) = X4(X − 1) +X2(X − 1) + (X − 1) = (X − 1) (X4 +X2 + 1)

Q(X) = X3 (X4 +X2 + 1) + 8(X4 +X2 + 1) = (X4 +X2 + 1) (X3 + 8) .

À noter que ça n’est pas la décomposition en facteurs irréductibles de P et Q, mais c’est suffisant pour
calculer le PGCD : on a PGCD(P,Q) = X4 +X2 + 1.

Exercice 9-19
Soit P le polynôme réel : P = X6 + 4X5 + 8X4 + 10X3 +αX2 + 4X + 1. On suppose que −1 est une racine
de P .

1. Déterminer α.

2. Montrer que −1 est une racine double de P .

3. Montrer que j est une racine multiple de P .

4. Factoriser P , d’abord dans C[X] puis dans R[X].

CORRECTION

1. P (α) = 0 donc α = 8.

2. X6 + 4X5 + 8X4 + 10X3 + αX2 + 4X + 1 = (X + 1)2(X4 + 2X3 + 3X2 + 2X + 1)

3. j est une racine simple de X2 +X + 1 et on remarque que (X2 +X + 1)2 = X4 + 2X3 + 3X2 + 2X + 1,
donc j est racine double de P .

4. D’après la question ci-dessus on a la factorisation en irréductibles dans R[X] : P = (X + 1)2(X4 +
2X3 + 3X2 + 2X + 1) = (X + 1)2(X2 +X + 1)2 et dans C[X] on a P = (X + 1)2(X − j)2(X − j̄)2.

Exercice 9-20
Soit n ∈ N∗, on considère le polynôme à coefficients réels P = aXn+1 + bXn + c. Peut-on choisir a, b, c pour
que P admette 1 comme racine multiple ? Quel est alors l’ordre de cette racine ?

CORRECTION

Calculons P ′(X) = a(n+ 1)Xn + nbXn−1. Alors 1 est racine multiple de P si et seulement si P (1) = 0
et P ′(1) = 0 : ces deux conditions impliquent que

{
a+ b+ c = 0

(n+ 1)a+ nb = 0
=⇒


a = − n

n+ 1
b

c = − 1

n+ 1
b .

Alors, si n = 1, en posant b = −2 on a P (X) = X2 − 2X + 1 = (X − 1)2. Si n ≥ 2, en posant b = −(n+ 1)
comme avant, on a

P (X) = nXn+1 − (n+ 1)Xn + 1 et P ′(X) = n(n+ 1)Xn − n(n+ 1)Xn−1 .

La dérivée seconde est P ′′(X) = n2(n+1)Xn−1−n(n+1)(n−1)Xn−2, ce qui montre que P ′′(1) 6= 0. Donc,
1 est toujours une racine double.
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Exercice 9-21
Pour tout complexe a, on pose Pa = 2X3 + 3X2 + 6X + a ∈ C[X].

1. Calculer le PGCD de Pa et P ′a.

2. Pour quelles valeurs de a le polynôme Pa admet-il une racine double ? Pour chacune de ces valeurs,
décomposer Pa en produit de facteurs irréductibles dans C[X].

CORRECTION

1. P ′a = 6X2 + 6X + 6 = 6(X − j)(X − j2) avec j = e
i2π
3 . Donc PGCD(Pa, P

′
a) 6= 1 seulement si j ou

j2 sont parmi les racines de Pa. Par ailleurs j et j2 ne sont pas simultanément racine de Pa, sinon
X2 +X + 1 diviserai Pa ce qui n’est pas possible puisque Pa = (X2 +X + 1)(2X + 1) + 3X + a− 1 et
on voit bien que ce reste n’est nul pour aucune valeur de a. Si Pa(j) = 0 alors PGCD(Pa, P

′
a) = X − j

et si Pa(j2) = 0, PGCD(Pa, P
′
a) = X − j2.

2. Si Pa(j) = 0, j est donc racine double de Pa. Ce sera le cas si 2j3 + 3j2 + 6j + a = 0 donc si

a = −3j2 − 6j − 2 = −3(−1

2
− i
√

3

2
)− 6(−1

2
+ i

√
3

2
)− 2 =

5

2
− i3
√

3

2
.

De la même façon on trouve que j2 est racine double de Pa si a = −5
2 − i

3
√
3

2 .

Exercice 9-22
On considère l’équation suivante dans R[X] : (P ′)2 = 4P .

1. Déterminer toutes les solutions constantes de l’équation.

2. Soit P une solution non constante. Déterminer le degré de P , puis montrer que P possède au moins
une racine multiple.

3. Conclure.

CORRECTION

1. Si P est constant, alors P ′ est le polynôme nulle, et donc, pour avoir l’égalité, il faut forcement que
P ≡ 0 soit le polynôme nulle.

2. On pose degP = n ≥ 1. On a deg (P ′) = n−1, et donc il faut avoir 2(n−1) = n, ce qui donne n = 2.
D’autre côté, grâce à l’égalité, on a que (

P ′(X)
)2

= 4P (X) .

Alors, toute racine alpha de P est une racine aussi de P ′ et viceversa, et donc α est une racine double.
Maintenant, P ′ a degré égal à 1, donc il a une racine réelle, qui est donc la seule racine double de P .

3. Comme conséquence de la question précédente, on écrit P (X) = a (X−b)2, d’où P ′(X) = 2a (X−b).
De l’égalité précédente, on trouve

4a2(X − b)2 = 4a(X − b)2 .

Cela donne a = 1, tandis que b ∈ R peut être un réel quelconque.

Exercice 9-23
Soient α, β, γ les racines de l’équation X3 − 5X2 + 6X − 1. Déterminer la valeur exacte de

1

1− α
+

1

1− β
+

1

1− γ
.
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CORRECTION
Puisque X3 − 5X2 + 6X − 1 = (X − α)(X − β)(X − γ) on en déduit en développant αβ + αγ + βγ = 6 et
α+ β + γ = 5. De plus en évaluant en X = 1 on a aussi (1− α)(1− β)(1− γ) = 1. On calcule maintenant

1

1− α
+

1

1− β
+

1

1− γ
=

(1− α)(1− β) + (1− α)(1− γ) + (1− β)(1− γ)

(1− α)(1− β)(1− γ)

= 3− 2(α+ β + γ) + αβ + αγ + βγ

= 3− 2 · 5 + 6 = −1.

Exercice 9-24
Soit P = X3 + 3X2 + 2X + i ∈ C[X].

1. Prouver que P n’a pas de racine réelle.
2. Soient α, β et γ les trois racines complexes de P . Calculer α+ β + γ, α2 + β2 + γ2 et α3 + β3 + γ3.

CORRECTION

1. Supposons, par l’absurde, qu’il existe α ∈ R racine de P . Alors P (α) = 0, d’où on déduit

i = −2α− 3α2 − α3 ∈ R :

absurde. Donc P n’a pas de racines réelles.
2. On écrit

P (X) = (X − α) (X − β) (X − γ)

= X3 − (α+ β + γ)X2 + (αβ + αγ + βγ)X − αβγ .

Par identification, on trouve alors α+ β + γ = −3. Aussi, on a αβ + αγ + βγ = 2 et αβγ = −i.
De ces rélations, on déduit avant tout que

α2 + β2 + γ2 =
(
α+ β + γ

)2 − 2
(
αβ + αγ + βγ

)
= 9− 4 = 5 .

En plus, on a(
α+ β + γ

) (
αβ + αγ + βγ

)
= α2β + α2γ + αβ2 + αγ2 + β2γ + βγ2 + 3αβγ ,

ce qui donne
α2β + α2γ + αβ2 + αγ2 + β2γ + βγ2 = 3i− 6 .

Maintenant on calcule(
α+ β + γ

)3
= α3 + β3 + γ3 + 3

(
α2β + α2γ + αβ2 + αγ2 + β2γ + βγ2

)
+ 6αβγ ,

d’où on trouve
α3 + β3 + γ3 = (−3)3 − 3 (3i− 6) − 6 (−i) = −9 − 3i .

Exercice 9-101
Soient P et Q deux polynômes de R[X]. On suppose que Q divise P . Montrer que Q2 divise PQ′ − P ′Q.

CORRECTION
Il existe A ∈ R[X], deg (A) ≥ 1 tel que P = QA. On a donc P ′ = Q′A + QA′. On calcule PQ′ − P ′Q =
(QA)Q′ − (Q′A+QA′)Q = Q2A′. Puisque A 6= 0, alors Q2 divise bien PQ′ − P ′Q.

Exercice 9-102
Soit a et b deux réels distincts et P un polynôme de R[X]. On note λ et µ les restes respectifs de la division
euclidienne de P par X − a et par X − b.

1. Exprimer à l’aide de λ et µ le reste de la division euclidienne de P par (X − a)(X − b).
2. Qu’a-t-on montré dans le cas particulier où λ = µ = 0 ?

10



CORRECTION

1. On écrit P (X) = (X − a)Q(X) + λ : on a alors λ = P (a). De façon analogue, on a aussi µ = P (b).
Si maintenant on écrit

P (X) = (X − a) (X − b)Q1(X) + R(X) , avec R(X) = αX + β ,

en évaluant cette expression en a et b on trouve{
P (a) = λ = αa+ β

P (b) = µ = αb+ β

L’hypothèse a 6= b garantit qu’il existe une unique solution (α, β) de cette équation : des calculs explicits
montrent que

α =
µ− λ
a− b

et β =
µb+ λa

a− b
.

2. En particulier, si λ = µ = 0, on déduit que α = β = 0, c’est-à-dire R ≡ 0, et donc (X − a)(X − b)
divise P .

Exercice 9-103
On définit une suite de polynômes P0 = 0, P1 = 1 et Pn+2 = XPn+1 − Pn.

1. Montrer que pour tout n ∈ N, P 2
n+1 = 1 + PnPn+2.

2. En déduire que pour tout n ∈ N, Pn et Pn+1 sont premiers entre eux.
3. Etablir que pour tout (m,n) ∈ N∗ × N, on a :

Pm+n = PnPm+1 − Pn−1Pm .

4. Monter que (m,n) ∈ N∗ × N, on a :

Pgcd(Pm+n, Pn) = Pgcd(Pm, Pn) .

5. Conclure que Pgcd(Pm, Pn) = PPgcd(m,n).

CORRECTION

1. Pour n ∈ N on note H(n) la propriété : P 2
n+1 = 1 + PnPn+2.

On a P2 = XP1 − P0 = X et P 2
1 = 1 = 1 + 0 ·X, donc H(0) est vraie.

Soit n ∈ N et supposons H(k) vraie pour tout k ∈ N, k ≤ n. On calcule

1 + Pn+1Pn+3 = 1 + Pn+1(XPn+2 − Pn+1)

= 1 +XPn+1Pn+2 − P 2
n+1

= 1 +XPn+1(XPn+1 − Pn)− 1− Pn(XPn+1 − Pn)

= X2P 2
n+1 − 2XPnPn+1 + P 2

n

= (XPn+1 − Pn)2 = P 2
n+2.

La proposition H(n+ 1) est vraie et donc H(n) vraie pour tout n ∈ N.
2. Soit n ∈ N, puisque P 2

n+1−PnPn+2 = 1 le théorème de Bézout implique que Pn et Pn+1 sont premiers
entre eux.

3. Soit m ∈ N, m ≥ 1. Pour n ∈ N, n ≥ 1 on note A(n) la propriété : Pm+n = PnPm+1 − Pn−1Pm .

On a Pm+1 = 1Pm+1 − 0 · Pm, donc A(1) est vraie. Soit n ∈ N, n ≥ 1. On suppose A(k) vraie pour
tout 1 ≤ k ≤ n. On calcule

Pn+1Pm+1 − PnPm = (XPn − Pn−1)Pm+1 − PnPm
= X(Pm+n + Pn−1Pm)− Pn−1Pm+1 − PnPm
= XPm+n +XPn−1Pm − (Pm+n−1 + Pn−2Pm)− PnPm
= XPm+n − Pm+n−1 + (XPn−1 − Pn−2)Pm − PnPm
= XPm+n − Pm+n−1 = Pm+n+1.

La propriété A(n+ 1) est vraie et donc A(n) est vraie pour tout n ≥ 1.
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4. Notons Q = PGCD(Pn, Pm) et T = PGCD(Pm+n, Pn). D’après (3), Q | Pm+n et donc Q divise T .
D’autre part, puisque T | Pm+n et T | Pn, encore par (3), Q | Pn−1Pm. Mais Pn et Pn+1 sont premiers
entre eux, donc T est premier avec Pn−1 et alors par le lemme de Gauss T | Pm. On en déduit T | Q
et donc T = Q.

5. On déduit facilement de (4) que pour k, d ∈ N∗, (Pm+nk, Pn) = (Pm, Pn) et (Pdn, Pn) = Pn. On calcule
le pgcd(m,n) via l’algorithme d’Euclide :

m = nq1 + r1

n = r1q2 + r2
...

rk−1 = rkqk+1 + 0,

où rk est le dernier reste non nul (donc pgcd(m,n) = rk.) On a donc

pgcd(Pm, Pn) = pgcd(Pnq1+r1 , Pn) = pgcd(Pr1 , Pn) = pgcd(Pr1 , Pr2) = . . . = pgcd(Prk , Pqk+1rk) = Prk .

Exercice 9-104
Pour quelles valeurs de l’entier n ≥ 1 le polynôme Pn = X2n + Xn + 1 est-il divisible dans R[X] par
X2 +X + 1 ?

CORRECTION
Vu que X3 − 1 = (X − 1)(X2 +X + 1), on a que les racines complexes de X2 +X + 1 sont j = ei2π/3 et j.
Pour un théorème du cours, ça suffit de vérifier que j est racine aussi de Pn. Après avoir remarqué que

j3 = j
3

= 1 , j2 = −j − 1 et aussi j2 = j ,

on a que Pn(j) = j
n

+ jn + 1.
Trois cas sont alors possibles.

1. n ≡ 0 [3] : on a alors que jn = j
n

= 1, et donc Pn(j) = 3. Alors X2 +X + 1 ne divise pas Pn.

2. n ≡ 1 [3] : on a alors que jn = j et jn = j, d’où on trouve

Pn(j) = j + j + 1 = 0 .

Dans ce cas, X2 +X + 1 divise Pn.

3. n ≡ 2 [3] : on a alors que jn = j2 = j et jn = j
2

= j ; on en déduit (comme dans le cas précédent) que
X2 +X + 1 divise Pn.

Exercice 9-105
Soient m ≥ 1 et n ≥ 1 deux entiers. Calculer le PGCD des polynômes Xm − 1 et Xn − 1.

CORRECTION
On applique l’algorithme d’Euclide. On suppose par exemple n > m, et on écrit n = mq+r, avec 0 ≤ r < m.
Alors on a :

Xn − 1 = Xmp+r − 1 = Xr(Xmp − 1) +Xr − 1.

Le point crucial est que Xmp − 1 est divisible par Xm − 1. En effet, Xmp − 1 = (Xm − 1)(Xm(p−1) +
Xm((p−1)−1)+· · ·+Xm+1). Ainsi, pgcd(Xn−1, Xm−1) = pgcd(Xm−1, Xr−1).Mais puisque pgcd(n,m) =
pgcd(m, r), on en déduit finalement que pgcd(Xn − 1, Xm − 1) = Xpgcd(n,m) − 1.

Exercice 9-106
Pour tout n ∈ N∗, montrer la formule

n−1∏
k=0

(X2 − 2X cos(2kπ/n) + 1) = (Xn − 1)2.
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CORRECTION

On note que, pour tout k fixé entre 0 et n− 1, on a

2 cos(2kπ/n) = 2<
(
ei2kπ/n

)
= ei2kπ/n + e−i2kπ/n et 1 = ei2kπ/n e−i2kπ/n .

Donc on peut décomposer

X2 − 2X cos(2kπ/n) + 1 =
(
X − ei2kπ/n

) (
X − e−i2kπ/n

)
.

En d’autres termes, pour chaque k fixé, le terme X2− 2X cos(2kπ/n) + 1 s’écrit comme le produit entre une
racine n-ième de l’unité et son complexe conjugué. Mais son complexe conjugué est aussi une racine n-ième
de l’unité, et en faisant varier k on prend toutes les racines. On en déduit que

n−1∏
k=0

(X2 − 2X cos(2kπ/n) + 1) =
n−1∏
k=0

(
X − ei2kπ/n

) (
X − e−i2kπ/n

)
=

n−1∏
k=0

(
X − ei2kπ/n

) n−1∏
k=0

(
X − e−i2kπ/n

)

=

(
n−1∏
k=0

(
X − ei2kπ/n

))2

= (Xn − 1)2 .

Exercice 9-107
Pour n ≥ 1, on note Pn = (1 + iX)n − (1 − iX)n pour n ≥ 1. Factoriser le polynôme Pn et en déduire les

valeurs de
p∑

k=0

tan2( kπ
2p+1) et de

p−1∑
k=0

tan2(kπ2p ). On regroupera les termes dont les racines sont opposées.

CORRECTION

Exercice 9-108
Soit P ∈ C[X] tel que P =

n∑
i=0

aiX
i et ai = an−i,∀i ∈ N.

1. Montrer que si z ∈ C∗ est racine alors 1
z est racine.

2. Factoriser 6X4 − 35X3 + 62X2 − 35X + 6.

CORRECTION

1. On calcule

P (1/z) =

n∑
i=0

ai(1/z)
i =

n∑
i=0

ai
1

zi
=

1

zn

n∑
i=0

aiz
n−i ,

où on a calculé le dénominateur en commun. Maintenant, par hypothèse de symmétrie sur les coeffi-
cients, on peut écrire

n∑
i=0

aiz
n−i =

n∑
i=0

an−iz
n−i =

n∑
i=0

aiz
i = P (z) .

Donc on a trouvé que P (1/z) = P (z)/zn. Du moment que z est racine, P (z) = 0, et alors aussi
P (1/z) = 0.

2. On cherche une racine non-triviale ( 6= 0,±1) pour pouvoir appliquer le résultat précédent. On voit tout
de suite que 2 est racine du polynôme. On sait alors que aussi 1/2 l’est. Autrement dit, X−2 et 2X−1
divisent le polynôme donné. Par division euclidienne, on a

6X4 − 35X3 + 62X2 − 35X + 6 = (X − 2) (2X − 1) (3X2 − 10X + 3) .
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Maintenant, le polynôme 3X2 − 10X + 3 vérifie l’hypothèse de symmétrie précédente. C’est facile à
voir que 3 est une racine, et donc aussi 1/3. On en déduit que 3X2 − 10X + 3 = (X − 3) (3X − 1) (la
vérification est immédiate). Finalement, on trouve

6X4 − 35X3 + 62X2 − 35X + 6 = (X − 2) (2X − 1) (X − 3) (3X − 1) .

Exercice 9-109

Soit P ∈ R[X]. Montrer que P (X + 1) =

deg(P )∑
n=0

P (n)(X)

n!
.

CORRECTION
On écrit P (X) = a0 + a1X + a2X

2 + . . .+ adX
d. Alors

P (X + 1) =(a0 + a1X + a2X
2 + . . .+ adX

d)+

a1 + 2a2X + 3a3X
2 + . . .+ dadX

d−1+

a2 + 3a3X + . . .+

(
d

2

)
adX

d−2+

...
ad−1 + dadX+

ad.

Donc P (X + 1) = P (X) + P ′(X) +
P (2)(X)

2
+ . . .+

P (d)(X)

d
.

Exercice 9-110
Soit P ∈ C[X] non nul et d son degré. Pour n entier naturel, on définit un commme étant la somme (avec
multiplicité) des racines de P (n). Montrer que (un)0≤n≤d est une suite arithmétique.

CORRECTION

Soit P (X) = Xd + a1X
d−1 + . . .. Par les rélations coefficients- racines, on sais que u0 = a1. De façon

analogue, P ′(X) dXd−1 +a1(d− 1)Xd−2 + . . ., d’où on a u1 = a1 (d− 1)/d. De la dérivée seconde, on trouve
u2 = a1 (d− 2)/d. En général, pour tout k ∈ [0, d], on a

uk = a1
d− k
d

.

Donc, on calcule

uk−1 − uk = a1
d− k + 1

d
− a1

d− k
d

=
a1
d

(d− k + 1− d+ k) =
a1
d
,

qui est constant en k.

Exercice 9-111
Soit P = X4+12X−5. Décomposer ce polynôme en facteurs irréductibles dans R[X], en sachant qu’il admet
deux racines complexes dont la somme vaut 2.

CORRECTION
Notons a, b ∈ R les deux racines dont la somme vaut 2. Alors il existe c, d ∈ R tels que P = (X − a)(X −
b)(X2 + cX + d) = (X2− 2X + ab)(X2 + cX + d). On développant et en identifiant les coefficients on trouve
c = 2, d = 4− ab et 2ab− 2d = 12. On en déduit ab = 5 et d = −1. On a finalement

P = (X2 − 2X + 5)(X2 + 2X − 1) = (X2 − 2X + 5)(X + 1−
√

2)(X + 1 +
√

2).
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Exercice 9-112
Cet exercice a pour objet la détermination de tous les polynômes P ∈ R[X] qui satisfont à l’identité (∗) :

(X + 3)P (X) = XP (X + 1).

1. Soit P un polynôme vérifiant (∗). Montrer qu’il existe un polynôme Q ∈ R[X] tel que P = XQ.
2. Déterminer Q(−1) puis Q(−2).
3. En déduire que P est nécessairement de la forme aXm(X + 1)n(X + 2)p avec a ∈ R et m, n, p ∈ N∗.
4. Démontrer finalement que P vérifie (∗) si et seulement s’il existe a ∈ R tel que P = aX(X+ 1)(X+ 2).

CORRECTION

1. De (∗), on trouve tout de suite que 3P (0) = 0, donc 0 est une racine de P , et alors P (X) = X Q(X),
pour un certain polynôme Q.

2. La rélation (∗) devient alors (∗∗) :

(X + 3)X Q(X) = X (X + 1)Q(X + 1) .

Le polynôme à droite s’annulle si calculé en −1, d’où Q(−1) = 0 (parce que le membre de gauche aussi
doit s’annuler). En utilisant cette dernière propriété, le membre de droite s’annulle aussi si calculé en
−2, d’où Q(−2) = 0 (parce que le membre de gauche aussi doit s’annuler).

3. De la question précédente, on déduit que X + 1 et X + 2 divisent Q, et donc aussi P . On peut alors
écrire

P (X) = aXm (X + 1)n (X + 2)pR(X) ,

avec a ∈ R et m, n, p ∈ N \ {0} et R ∈ R[X] unitaire. Aussi, on peut supposer que X, X + 1 et X + 2
ne divisent pas R. La rélation (∗) devient alors

(X + 3) aXm (X + 1)n (X + 2)pR(X) = X a (X + 1)m (X + 2)n (X + 3)pR(X + 1) (1)

L’égalité précédente implique déjà que m = 1 (à cause des puissances de X), et alors n = 1 (puissances
de X + 1) et p = 1 (puissances de X + 2). Cela implique que X + 3 ne divise pas R, autrement dit que
−3 n’est pas racine de R, et donc de P non plus.
Il nous reste à prouver que R(X) = 1.
Maintenant, si α ∈ C, α 6= 0,−1,−2,−3 est une autre racine de P , donc α est une racine de R. De
l’égalité précédente, calculée en α, on trouve alors

0 = αa (α+ 1)m (α+ 2)n (α+ 3)pR(α+ 1) .

Cela implique R(α + 1) = 0, et donc α + 1 est une autre racine de R. Cela implique que α 6= −4 ; en
itérant (il faudrait faire une récurrence), on trouve que α 6= −k pour tout k ∈ N. D’autre côté, le même
argument montre que α+ k est une racine de R, pour tout k ∈ N. R aurait donc une infinité de racine,
et le théorème fondamental de l’algèbre impliquerait que R ≡ 0, d’où P ≡ 0 : absurde. L’absurde vient
de supposer que R admettait une racine α ∈ C différente de celles qu’on a déjà trouvées, et alors la
seule possibilité est que R ≡ 1 (on avait choisi R unitaire).

4. On a prouvé que, forcement, il faut avoir P (X) = aX (X + 1) (X + 2). D’autre côté, si P est de la
forme précédente, P vérifie (∗). La preuve est alors complète.

Exercice 9-113
Soit P (X) = X3 + aX2 + bX + c un polynôme complexe de racines α, β, γ. Calculer :

α

β + γ
+

β

α+ γ
+

γ

β + α
.

CORRECTION
Puisque X3 + aX2 + bX + c = (X −α)(X − β)(X − γ) on en déduit βγ + γα+αβ = b, −(α+ β + γ) = a et
αβγ = c. De ces trois identités on peut aussi en déduire α2 + β2 + γ2 = a2 − 2b. Finalement en mettant sur
le même dénominateur l’expression S = α

β+γ + β
α+γ + γ

β+α et faisant apparaître les termes identifiés ci-dessus
on trouve

S =
a(a2 − 2b) + 3c

ab+ c
.
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