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Feuille 9 : Polynétmes

Exercice 9-1
On note P, = (1 + X)(1+ X?)(1 + X*)...(1 + X2"). Calculer les coefficients de P,.

CORRECTION
On montre par récurrence que les coefficients de P, sont tous égaux a 1. Pour n € N notons A(n) la
proposition “P, =14+ X + X2 + ...+ X2

Py =1+ X donc A(0) est vraie. Soit n € N, et supposons A(n) vraie. Alors

Pop1 =P+ X)) = B+ X" (14 X + X2 4.+ XY
=1+ X+ X2 X X xR e
1+ X+ X2 X

d’ott A(n + 1) est vraie. On en déduit que A(n) est vraie pour tout n € N.

Exercice 9-2
Déterminer tous les polynomes P de R[X] vérifiant les relations suivantes :

1. P(X%2+1)=P(X) 2. P(2X +1) = P(X)

CORRECTION
On cherche des polynémes P # 0. Donc, on pose deg P = n > 0.

1. En supposant I'égalité, et en regardant les degrés, on trouve que
deg P(X?+1) = 2n = n = deg P.

Cela implique que n = 0 et donc P(X) = a, avec a € R. D’autre c6té, si P est un polyndéme constant,
la rélation est facilement vérifiée.
Dong, la rélation est vérifiée pour tous et seuls les polynémes constants.

2. Soit P(X) = a, X" + A1 X" P+ ...+ a1 X + ag, avec a; € R pour tout 0 < j < n. Le coefficient
dominant du polynéme composé P(2X + 1) est alors a,,2". Par égalité, il faut alors a,, = a,2™; cela est
vrai si et seulement si 2" = 1, et donc si et seulement si n = 0 (autrement dit, ay = 0 pour tout k& > 1).
Encore une fois, on trouve que tous et seuls les polynémes qui vérifient I'égalité sont les polynémes
constants : il existe a € R tel que P(X) = a.

Exercice 9-3
Pour a,b réels, on note FPyj = X% 4+2aX3 4+ bX?+2X + 1. Pour quelles valeurs de a et b le polynome Puy
est-il le carré d’un polynéme de R[X]?

CORRECTION
Si P = Q2 est le carré d’un polynome, alors @ est nécessairement de degré 2, et son coefficient dominant
est égal & 1 ou est égal & —1. Dans le premier cas, on peut donc écrire Q(X) = X? + ¢X + d. On a alors
Q*(X) = X*4+2cX3+ (2d+c?) X% +2cd X +d?. Par identification, on doit avoir 2¢ = 2a, 2d+c? = b, 2cd = 2
et d>=1.0n trouvedonc c=aet d==41.Sid=1,alorsc=1,et donca=1et b=3.Sid= —1, alors
c=—1,a=—1et b= —1. Les deux solutions sont donc P;(X) = X* +2X3+3X%2+2X +1 = (X2 + X +1)?
et Po(X)=X*—-2X3 - X2 42X +1=(X?-X—1)%

Dans le deuxiéme cas, on écrit Q(X) = —R(X) avec R(X) = X? +cX +d, de sorte que Q*(X) = R*(X)
et on retrouve en réalité le cas précédent.



Exercice 9-4
On considére I'équation suivante dans C[X]: P(2X) = P/(X)P"(X).
1. On note P une solution non nulle de cette équation, d son degré et a son coefficient dominant.
a) Quel est le degré de P(2X)? De P'P”? En déduire la valeur de 4.
b) Quel est le coefficient dominant de P(2X)? De P'P”? En déduire la valeur de a.
c) Déterminer P.

2. Conclure.

CORRECTION

1. Soient 6 = deg P > 0 et a € C le coefficient dominant de P.

a) deg P(2X) = 6, tandis que deg P’ = 6 — 1 et deg P” = 6 — 2. Donc deg (P'P") = 26 — 3. Il faut
donc 6 = 26 — 3, qui implique § = 3.

b) En vue de la question précédente, le coefficient dominant de P(2X) est 8a, celui de P’ est 3a et
celui de P" est 6a. Le coefficient dominant de P'P" est alors 3a - 6a = 18a? : pour avoir I'égaliteé,
il faut donc que 8a = 18a?, c’est-a-dire

a(9a—4) = 0.

La solution a = 0 n’est pas acceptable (sinon, deg P < 3), et alors a = 4/9.

¢) De fagon analogue, si on écrit P(X) = aX3 + bX? + cX + d et on calcule explicitement les
polynomes P(2X) et (P'P")(X), on trouve les ¢galités

4b = 18ab
2¢ = 6ac + 4b?
d = 2bc,

qui impliquent b = c=d = 0.
2. Donc, le seul polynome qui vérifie 'égalité donnée est le polynome P(X) = (4/9)X3.

Exercice 9-5
Quelles sont les racines (dans C et dans R) des polynomes suivants ?

1. X3 —7X24+14X -8 2. X6-4 3. X4-13X2+36 4. X*+6X2%2+25.

CORRECTION

1. 1 est racine évidente de X3—7X?+14X —8. On factorise donc X3 —7X2+4+14X -8 = (X —1)(X?—-6X+8)
et on calcule les racines de X2 —6X + 8 qui sont 2 et 4.

2. X6 —4=(X3?2-4=(X3-2)(X3+2). Dans R chacun de ces facteurs a une unique racine, on trouve
donc deux racines réelles : ¥/2 et —+/2. Dans (C2 on cal(iu%e les racines 3-iémes _gie 2 et -2. On trouve au
total 6 racines complexes distinctes : \3@, \‘756%, J2e 5 , —\3/5, \3/56%, \B’/ie%.

3. On factorise Y2 — 13Y +36 = (Y — 9)(Y — 4) et on pour chaque racine y de ce polynéme on résout
X2 =y. On a donc que 3, —3,2, —2 sont les racines de X* — 13X?2 + 36.

4. On trouve les racines complexes de Y2 + 6Y + 25 qui sont y; = 3 + 4i et yo = 3 — 4i et on calcule les
racines carrées de chacun de ces deux nombres complexes. On trouve finalement 4 racines complexes
(non réelles) : 2+, —2 — 4,2 — i, —2 + 4.
Exercice 9-6
1. Soit m > 1 un entier. Quelles sont les racines (dans C et dans R) du polynéme X™ — 17

2. Soit n > 1 un entier. Quelles sont les racines (dans C et dans R) du polynéme X?+ X" 4. 4+ X +17



CORRECTION

1. Du chapitre sur les complexes, on sait que les racines complexes du polynéme X" —1 sont les m racines
m-iémes de 1'unité :
{627m' k/m } )
k=0,...,m—1
De c¢a, on déduit que :

— si m est impaire, la seule racine réelle est 1;
— si m est paire, il y a deux racines réeles, 1 et —1.

2. Soit Q(X) = X"+ X" 1+ ...+ X + 1. On sait que (X — 1)Q(X) = X" — 1. Grace & la question
précédente, on déduit que les racines complexes de ) sont

{627ri k/m}
k=1,...m—1

Pour les racines réelles :

— 8l n est paire, Q n’a pas de racines réelles ;

— si n est impaire, la seule racine réelle de Q) est —1.

Exercice 9-7
Montrer que le polynéme X163 4 24 X537 — 6 a au moins une racine sur R.

CORRECTION
On considére la fonction f: R — R définie par f(z) = '% 4 24257 — 6. Elle est continue sur son domaine.
Puisque f(0) = —6 et lim,_,o f(z) = +o0 par le théroéme des valeurs intermédiaires on déduit qu'’il existe

un réel x > 0 tel que f(x) = 0. Le polynéme X193 + 24X57 — 6 a donc au moins une racine sur R.

Exercice 9-8
Deux polynémes U et V' réels vérifient U(z)sin(x) + V(z) cos(z) = 0 pour tout = > 0. Montrez que U et V
sont tous deux égaux au polyndéme nul.

CORRECTION

Pour tout x > 0 et  # nm pour tout n € N, grace a ’égalité précédente, on peut écrire

Uz) = — 22y (z).

sin x

On en déduit que U a un nombre infini de racines : notamment, pour tout k € N, le nombre réel x = 7/2+ k7w
est une racine de U. Par le théoréme fondamental de ’algébre, U est donc le polyndéme nul. Un raisonnement
analogue montre que aussi V est le polynéme nul.

Exercice 9-9
On définit une suite de polynémes Py =2, Py = X et Pyo = X P11 — Py
1. Déterminer le degré et le coefficient dominant de P,.
2. Montrer que pour tout z € C*, P,(z + %) =z"+ %
3. Soit 6 € R. Calculer P,(2cos#).
4

. Donner les racines de P,.

CORRECTION

1. Pour n € N, n > 1 on note H(n) la proposition : P, est de degré n et son coefficient dominant est 1.
On calcule P, = X2 — 2. Les propositions H(1) et H(2) sont vraies. Soit n € N, n > 2 et supposons
H(k) vraie pour tout k < n. Le degré de X P, est donc n + 1 et le degré de P,_; est n — 1, donc le
degré de P,y1 est n+ 1. Le coefficient dominant de P, est celui de X P, donc c’est 1. On en déduit
que H(n + 1) est vraie et donc la propriété est vraie pour tout n > 1.



2. Pour n € N, n > 1 on note A(n) la proposition : “pour tout z € C*, Py(z + 1) = 2" + L.

Les propositions A(1) et A(2) sont vraies. Soit n € N, n > 2 et supposons A(k) vraie pour tout k < n.

On calcule
1 1 1 1
Pn+1(z+;):(Z+;)Pn(z+;)—Pn—1(z+;)
1 1 L1
:(Z+;)(Zn+27)—(zn +z”_1)
1 1
_ on+l -1 —1
=TT oy T )
1
_ +1
=" +zn+1'

On en déduit que A(n + 1) est vraie et donc la propriété est vraie pour tout n > 1.

3. Pour n € N, on note B(n) la proposition : “P, (2 cosf) = 2 cos(nf)”

Les propositions B(0) et B(1) sont vraies. Soit n € N, n > 1 et supposons B(k) vraie pour tout k < n.
On calcule

Py+1(2cos0) = (2cos )P, (2cosf) — Pp,—1(2cosf)
= 2(cos#)2 cos(nh) — 2cos(n — 1)6
= 2(cos #)2 cos(nf) — 2 cos(nh — )
= 2(cos )2 cos(nf) — 2 cos(nf) cosf — 2sin(nh) sin ¢
= 2cos((n+1)0)

On en déduit que B(n + 1) est vraie et donc la propriété est vraie pour tout n € N.

4. Puisque P, est de degré n et P,(2cosf) = 2cos(n#), on déduit que ses racines (pour n > 1) sont les
réels x, = 2cos(g- + 2’“7“) pour k=0,1...,n—1.

Exercice 9-10
1. Soient Pj, P et @ trois polynémes. Montrer que P; — Py divise Q(P1) — Q(P2).
2. Soit P un polynéme. Montrer que P(X) — X divise P(P(X)) — X.

CORRECTION

1. Ca suffit de montrer que, pour tout n € N, P, — P divise (Pl)n — (Pg)n. Pour n = 0, la derniére
expression est le polynéome nul, donc il n’y a rien a montrer. Pour n > 1, cela est une conséquence
immeédiate du fait que

X" Y™ = (X —Y) (X"—l FXY 4 xRy Ry g Y”_1> .

2. On peut écrire

P(P(X)) - X = (P(P(X)) —P(X)) + (P(X) —X).

Bien str, P(X) — X divise soi-méme. D’autre coté, P(X) — X divise aussi P(P(X)) — P(X), par le
point précédent (appliquer avec @Q = P, Py = P et Po(X) = X).

Exercice 9-11
Pour chacun des polynoémes suivants, dresser la liste compléte des polynoémes le divisant dans ’anneau de
polyndémes précisé :

1. X +1 dans R[X] 2. X2 —1 dans R[X] 3. X? +1 dans C[X] 4. X? +1 dans R[X]



CORRECTION

1
2
3.
4

1L X+ 1

C1LX -1, X +1, X2 -1,
L, X —i, X +4, X?>+ 1.

o1, X241,

Exercice 9-12 Soit n > 1 un entier.

1. Déterminer le reste de la division euclidienne de X°" par X° — 1.

2. En déduire le reste de la division euclidienne de X% +2X42 — 3X3% — 2X?27 4 3 par X° — 1.
CORRECTION

1. Aprés avoir calculer explicitement les cas n = 0 et n = 1, pour lesquels on a

1=0-(X5-1)+1 et X5 =1-(X5-1)+1,

on va prouver par récurrence que le reste est toujours égal au polynéme constant 1.
11 suffit ’hérédité, 'initialisation ayant été faite pour n = 0. Soit donc n > 1; on suppose qu’il existe
K € R[X] tel que

X" = K(X)(X°—1) + 1.

On peut alors écrire X5+ = X5 X5 d’ou
X5+ — x5 (K(X) (X°—1) + 1)
= X°KX)(X°-1) 4+ X° = X°K(X)(X°-1) + X -1 +1
— (X5 1) <X5K(X) + 1) +1.

L’hérédité est donc vérifiée. On en déduit que la propriété est vraie pour tout n > 0.

. Comme 99 =4 [5],42 =2 [5], 35 = 0 [5] et 27 = 2 [5], de la question précédente on trouve que le reste

est X% +2X2 — 3 —2X2 +3 = X4

Exercice 9-13
Soit P un polynéme de R[X]. On note R le reste de sa division euclidienne par X —7. Montrer que R = P(7).

CORRECTION
On écrit la division euclidienne de P par X — 7 : P = Q(X —7) + R . On en déduit que R est de degré
0, donc une constante. On évalue les fonctions polynomiales z — P(x) et  — Q(z)(x —7) + R en 7 et on
trouve P(7) = R.

Exercice 9-14
Soient a un nombre réel et n > 1 un entier. On pose A = (X sina + cosa)™.
Déterminer le reste de la division euclidienne de A par X2 + 1.

CORRECTION

Soit A,(X) := (X sina + cosa)”™ Un calcul direct montre que

Ap(X) =
A (X)

(X2 +1) + 1

0-
0-(X%2+1) + (X sina + cosa)

Ag(X) = sin®a (X% +1) + (X sin(2a) + cos(2a)>.



Si on appelle le reste de la division R, (X), on va alors montrer par récurrence que, pour tout n > 0, on a
R, (X) = X sin(na) + cos(na).

L’initialisation est le cas n = 0, déja traité ci-dessus. On montre 1'hérédité. On suppose alors la propriété
connue pour un certain n > 1 et on va la montrer pour n + 1.

Pour cela, on écrit Anq1(X) = Ap(X) (X sina + cosa) : en utilisant ’hypotheése de récurrence, on voit
tout de suite que le reste de la division est donné par le produit R, (X) (X sina + cos a). Si on calcule ce
produit, on trouve

R,(X) (Xsina + cosa) = X?sina sin(na) + X (sina cos(na) + cosa sin(na)) + cosa cos(na)
= sina sin(na) (X* +1) + X sin ((n + a)a) + cosa cos(na) — sina sin(na)

= sina sin(na) (X* 4+ 1) + X sin ((n + a)a) + cos ((n+ 1)a).
On en déduit que le reste est donc bien
Rpt1(X) = X sin ((n+ a)a) + cos ((n+ 1)a),
comme voulu. L’hérédité est donc vérifiée. On peut alors affirmer que la propriété est vraie pour tout n € N.

Exercice 9-15

Effectuer les divisions euclidiennes dans R[X] de
1.3X% 4+4X2%2 +1 par X2+ 2X +3.

2.3X° +2X4 - X2 41 par X34+ X +2.

CORRECTION
L 3X°+4X%2+1=(X2+2X +3)(3X3 —6X +3X +16) — 41X — 47.
2. 3X5 42X - X2 +1=(X?+ X +2)(3X?+2X —3) —9X? - X +T.

Exercice 9-16
Soit P(X) = X* —5X3 +8X2 — 10X + 12 et Q(X) = X* + X? — 2. Déterminer le PGCD de P et  puis
déterminer deux polynémes U et V tels que PU + QV = PGCD(P, Q).

CORRECTION

On utilise 'algorithme d’FEuclide :
P(X)=1-Q(X) — (5X* - 7X%+ 10X — 14)
QX) ==
5X° —7X7 +10X — 14

2—15(5X+7)-(5X3—7X2+10X—14) + g—:(xuz)
(X -7)(X*+2).

Donc PGCD(P,Q) = X? + 2. En remontant les égalités précédentes, on trouve
25 1
X?+2 = 91 QX)) = o5, (X +7)- (5X° —7X* +10X — 14)
25 1
= 20X — (65X A PX)—Q(X
51 QX) + 57 (X +7) - (P(X) - QX))
1

= 35 (5X+7) -P(X) — i(5X—18)Q(X).

Donc U(X) = (1/24)(5X 4+ 7) et V(X) = —(1/24)(5X — 18).

Exercice 9-17
Factoriser les polynémes suivants en polynémes irréductibles :

L X"+ X" 1 4+... X +1 dans C[X] 2. X1 + 21 dans C[X] puis dans R[X]
3. X%+ 4 dans C[X] puis dans R[X] 4. X* — j dans C[X], ou j = exp(2ir/3)
5. X8+ X% +1 dans R[X] 6. X° — 1 dans R[X]



CORRECTION

1. Puisque X" —1 = (X —1)(X"+ X" 1 +..- X +1), les racines de X"+ X"~ ! +... X 41 sont toutes
les racines n 4 1-iémes de I'unité sauf 1. On peut donc factoriser sur C[X] :

n—1
i2km

Xn+Xn_1+X+1:H(X—€n+1)
k=1

2. X1 4+ 211 3 une unique racine réelle : —2, la factorisation dans R[X] en facteurs irréductibles est

XU ol — (X +2)(X10 —2X% +4X8 — ... 4210).

i( )
Dans C[X] on calcule les racines 11-iémes de —2'! on trouve X! 4 21 = ,161:0()( — 26%).

3. Dans R[X] on a la factorisation X% +4 = (X?+2)2 —4X? = (X2 +2X +2)(X%2—-2X +2). Dans C[X]
onaXt+4=(X-1-)(X-1+)(X+1—-0)(X+1+1).

4. On calcule les 4 racines 4-iémes de j et on obtient

3
Xt j =[x -G+ = (x - V3 i})(X + V3 +z‘1)(X M ié)(X

V3
+z£).

2 2 2 2 2 2 2
k=0

1
2
5 X8+ X4+ 1=(X*+1)2 -2t = (X4 4+ 1 - XH (X + 1+ X?).

D’autre part X4 +1+ X2 = (X2 +1)?2 - X2 = (X2 4+ 1+ X)(X?2+1—-X)et X*4+1 - X2 =
(X2 +1)2-3X%2=(X2+1-v3X)(X2+1++3). Dou

X4+ X 1= (X2 414+ X)(X24+1-X)(X2+1 - V3X)(X?+1+3).

Ces quatres facteurs sont irréductibles dans R[X] (discriminant négatif).

6. X° — 1 a une unique racine réelle X = 1. Les autres racines sont conjuguées On factorise d’abord dans
R[X] en facteurs irr2 & 2. On calule les racines 5-iémes de 1 et on regroupe les facteurs de la forme
(X —2)(X — Z). On obtient finalement

1 5 1 5
XP-1=(X-1)( X%+ —+£ X+1| X%+ 1 5 X+1).
2 2 2 2
Exercice 9-18

Calculer le pged des couples de polynémes (P, Q) suivants :
L P=6(X —1)2(X+2)3(X2+1) et Q=15(X — 1)(X +7)3(X2+ 1),
2. P=X"+4+2X-X —2et Q=X3+X?2-2X,
3. P=nX""1—(n+1)X"+1et Q=X(X—-1)3(X-2),
4. P=X"—X*4+X3-X24+X—-1etQ=X"+X>+8X*+X34+8X2+38.

CORRECTION

1. Les deux polynémes sont déja décomposés en produit de facteurs irreductibles (sur R) : on a alors
PCCD(P,Q) = (X — 1) (X2 +1).
2. On voit facilement que

PX)=X(X42) - (X+2) = (X+2)(X-1) = (X +2)(X*-1)(X?+1)
= (X+2)(X -1 (X2 + X+ 1) (X +1)(X2-X+1)
QIX) = X(X?24+X-2) = X(X+2)(X-1).

On en déduit que PGCD(P, Q) = (X —1) (X + 2).



3.0naP0)=1#0et P(2) =(n—1)2"+1 # 0, tandis que P(1) = 0. Il reste a voir si 1 est racine
double de P. Pour cela, on calcule

P(X)=nn+1)X" —nn+1) X",

Alors, si n = 1, on a P/(1) # 0, d'ot PGCD(P,Q) = (X — 1). Au contraire, si n > 2 on trouve
P'(1) = 0, et donc PGCD(P, Q) = (X —1)2.

4. On pourrait utiliser 'algorithme d’Euclide. Par contre, ici c’est simple & voir que

PX)=X'X-D+X*X-D+(X-1) =X -1)(X*"+X2+1)
QX) = X3 (X' + X2+ 1) +8(X* + X2 +1) = (X' + X2 +1) (X3 +3).

A noter que ca n’est pas la décomposition en facteurs irréductibles de P et @, mais c’est suffisant pour
calculer le PGCD : on a PGCD(P, Q) = X* + X2 + 1.

Exercice 9-19
Soit P le polynéme réel : P = X% +4X° + 8X4 +10X3 + aX? 4+ 4X 4 1. On suppose que —1 est une racine
de P.

1. Déterminer a.

2. Montrer que —1 est une racine double de P.

3. Montrer que j est une racine multiple de P.

4. Factoriser P, d’abord dans C[X]| puis dans R[X].

CORRECTION

1. P(a) =0 donc o = 8.
2. X0+ 4X° +8X1+10X3 + aX? +4X +1= (X + 1)} (X' +2X3 +3X2 +2X +1)

3. j est une racine simple de X2+ X + 1 et on remarque que (X2 + X +1)2 = X4+ 2X3 4+ 3X2 42X +1,
donc j est racine double de P.

4. D’aprés la question ci-dessus on a la factorisation en irréductibles dans R[X] : P = (X + 1)%(X* +
2X3 +3X2+2X +1)= (X +1)2(X?2+ X +1)? et dans C[X] on a P = (X +1)? (X )2(X — )2

Exercice 9-20
Soit n € N*, on considére le polynéme & coefficients réels P = aX™*! 4+ bX™ + c. Peut-on choisir a, b, ¢ pour
que P admette 1 comme racine multiple 7 Quel est alors 'ordre de cette racine ?

CORRECTION
Calculons P'(X) = a(n+1)X" +nbX" 1. Alors 1 est racine multiple de P si et seulement si P(1) =0
et P'(1) =0 : ces deux conditions impliquent que

n
_ S b
a+b+c-0 a nii_l
(n+1)a+nb=0 c = —

b
n+1

Alors, sin =1, en posant b= —2 on a P(X) = X? —2X +1= (X —1)2. Sin > 2, en posant b = —(n + 1)
comine avant, on a

P(X) = nX" — (n+1)X" +1 et P(X) =nn+1)X" —n(n+1)X" 1.

La dérivée seconde est P"(X) = n?(n+1)X""! —n(n+1)(n—1)X""2, ce qui montre que P"(1) # 0. Donc,
1 est toujours une racine double.



Exercice 9-21
Pour tout complexe a, on pose P, = 2X3 4+ 3X? +6X +a € C[X].

1. Calculer le PGCD de P, et P..

2. Pour quelles valeurs de a le polynéme P, admet-il une racine double? Pour chacune de ces valeurs,
décomposer P, en produit de facteurs irréductibles dans C[X].

CORRECTION

1. Pl =6X%2+6X +6=06(X—j)(X —3j%) avec j = e's". Donc PGCD(P,, P)) # 1 seulement si j ou
42 sont parmi les racines de P,. Par ailleurs j et j? ne sont pas simultanément racine de P,, sinon
X2 4+ X + 1 diviserai P, ce qui n’est pas possible puisque P, = (X2 4+ X +1)(2X +1)+3X +a—1et
on voit bien que ce reste n’est nul pour aucune valeur de a. Si P,(j) = 0 alors PGCD(P,, P.) =X —j
et si P,(j%) =0, PGCD(P,, P!) = X — j2.

2. Si P,(j) =0, j est donc racine double de P,. Ce sera le cas si 2j2 + 352 4 65 + a = 0 donc si

1 V3 1 V3 5  3V3

=32 —6j—2=—-3(—= —i~) —6(—= i) —2="2" —i—~",
“=Te (=5 i)~ 65 i) 2 T2
De la méme facon on trouve que j2 est racine double de P, si a = f% — z%

Exercice 9-22
On considére 1'équation suivante dans R[X] : (P')? = 4P.

1. Déterminer toutes les solutions constantes de I’équation.

2. Soit P une solution non constante. Déterminer le degré de P, puis montrer que P posséde au moins
une racine multiple.

3. Conclure.

CORRECTION

1. Si P est constant, alors P’ est le polynome nulle, et donc, pour avoir 1’égalité, il faut forcement que
P = 0 soit le polynéme nulle.

2. On posedegP = n > 1. On a deg (P') = n—1, et donc il faut avoir 2(n—1) = n, ce qui donne n = 2.
D’autre coté, grace a I'égalité, on a que

(P’(X))2 — 4P(X).

Alors, toute racine alpha de P est une racine aussi de P’ et viceversa, et donc « est une racine double.
Maintenant, P’ a degré égal a 1, donc il a une racine réelle, qui est donc la seule racine double de P.

3. Comme conséquence de la question précédente, on écrit P(X) = a (X —b)?, d'ott P'(X) = 2a (X —b).
De I’égalité précédente, on trouve
4a*(X —b)? = 4a(X —b)2.

Cela donne a = 1, tandis que b € R peut étre un réel quelconque.

Exercice 9-23
Soient «, 3,7 les racines de I'équation X3 — 5X? 46X — 1. Déterminer la valeur exacte de
1 1 1

1—a+1—6+1—7'




CORRECTION
Puisque X? —5X? 46X — 1 = (X — a)(X — 8)(X —v) on en déduit en développant af + ay + By = 6 et
a+ 4+~ =05. De plus en évaluant en X =1 on a aussi (1 —a)(1 — 5)(1 —7) = 1. On calcule maintenant
L, 11 (-a(-p+i-a)i-9)+-§)0-1)
a1 51, A= a)(—H)1—7)
=3-2(a+B8+7v)+af+ay+ by
=3-2-5+6=—1.

Exercice 9-24
Soit P = X3+ 3X? 42X +i € C[X].

1. Prouver que P n’a pas de racine réelle.
2. Soient «, 3 et «y les trois racines complexes de P. Calculer oo + 3 + v, a® + 82 +v% et a3 + B3 + ~3.

CORRECTION

1. Supposons, par I’absurde, qu’il existe a € R racine de P. Alors P(a) = 0, d’ott on déduit
i=-2a-32—a® R :
absurde. Donc P n’a pas de racines réelles.
2. On écrit
PX) = (X —a)(X =) (X =)
= X> — (a+B+7)X% + (af+ay+B)X — afy.

Par identification, on trouve alors a + 8+~ = —3. Aussi, on a aff + ay+ Sy = 2 et afy = —i.
De ces rélations, on déduit avant tout que

2+ +7% = (a+8+7)° —2(B+ay+py) =9—4 = 5.
En plus, on a
(a+B8+7) (@B +ay+py) = a®B+a’y+af + oy + 5% + 57" + 30y,

ce qui donne
?B+aly+afi+ay? + 2y + 6y =3i—6.

Maintenant on calcule
(a+B+7)° = a®+ 8+ + 3(a®8+ay +af? +ay® + 2y + 572) + 6aBr,

d’ott on trouve
B+ 43 = (=33 —3(3i—6) —6(—i) = -9 — 3i.

Exercice 9-101
Soient P et @ deux polynomes de R[X]. On suppose que Q divise P. Montrer que Q? divise PQ' — P'Q.

CORRECTION
Il existe A € R[X], deg(A) > 1 tel que P = QA. On a donc P’ = Q’A+ QA’. On calcule PQ’' — P'Q =
(QA)Q — (Q'A+QANQ = Q*A’. Puisque A # 0, alors Q? divise bien PQ' — P'Q.

Exercice 9-102
Soit a et b deux réels distincts et P un polynome de R[X]. On note A et p les restes respectifs de la division
euclidienne de P par X —a et par X — b.

1. Exprimer a 'aide de A et u le reste de la division euclidienne de P par (X —a)(X —b).

2. Qu’a~t-on montré dans le cas particulier ot A=pu =07
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CORRECTION

1. On écrit P(X) = (X —a)Q(X) + X : on a alors A = P(a). De fagon analogue, on a aussi y = P(b).
Si maintenant on écrit

PX)=(X—-a)(X -0 Q:1(X) + R(X), avec R(X) = aX + 3,
en évaluant cette expression en a et b on trouve
Pla) = X = aa+p
{ Pb)=p=ab+p

L’hypothése a # b garantit qu'il existe une unique solution (a, 3) de cette équation : des calculs explicits
montrent que

W= A ub+ Aa
= t = —.
“ a—b ¢ “ a—2b
2. En particulier, si A = p = 0, on déduit que a = = 0, c’est-a-dire R = 0, et donc (X — a)(X —b)

divise P.

Exercice 9-103

On définit une suite de polynémes Py =0, Py =1 et Ppyo = X P11 — Py.
1. Montrer que pour tout n € N, PT%H =14 PpPo.
2. En déduire que pour tout n € N, P,, et P,11 sont premiers entre eux.
3. Etablir que pour tout (m,n) € N* x N, on a :

Pm+n:Pan+1_Pn—1Pm .
4. Monter que (m,n) € N* x N, on a :
Pgcd(Ppsn, Pn) = Pged(Pp, Py) .

5. Conclure que Pged(Pr, Pn) = Ppgcd(m,n)-

CORRECTION

1. Pour n € N on note H(n) la propriété : PT%H =1+ P,P,1o.
OnaP,=XP —Py=Xet P2=1=1+0-X, donc H(0) est vraie.
Soit n € N et supposons H (k) vraie pour tout k € N, k£ < n. On calcule
1+ Pyi1Poy3 =1+ Py 1(X P2 — Popa)
=1+ XPy1Pyy2 — P2y
— 14+ XPoi1(XPas1 — Po) — 1= Po(XPoyr — Py)
= X?P?,, —2XP,Py1 + P
= (XPuy1 — Po)? = Py s
La proposition H(n + 1) est vraie et donc H(n) vraie pour tout n € N.

2. Soit n € N, puisque PT% 1 — PaPphi2 =1 le théoréme de Bézout implique que P, et P, 11 sont premiers
entre eux.

3. Soit m € N, m > 1. Pour n € N, n > 1 on note A(n) la propriété : Py = PyPpy1 — Po—1Py .
On a Ppi1 = 1Py — 0 Py, donc A(1) est vraie. Soit n € N, n > 1. On suppose A(k) vraie pour
tout 1 < k < n. On calcule

Pyi1Prit — PoPy = (XPy — Py1)Pry1 — PuPr,
= X(Ppin + Po1Pp) — Po-1Pmi1 — PuPr,
= XPpin + XPy_ 1P — (Poyn-1 + Pa_oPn) — P, P,
= XPpin — Prin-1+ (XPy_y — Pyo)Pm — PyPp,
= XPrmin — Pmin-1 = Point1.

La propriété A(n + 1) est vraie et donc A(n) est vraie pour tout n > 1.
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4. Notons Q = PGCD(P,, P,,) et T = PGCD(Py4n, Py). D’aprés (3), Q | Pntrn et donc @ divise T
D’autre part, puisque T | Pyqn et T | P, encore par (3), @ | P,—1P,,. Mais P, et P,y sont premiers
entre eux, donc T est premier avec P,_1 et alors par le lemme de Gauss T' | P,,. On en déduit T' | Q
et donc T = Q.

5. On déduit facilement de (4) que pour k,d € N*| (Py4nk, Pn) = (P, Pp) et (Pi, Py) = P,. On calcule
le pged(m, n) via lalgorithme d’Euclide :

m=nqi+171

n=riqz + 12

Th—1 = Tkqk+1 + 0,
ou 7 est le dernier reste non nul (donc pged(m,n) = r.) On a donc

pgcd(Pr,, Py) = pged(Prg, +r,, Pn) = pged(Pr,, P,) = pged(Fr,, Pr,) = ... = pged(Py, , P,

qk+1Tk

)=PF,,.

Exercice 9-104
Pour quelles valeurs de I'entier n > 1 le polynéme P, = X?* 4+ X" + 1 est-il divisible dans R[X] par
X2+ X+17

CORRECTION
Vu que X3 —1 = (X —1)(X%2+ X +1), on a que les racines complexes de X2 4 X + 1 sont j = ¢'27/3 et j.
Pour un théoréme du cours, ¢a suffit de vérifier que j est racine aussi de P,. Aprés avoir remarqué que

j3233:1, j2:—j—1 et aussi j2=3,
onaque Py(j) = j" + j" + 1.
Trois cas sont alors possibles.
1. n=03] : on a alors que j» = j" =1, et donc P,(j) = 3. Alors X2 + X + 1 ne divise pas P,.

2. n=1[3] : on a alors que j® = j et j = j, d’oi on trouve
P.(j) =j+j+1=0.

Dans ce cas, X2 + X + 1 divise P,.

3. n=2[3]:on aalors que j* =j2=jetj = 72 = j; on en déduit (comme dans le cas précédent) que

X2+ X +1 divise P,.

Exercice 9-105
Soient m > 1 et n > 1 deux entiers. Calculer le PGCD des polyndémes X — 1 et X" — 1.

CORRECTION
On applique l'algorithme d’Euclide. On suppose par exemple n > m, et on écrit n = mqg+r, avec 0 < r < m.
Alors on a :

X" —1=X"PT" 1= X"(X" —1)+ X" — 1.

Le point crucial est que X™ — 1 est divisible par X™ — 1. En effet, X" — 1 = (X" — 1)(X™r~1 4
Xmp=D=1y .. 4 X™41). Ainsi, pged(X"—1, X™—1) = pged(X™—1, X" —1). Mais puisque pged(n, m) =
pged(m,r), on en déduit finalement que pged(X™ — 1, X™ — 1) = xpeed(nm) _ 1,

Exercice 9-106
Pour tout n € N*, montrer la formule

n—1
[T (x? = 2X cos(2km/n) +1) = (X™ — 1),
k=0
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CORRECTION

On note que, pour tout k fixé entre 0 et n — 1, on a
2 cos(2km/n) = 2R (ei%ﬂ/n> _ gikm/n | miZkm/n o 1 _ gi2km/n —i2km/n
Donc on peut décomposer
X2 —2X cos(2kn/n) +1 = <X - e”k”/n) (X _ e*i%ﬂ/n> )

En d’autres termes, pour chaque k fixé, le terme X2 —2X cos(2k7/n) + 1 s’écrit comme le produit entre une
racine n-iéme de 'unité et son complexe conjugué. Mais son complexe conjugué est aussi une racine n-iéme
de 'unité, et en faisant varier k on prend toutes les racines. On en déduit que

n—1 n—1

[T (x* = 2X cos(2km/n) +1) = [] ( X - ei?kw/n) ( X - efmw/n)
k=0 k=0
n—1

o) B (-

k=0 k=

_ 2
— (H _ z2k7r/n ) )2 )
Exercice 9-107

Pour n > 1, on note P, = (1 —|— iX )" — (1 —4X)™ pour n > 1. Factoriser le polynome P, et en déduire les

) et de E tan?(4T). On regroupera les termes dont les racines sont opposées.

p
valeurs de > tan?(AT o

k=0

2p+1

CORRECTION

Exercice 9-108

n .
Soit P € C[X] tel que P = > a; X" et a; = ap—;, Vi € N.
=0

1. Montrer que si z € C* est racine alors % est racine.
2. Factoriser 6X% — 35X3 + 62X? — 35X + 6.

CORRECTION

1. On calcule

n n

P(1/z) = ai(1/2) = al-% = iZaizn_i,

=0 =0 1=0

ou on a calculé le dénominateur en commun. Maintenant, par hypothése de symmétrie sur les coeffi-

n n n
E a; 2"t = E ap—iz" "t = E a;z* = P(z)
i=0 i=0 i=0

Donc on a trouvé que P(1/z) = P(z)/z". Du moment que z est racine, P(z) = 0, et alors aussi
P(1/z)=0.

2. On cherche une racine non-triviale (# 0, £1) pour pouvoir appliquer le résultat précédent. On voit tout
de suite que 2 est racine du polynéme. On sait alors que aussi 1/2 'est. Autrement dit, X —2 et 2X —1
divisent le polynéme donné. Par division euclidienne, on a

cients, on peut écrire

6X* —35X3 +62X% —35X +6 = (X —2)(2X — 1) (3X% - 10X +3).
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Maintenant, le polynéme 3X? — 10X + 3 vérifie I'hypothése de symmeétrie précédente. Cest facile a
voir que 3 est une racine, et donc aussi 1/3. On en déduit que 3X2? — 10X +3 = (X —3)(3X — 1) (la
vérification est immédiate). Finalement, on trouve

6X1—35X3 +62X%-35X+6 = (X —2)(2X —1)(X —=3)(3X —1).

Exercice 9-109
deg(P)

Soit P € R[X]. Montrer que P(X +1) = ) _

n=0

PM(X)

n!

CORRECTION
On écrit P(X) = ag + a1 X 4+ aa X% + ... + ag X% Alors

P(X +1) =(a0 4+ a1.X + ax X2+ ... + agX )+
a1 4 202X + 3a3 X%+ ...+ dag X1+

d
as + 3azX + ...+ <2> adXd_2+

aqg—1 + dag X+

ad.
PO(X) PU(X)

DoncP(X+1):P(X)—l—P’(X)—I-T—i-...-I- ¥

Exercice 9-110
Soit P € C[X] non nul et d son degré. Pour n entier naturel, on définit u, commme étant la somme (avec
multiplicité) des racines de P™)_ Montrer que (un)o<n<d est une suite arithmétique.

CORRECTION

Soit P(X) = X% 4 a; X% ! + ... Par les rélations coefficients- racines, on sais que ug = a;. De facon
analogue, P'(X)dX% ' +a;(d—1)X92+... dottonau; = aj(d—1)/d. De la dérivée seconde, on trouve
ug = ay (d — 2)/d. En général, pour tout k € [0,d], on a

d—k
d

U = ai

Donc, on calcule

d—k+1 d—k al a1
— = — — 1— = —
d aj d d(d k+ d+k)) d’

Ug—1 — U = a1
qui est constant en k.

Exercice 9-111
Soit P = X*+12X —5. Décomposer ce polynéme en facteurs irréductibles dans R[X], en sachant qu’il admet
deux racines complexes dont la somme vaut 2.

CORRECTION

Notons a,b € R les deux racines dont la somme vaut 2. Alors il existe ¢,d € R tels que P = (X —a)(X —
W) (X% +cX +d) = (X% —2X +ab)(X%2+ cX +d). On développant et en identifiant les coefficients on trouve
c=2,d=4—abet 2ab — 2d = 12. On en déduit ab=>5 et d = —1. On a finalement

P=(X?-2X+45)(X242X - 1) = (X2 —2X +5)(X +1—V2)(X +1+V2).
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Exercice 9-112

Cet

W N =

4

exercice a pour objet la détermination de tous les polynémes P € R[X] qui satisfont a I'identité (x) :
(X+3)P(X)=XP(X +1).

. Soit P un polynome vérifiant (). Montrer qu’il existe un polynéme @ € R[X] tel que P = XQ.

. Déterminer Q(—1) puis Q(—2).

. En déduire que P est nécessairement de la forme aX™(X + 1)"(X 4 2)P avec a € R et m, n, p € N*,

. Démontrer finalement que P vérifie () si et seulement s'il existe a € R tel que P = aX (X +1)(X +2).

CORRECTION

1

. De (%), on trouve tout de suite que 3P(0) = 0, donc 0 est une racine de P, et alors P(X) = X Q(X),
pour un certain polynoéme Q).

La rélation (x) devient alors () :

(X+3)XQX)=XX+1)QX+1).
Le polynoéme a droite s’annulle si calculé en —1, d’ou Q(—1) = 0 (parce que le membre de gauche aussi
doit s’annuler). En utilisant cette derniére propriété, le membre de droite s’annulle aussi si calculé en
—2, d’ott Q(—2) = 0 (parce que le membre de gauche aussi doit s’annuler).
De la question précédente, on déduit que X + 1 et X 4 2 divisent @), et donc aussi P. On peut alors
écrire

PX)=aX"(X+1)"(X+2)PR(X),
avec a € Ret m, n, p € N\ {0} et R € R[X] unitaire. Aussi, on peut supposer que X, X +1et X +2
ne divisent pas R. La rélation () devient alors

(X+3)aX™(X+1)"(X+2PR(X) = Xa(X +1)" (X +2)" (X + 3P R(X + 1) (1)

L’égalité précédente implique déja que m = 1 (& cause des puissances de X), et alors n = 1 (puissances
de X +1) et p=1 (puissances de X + 2). Cela implique que X + 3 ne divise pas R, autrement dit que
—3 n’est pas racine de R, et donc de P non plus.

Il nous reste & prouver que R(X) = 1.

Maintenant, si « € C, a # 0, —1, —2, —3 est une autre racine de P, donc « est une racine de R. De
I’égalité précédente, calculée en «, on trouve alors

0=aala+1)"(a+2)"(a«+3)PR(a+1).

Cela implique R(av+ 1) = 0, et donc « + 1 est une autre racine de R. Cela implique que o # —4; en
itérant (il faudrait faire une récurrence), on trouve que o # —k pour tout k € N. D’autre coté, le méme
argument montre que « + k est une racine de R, pour tout k£ € N. R aurait donc une infinité de racine,
et le théoréme fondamental de ’algébre impliquerait que R = 0, d’ott P = 0 : absurde. L’absurde vient
de supposer que R admettait une racine a € C différente de celles qu'on a déja trouvées, et alors la
seule possibilité est que R =1 (on avait choisi R unitaire).

On a prouvé que, forcement, il faut avoir P(X) = a X (X + 1) (X + 2). D’autre coté, si P est de la
forme précédente, P vérifie (x). La preuve est alors compléte.

Exercice 9-113

Soit P(X) = X3 4+ aX? 4 bX + ¢ un polynéme complexe de racines o, 3,7. Calculer :
o
-
B+ a+y [Ha
CORRECTION

Puisque X3 +aX?+bX +c= (X —a)(X — 3)(X —7) on en déduit Sy +ya+af =b, —(a+B+7) =aet
afy = c. De ces trois identités on peut aussi en déduire a? + 32 + % = a? — 2b. Finalement en mettant sur

le méme dénominateur ’expression S = /BOKTV + 0%_7 + 5% et faisant apparaitre les termes identifiés ci-dessus
on trouve
a(a® — 2b) + 3¢
S = .
ab+c

15



