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Abstract
Alzheimer’s disease (AD) is a neuro-degenerative disease affecting more than 46
million people worldwide in 2015. AD is in part caused by the accumulation of Aβ

peptides inside the brain. These can aggregate to form insoluble oligomers or fibrils.
Oligomers have the capacity to interact with neurons via membrane receptors such as
prion proteins (PrPC). This interaction leads PrPC to be misfolded in oligomeric prion
proteins (PrPol), transmitting a death signal to neurons. In the present work, we aim
to describe the dynamics of Aβ assemblies and the accumulation of toxic oligomeric
species in the brain, by bringing together the fibrillation pathway of Aβ peptides in
one hand, and in the other hand Aβ oligomerization process and their interaction
with cellular prions, which has been reported to be involved in a cell-death signal
transduction. The model is based on Becker–Döring equations for the polymerization
process, with delayed differential equations accounting for structural rearrangement
of the different reactants. We analyse the well-posedness of the model and show
existence, uniqueness and non-negativity of solutions. Moreover, we demonstrate that
this model admits a non-trivial steady state, which is found to be globally stable
thanks to a Lyapunov function. We finally present numerical simulations and discuss
the impact of model parameters on the whole dynamics, which could constitute the
main targets for pharmaceutical industry.
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1 Introduction

1.1 Biological background

Alzheimer’s disease (AD) is a fatal incurable disease known as themost common form
of dementia [60–80% of dementia cases (Sosa-Ortiz et al. 2012)]. Affecting more
than 46 million people worldwide in 2015 (Prince et al. 2015), it causes progressive
neuron degeneration, leading to loss of mental functions such as memory, language or
behaviour. Although AD arises most of the time in the elderly community, this disease
is not considered as a normal consequence of ageing.

Causes of Alzheimer’s disease remain uncertain. Different hypotheses, such as
cholinergic (Francis et al. 1999), amyloid or Tau hypotheses, have been proposed to
explain AD appearance. The two last hypotheses seem to be currently the most plau-
sible ones. Indeed, accumulation of amyloid plaques inside the brain (Karran et al.
2011) and abnormalities of Tau protein are observed in diseased patients (Maccioni
et al. 2010). Although these two processes could evolve simultaneously (Small and
Duff 2008), it seems that the first biomarkers becoming abnormal in AD are the con-
centrations of amyloid Aβ-40 and Aβ-42 in patient cerebrospinal fluid (Jack et al.
2013). Aβ monomers are obtained from a specific cleavage of the amyloid precursor
protein APP, leading to their release and accumulation inside the brain (Nunan and
Small 2000). The major isoforms are composed of 39–43 amino acids, Aβ-40 being
the most common type of monomers, and Aβ-42 a plausible evidence of Alzheimer’s
disease (Bitan et al. 2003; Johnson et al. 2013). Aβ monomers could at least follow two
distinct polymerization pathways. The first one corresponds to the fibrillation pathway.
It is well described by the canonical nucleation elongation process (Lomakin et al.
1996) with the particularity that Aβ fibrils have been reported to be able to depolymer-
ize (Carulla et al. 2005) rendering each step of the fibrils elongation process reversible
(Fig. 1, blue part). The second pathway corresponds to Aβ oligomerization. As for
fibrillation, the oligomerization process follows a nucleation elongation mechanism
with the difference that the oligomerization pathway leads to the formation of highly
stable Aβ assemblies structurally distinct from Aβ fibrils (Nick et al. 2018; Barz
et al. 2017). Regarding the literature, several neurotoxic pathways not mutually exclu-
sive and all involving specifically Aβ oligomers have been proposed (Kessels et al.
2010; James 2013; Kandel et al. 2017). Recently one of these pathways, involving
the binding of Aβ oligomers to prion protein PrPC (its non-pathogenic monomeric
conformer), has been reported to be involved in a death-signal transduction into the
neurons through the oligomerization of PrPC (Kessels et al. 2010; Gimbel et al. 2010).
Even if the molecular mechanisms of this transduction signal are still unclear, the
oligomerization of PrPC (named here PrPol) has been reported to be part of the death
signal transduction (Cissé andMucke 2009; Laurén et al. 2009; Gimbel et al. 2010). In
terms of physical-chemistry, the interaction between PrPC and Aβ oligomers leading
to PrPol formation could be decomposed into two steps: the first step corresponds to
the formation of PrPC/Aβ complex (Freir et al. 2011; Gallion 2012). Then after a
delay (denoted τ in this work), corresponding to a structural rearrangement (Hilser
et al. 2012), the complex evolves to generate PrPC oligomerization.
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1.2 Mathematical background

These processes are challenging for biologists. Indeed, it is not easy to explain the
observed kinetic behaviours in experiments. Therefore an interdisciplinary collabora-
tion between mathematicians and biologists lead to a new mathematical model where
these considerations have been discussed and supported by biological assumptions
and observations.

While a number of studies focus either on aggregation of Aβ monomers [see for
instanceLomakin et al. (1997),Urbanc et al. (1999),Craft (2002),Achdou et al. (2013),
Bertsch et al. (2016)] or on PrPC proliferation [Greer et al. (2006), Prüss et al. (2006),
Engler et al. (2006), Calvez et al. (2009), Gabriel (2011), to cite a few], to the best of
our knowledge, only two mathematical models have been proposed to study Aβ/PrPC

interactions (Helal et al. 2014; Ciuperca et al. 2018). In the first one, authors describe
plausible in vivo interactions between Aβ oligomers and PrPC, but did not focus on
the whole process of polymerization (Helal et al. 2014). In the second article, authors
propose a complex model including Aβ polymerization and interactions with prion
(Ciuperca et al. 2018). However, this model assumes a continuous size for polymers, a
hypothesis generally made for large number of objects, but which can be controversial
for oligomers. Besides, because the model is based on partial differential equations,
its analysis can be more complicated.

1.3 Objectives of this work

We aim herein at building a model describing in vitro polymerization process of Aβ

monomers in fibrils or oligomers, and interactions with prion proteins, mechanisms
that seem to initiate development of Alzheimer’s disease. We base our model on
Becker–Döring equations (Becker and Döring 1935), assuming therefore a discrete
size of polymers.

Our paper is organized as follows:wefirst present themathematicalmodel proposed
to describe the differentmechanisms of interest.We then investigate its well-posedness
and show that the model admits a unique and globally stable steady state. We finally
present some numerical simulations and study the impact of model parameters on the
whole dynamics.

2 Mathematical modelling

2.1 Description and notations

Our model is built in an in vitro context, as most experimental data are obtained in
vitro. This means that no source or loss terms of any proteins involved in the system are
considered. As a consequence, the total mass of the system should remain constant.We
study evolution of Aβ monomers seeded at time t = 0 in an environment containing
PrPC.
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The model consists of two main parts: (1) polymerization process, including for-
mation of oligomers and fibrils and (2) interactions between oligomers and prion (Fig.
1).

During polymerization process, monomers can either form fibrils or proto-
oligomers. These can then grow by attaching a monomer, or lose one at a rate b f

for fibrils and b for proto-oligomers. Rates of polymerization depend on polymer size.
Indeed, we assume that longer polymers have more probability to polymerize. Proto-
oligomers can reach a maximal size i0, at which they become stable and can neither
polymerize nor depolymerize. They then are called oligomers. A small proportion μ

of oligomers are still able to split into two proto-oligomers of sizes i and i0 − i . This
process is not represented in Fig. 1 for clarity. Aβ oligomers can then be transported
to the amyloid plaque at a rate γ or form a complex with PrPC at a rate δ. This inter-
action takes an incompressible time τ during which PrPC is misfolded into PrPol. The
oligomer is released intact from the complex and can interact with another prion or be
transported to the plaque. We also add the possibility for PrPC to directly transform
into PrPol at a rate α. This process can include other misfolding mechanisms that we
are not aware of.

We assume that there is no fibril of infinite size, and therefore set i f as the maximal
size they can reach. Fibrils of each size are also transported in the amyloid plaque
at a rate γ f . As they are still able to depolymerize, monomers can escape the plaque
at a rate bp. All notations and parameters are reported in Table 1 along with their
description.

Fig. 1 Schematic representation of Aβ polymerization processes and interactions with PrPC prions. Orange
part (top left) corresponds tomonomer evolution. Blue part (left) is related to fibrillation process, while green
part (top) is related to oligomerization part. Finally pink box (top right corner) corresponds to Aβ/PrPC

interaction. All parameters, quantities and interactions are described in the main text (colour figure online)
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Table 1 Description of model variables and parameters

Parameter/Variable Definition

Monomer

c1(t) = c f ,1(t) Aβ monomer concentration

Oligomerization

i0 Maximal size of Aβ proto-oligomers

ci (t), i ∈ {2, . . . , i0 − 1} Size i proto-oligomer concentration

ci0 (t), cpl (t) Aβ oligomer and oligomer in plaque concentrations

ri , i ∈ {1, . . . , i0 − 1} Polymerization rate of size i proto-oligomers (or monomers)

b Depolymerization rate of proto-oligomers

γ Displacement rate of Aβ oligomers into the plaque

Ki0,i Fragmentation kernel for oligomers

μ Proportion of oligomer fragmentation

Fibrillation

i f Maximal size of Aβ fibrils

c f ,i (t), cpl,i (t), i ∈ {2, . . . , i f } Size i fibril and fibril in plaque concentrations

r f ,i , i ∈ {1, . . . , i f − 1} Polymerization rate of size i fibrils (or monomers)

b f , bp Depolymerization rates of fibrils and fibrils in plaque

γ f Displacement rate of Aβ fibrils into the plaque

Aβ/PrPC interaction

pc(t), pol (t), X(t) PrPC, PrPol and Aβ/PrPC complex concentrations

δ Reaction rate between Aβ oligomers and PrPC

τ Duration of Aβ and PrPC interaction

α Rate of direct transformation of PrPC into PrPol

2.2 Mathematical equations

Based on Becker–Döring equations (Becker and Döring 1935), the first part of our
model is as follows:

Monomers

c′
1(t) = −2(r1c1(t)

2 − bc2(t)) −
i0−2∑

i=2

(ri ci (t)c1(t) − bci+1(t)) − ri0−1ci0−1(t)c1(t)

− 2(r f ,1c1(t)
2 − b f c f ,2(t)) −

i f −1∑

j=2

(
r f ,i c f ,i (t)c1(t) − b f c f ,i+1(t)

)

+ 2bpcpl,2 +
i f −1∑

j=2

bpcpl,i+1(t), (1)

Proto-oligomers (i ∈ {2, . . . , i0 − 2})
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c′
i (t) = ri−1ci−1(t)c1(t) + bci+1(t) − ri ci (t)c1(t) − bci (t) + μKi0,i ci0(t), (2)

c′
i0−1(t) = ri0−2ci0−2(t)c1(t) − ri0−1ci0−1(t)c1(t) − bci0−1(t), (3)

Oligomers

c′
i0(t) = ri0−1ci0−1(t)c1(t) −

(
γ + μ

2

)
ci0(t) − δci0(t)pc(t) + δci0(t − τ)pc(t − τ),

(4)

Oligomers in plaque

c′
pl(t) = γ ci0(t), (5)

Fibrils ( j ∈ {2, . . . , i f − 1})
c′
f , j (t) = r f , j−1c f , j−1(t)c1(t) + b f c f , j+1(t)

− r f , j c f , j (t)c1(t) − b f c f , j (t) − γ f c f , j (t), (6)

c′
f ,i f (t) = r f ,i f −1c f ,i f −1(t)c1(t) − b f c f ,i f (t) − γ f c f ,i f (t), (7)

Fibrils in plaque ( j ∈ {2, . . . , i f − 1})
c′
pl, j (t) = bpcpl, j+1(t) − bpcpl, j (t) + γ f c f , j (t), (8)

c′
pl,i f (t) = −bpcpl,i f (t) + γ f c f ,i f (t), (9)

with t in [τ,+∞) for Eq. (4) and t in [0,+∞) for others. For t in [0, τ ), Eq. (4)
becomes:

c′
i0(t) = ri0−1ci0−1(t)c1(t) −

(
γ + μ

2

)
ci0(t) − δci0(t)pc(t). (10)

Initial conditions are the following:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c1(t = 0) = m > 0,
ci (t = 0) = 0, i ∈ {2, . . . , i0},
cpl(t = 0) = 0,
c f , j (t = 0) = 0, j ∈ {2, . . . , i f },
cpl, j (t = 0) = 0, j ∈ {2, . . . , i f },

(11)

which means that there are only monomers initially.
Equation (1) describes Aβ monomer evolution (orange part (top left) in Fig.

1), obtained by computing monomer gain and loss from every proto-oligomer and
fibril. Equation (2) governs proto-oligomer behaviour (green part (top) in Fig. 1).
Proto-oligomers of size i come from proto-oligomers of size i − 1 that have
attached a monomer (first term in Eq. (2)) or from proto-oligomers of size i + 1
that have lost a monomer [second term in Eq. (2)]. Similarly, proto-oligomers
of size i can attach or lose a monomer, and leave this compartment [third and
fourth terms in Eq. (2)]. The last term in Eq. (2) describes the fragmentation
process: oligomers can divide in two proto-oligomers of size lower than i0 − 1.
An extra equation is needed for proto-oligomers of size i0 − 1 [Eq. (3)] as
oligomers do not depolymerize and consequently no proto-oligomers of size i0 − 1
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come from an oligomer. Equation (4) describes oligomer evolution. Delayed terms
express oligomer release from a complex created τ units of time before. Finally,
Eq. (5) describes the evolution of oligomers in plaque while Eqs. (6)–(7) [respectively
Eqs. (8)–(9)] correspond to fibril dynamics (respectively fibrils in plaque) (blue part
(left) in Fig. 1).

The second part of the model concerns Aβ oligomers and PrPC interactions (pink
box (top right) in Fig. 1):

p′
c(t) = −δci0(t)pc(t) − α pc(t), (12)

p′
ol(t) = δci0(t − τ)pc(t − τ) + α pc(t), (13)

X ′(t) = δci0(t)pc(t) − δci0(t − τ)pc(t − τ), (14)

with t in [0,+∞) for Eq. (12) and t in [τ,+∞) for Eqs. (13)–(14).
Evolution of prion concentration is given by Eq. (12): PrPC prions either form a

complex with Aβ oligomer or directly transform into PrPol. Equations (13) and (14)
describe evolution of PrPol and complexes.

On [0, τ ), Eqs. (13)–(14) become:

p′
ol(t) = α pc(t),

X ′(t) = δci0(t)pc(t),

and initial conditions are the following:

⎧
⎨

⎩

pc(t = 0) = p > 0,
pol(t = 0) = 0,
X(t = 0) = 0,

(15)

meaning that only PrPC are present initially.
We should now verify whether the total mass remains constant over time. We can

actually divide this mass in two: Aβ polymer mass Q and prion mass Qp:

Q(t) = c1(t) +
i0∑

i=2

ici (t) +
i f∑

j=2

j(c f , j (t) + cp, j (t)) + i0(cpl(t) + X(t)), (16)

Qp(t) = mp(pc(t) + pol(t) + X(t)). (17)

Derivatives of these functions should be equal to zero:

Q′(t) = μci0(t)

(
i0−2∑

i=2

i Ki0,i − i0
2

)
,

Q′
p(t) = 0.
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Therefore, the fragmentation kernel should satisfy the following relation:

2
i0−2∑

i=2

i Ki0,i = i0. (18)

This condition describes the fact that the sumof all successive fragment sizes should be
equal to the initial size. Note that an oligomer can fragment either in proto-oligomers
of sizes i and i0 − i or in proto-oligomers of sizes i0 − i and i . These two possibilities
are taken into account thanks to the factor 2.

For instance, the following fragmentation kernel verifies relation (18) and guaran-
tees mass conservation with time:

Ki0,i = 1

i0 − 3
, i ∈ {2, . . . , i0 − 2}.

This fragmentation kernel follows an uniform distribution, meaning that all fragmen-
tations have the same probability to occur. As an example, this kernel has been used
to describe the splitting of prion fibrils in Prüss et al. (2006).

3 Model analysis

In this section, we focus on the mathematical analysis of the model. We first present
classical results of existence, uniqueness and non-negativity of solutions. We then
prove the existence of a unique and non-trivial steady state. Besides, with a Lyapunov
function, we show that it is globally stable, which constitutes our main result.

3.1 Existence, uniqueness and non-negativity of solutions

Proposition 1 System of Eqs. (1)–(14) admits a unique solution on [0,+∞). Besides,
provided that the initial conditions are non-negative, the solution remains non-
negative.

Proof We prove existence and uniqueness of solutions with the method of steps: we
start by proving existence, uniqueness and non-negativity on [0, τ ), then on [τ, 2τ),
and extend these results on intervals [nτ, (n + 1)τ ), for all n in N.

Let us note, for all t in [0,+∞):

Z(t) = t[c1(t), c2(t), . . . , ci0(t), cpl(t), c f ,2(t), . . . , c f ,i f (t), cpl,2(t), . . . , cpl,i f (t),

pc(t), pol(t), X(t)].

On [0, τ ), the system of Eqs. (1)–(14) can be written as Z ′(t) = H1(t, Z(t)), with
Z(0) = [m, c2(0) = 0, . . . , cpl,i f (0) = 0, p, 0, 0]. H1 is a polynomial function given
by:
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H1(Z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,1(Z)

r1Z2
1 − bZ2 − r2Z2Z1 + bZ3 + μKi0,2Zi0

...

ri−1Zi−1Z1 − bZi − ri Zi Z1 + bZi+1 + μKi0,i Zi0
...

ri0−2Zi0−2Z1 − bZi0−1 − ri0−1Zi0−1Z1
ri0−1Zi0−1Z1 − (γ + μ

2 )Zi0 − δZi0 Zi0+2i f
γ Zi0

r f ,1Z2
1 − b f Z2 − r f ,2Zi0+2Z1 + b f Zi0+3 − γ f Zi0+2

...

r f , j−1Zi0+ j−1Z1 − b f Zi0+ j − r f , j Zi0+ j Z1 + b f Zi0+ j+1 − γ f Zi0+ j
...

r f ,i f −1Zi0+i f −2Z1 − b f Zi0+i f − γ f Zi0+i f
−bpZi0+i f +1 + bpZi0+i f +2 + γ f Zi0+2

...

−bpZi0+i f + j−1 + bpZi0+i f + j + γ f Zi0+ j
...

−bpZi0+2i f −1 + γ f Zi0+ı f
−δZi0 Zi0+2i f − αZi0+2i f

αZi0+2i f
δZi0 Zi0+2i f

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

H1,1(Z) = − 2(r1Z
2
1 − cZ2) −

i0−2∑

i=2

(ri Zi Z1 − bZi+1) − ri0−1Zi0−1Z1

− 2(r f ,1Z
2
1 − b f Zi0+2) −

i f −1∑

j=2

(r f , j Zi0+ j + Z1 − bZi0+ j+1)

+ 2bpZi0+i f +1 +
i f −1∑

j=2

bpZi0+i f + j .

We can easily see that H1 is a locally Lipschitz continuous function with respect to Z .
The Cauchy–Lipschitz theorem gives local existence and uniqueness of solutions for
the system on [0, τ̃ ], for τ̃ less than or equal to τ . The global existence of solution on
[0, τ ) requires the solution to be bounded and non-negative on [0, τ ). One can easily
verifies that H1 is bounded on [0, τ ). To prove the non-negativity of the solution,
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we use the fact that an ODE system y′ = f (y) on R
n is called quasi-positive if the

condition
yi � 0, i �= k and yk = 0 �⇒ fk(y) � 0

is valid for all k in {1, . . . , n} (Prüss et al. 2006). In our case, the system of Eqs. (1)–(9)
is quasi-positive (for i in {2, . . . , i0 − 2} and j in {2, . . . , i f − 1}):

c1(t) = 0 �⇒ c′
1(t) = bc2(t) + b

∑i0−1
i=2 ci (t) + b f c f ,2(t) + bpcpl,2(t)

+∑i f
j=2

(
b f c f , j (t) + bpcpl, j (t)

)
� 0,

ci (t) = 0 �⇒ c′
i (t) = ri−1ci−1(t)c1(t) + bci+1(t) + μKi0,i ci0(t) � 0,

ci0−1(t) = 0 �⇒ c′
i0−1(t) = ri0−2ci0−2(t)c1(t) � 0,

ci0(t) = 0 �⇒ c′
i0
(t) = ri0−1ci0−1(t)c1(t) � 0,

cpl(t) = 0 �⇒ c′
pl(t) = γ ci0(t) � 0,

c f , j (t) = 0 �⇒ c′
f , j (t) = r f , j−1c f , j−1(t)c1(t) + b f c f , j+1(t) � 0,

c f ,i f (t) = 0 �⇒ c′
f ,i f

(t) = r f ,i f −1c f ,i f −1(t)c1(t) � 0,

cpl, j (t) = 0 �⇒ c′
pl, j (t) = bpcpl, j+1(t) + γ f c f , j (t) � 0,

cpl,i f (t) = 0 �⇒ c′
pl,i f

(t) = γ f c f ,i f (t) � 0.

Moreover, non-negativity of solutions of Eqs. (12)–(14) has been proven in (Ciu-
perca et al. 2018). Solutions on [0, τ̃ ) are bounded and non-negative on [0, τ ) and are
therefore global solutions on [0, τ ), and we further define Z(τ ) = limt→τ− Z(t).

On [τ, 2τ), the system of Eqs. (1)–(14) can be written as Z ′(t) = H2(t, Z(t), Z(t−
τ)), with initial conditions Z(τ ), and where H2 is a polynomial function. Because
Z(t − τ) is known from the previous step, H2 can be written as a function of Z(t)
only. Once again, it is a locally Lipschitz continuous function, bounded and non-
negative on [τ, 2τ). Therefore, the Cauchy–Lipschitz theorem gives existence and
uniqueness of solutions on [τ, 2τ).

We finally extend this result on intervals [nτ, (n + 1)τ ), for all n in N, and prove
existence, uniqueness and non-negativity of solution on [0,+∞). 	


3.2 Steady state

In this section we present our main result, concerning the steady state of the model.

Proposition 2 System of Eqs. (1)–(14) has a unique steady state, where all variables
are equal to zero, except for cpl and pol :

Z̄ = [c̄1, c̄2, . . . , c̄i0 , c̄pl , c̄ f ,2, . . . , c̄ f ,i f , c̄pl,2, . . . , c̄pl,i f , p̄c, p̄ol , X̄ ],
=

[
0, 0, . . . , 0,

Q

i0
, 0, . . . , 0, 0, . . . , 0,

Qp

mp
, 0, 0

]
. (19)

Besides, this steady state is globally stable.
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Proof We first define a reduced system, using mass Eqs. (16)–(17) and properties of
Eq. (14). Indeed, we can express cpl and pol as function of masses and other variables:

cpl = 1

i0

⎛

⎝Q − c1(t) −
i0∑

i=2

ici (t) −
i f∑

j=2

j
(
c f , j (t) + cpl, j (t)

) − i0X(t)

⎞

⎠ ,

(20)

pol(t) = Qp

mp
− (pc(t) + X(t)). (21)

Equation (14) can be written as:

X(t) = δ

∫ t

t−τ

ci0(s)pc(s)ds, (22)

for t in [τ,+∞). This formulation is obtained by integrating Eq. (14) on [τ,+∞) and
by replacing X(τ ) by its value obtained when we integrate Eq. (14) on [0, τ ).

We finally focus on the system of Eqs. (1)–(14), in which we remove equations
(5), (13) and (14). This reduced system has a unique trivial steady state. Equations
(20)–(22) give us the steady state for the whole system.

Steady state global stability is obtained through the following Lyapunov function:

V (Z) =
i0−1∑

i=1

ici (t) +
i f∑

j=2

j(c f , j (t) + cpl, j (t)) + (i0 − 1)ci0(t) + pc(t) + X(t)

+ μ

i0−2∑

i=2

i
Ki0,i

γ

(
Q

i0
− cpl(t)

)
+ (i0 − 1)

(
Qp

mp
− pol(t)

)
. (23)

A sketch of its construction is given below.
We define the general form of the Lyapunov function:

V (Z) =
jN∑

j=1

Dj (Z̄ j − Z j ) +
N∑

j= jN+1

Dj Z j ,

where N is the number of functions, Dj are positive coefficients to determine and Z̄
is the steady state we study. In this form, Z j with j in {1, . . . , jN } corresponds to
variables with a non-trivial steady state. In our case, these functions are thus cpl and
pol .

By construction, this Lyapunov function is equal to zero only at steady state and
is positive elsewhere. Indeed, we can note that each variable is upper-bounded, using
mass Eqs. (16)–(17). Specifically, cpl is upper-bounded by Q

i0
and pol by

Qp
mp

, corre-
sponding to the values of c̄pl and p̄ol .
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We now have to choose coefficients Dj so that V ′ is non-positive. Let us write the
V expression in our case:

V =
i0−1∑

i=1

Si ci (t) +
i f∑

j=1

Mjc f , j (t) +
i f∑

j=1

N jcpl, j (t)

︸ ︷︷ ︸
V1

+ D1

(
Q

i0
− cpl(t)

)
+ D2

(
Qp

mp
− pol(t)

)
+ D3X(t) + D4 pc(t) + D5ci0(t)

︸ ︷︷ ︸
V2

,

where Si , i in {1, . . . , i0 − 1}, Mj , N j , j in {2, . . . , i f }, and Dk , k in {1, . . . , 5} are
positive coefficients to determine, to obtain non-positive derivative of V .

Taking the V1 derivative, according to Eqs. (1)–(9) gives us:

V ′
1 = W1 + W2 + W3,

where W1 corresponds to the oligomerization process part, W2 to the fibrillation part
and W3 to the fibrillation in plaque part. W1 can be written as follows:

W1 =
i0−1∑

i=2

Si
(
Gi−1(t) − Gi (t) + μKi0,i ci0(t)

) + Si0−1Gi0−2(t)

− Si0−1ri0−1ci0−1(t)c1(t) − 2S1G1(t) − S1

i0−2∑

i=2

Gi (t) − S1ri0−1ci0−1(t)c1(t),

where Gi (t) = ri ci (t)c1(t) − bci+1(t), i ∈ {1, . . . , i0 − 2} and Gi0−1(t) =
ri0−1ci0−1(t)c1(t). With these notations, we obtain:

W1 = −ri0−1ci0−1(t)c1(t)(Si0−1 + S1) +
i0−1∑

i=2

SiμKi0,i ci0(t)

+
i0−2∑

i=1

Gi (t) (Si+1 − Si − S1) .

We take Si = i S1, for i in {2, . . . i0 − 1}.
W2 can be written as follows (denoting M1 = S1):

W2 =
i f −1∑

j=2

Mj
(
Fj−1(t) − Fj (t) − γ f c f , j (t)

) + Mi f Fi f −1(t) − Mi f γ f c f ,i f (t)

− 2S1F1(t) − S1

i f −1∑

j=2

Fj (t),
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where F1(t) = r f ,1c1(t)2−b f c f ,2(t) and Fi (t) = r f ,i c f ,i (t)c1(t)−b f c f ,i+1(t), i ∈
{2, . . . , i f − 1}. We then obtain:

W2 = −γ f

i f∑

j=2

Mjc f , j (t) +
i f −1∑

j=1

Fj (t)
(
Mj+1 − Mj − S1

)
.

In this case, we take Mj = j S1, for j in {2, . . . i f }.
W3 canbewritten as follows, denoting N1 = S1 andwith Pi (t) = −bpcp,i+1(t), i ∈

{1, . . . , i f − 1}:

W3 =
i f −1∑

j=2

N j
(
Pj−1(t) − Pj (t) + γ f c f , j (t)

) + Ni f Pi f −1(t) + Ni f γ f c f ,i f (t)

− 2S1P1(t) − S1

i f −1∑

j=2

Pj (t),

W3 = γ f

i f∑

j=2

N jc f , j (t) +
i f −1∑

j=1

Pj (t)
(
N j+1 − N j − S1

)
.

Once again, we take N j = j S1, for j in {2, . . . i f }.
Finally V ′

1 is:

V ′
1 = −ri0−1ci0−1(t)c1(t)(Si0−1 + S1) +

i0−1∑

i=2

SiμKi0,i ci0(t).

The derivative of V2 has the following expression:

V ′
2 = δci0(t)pc(t)(D3 − D4 − D5) + δci0(t − τ)pc(t − τ)(D5 − D2 − D3)

+ D5ri0−1ci0−1(t)c1(t) − ci0(t)
(
D5

(
γ + μ

2

)
+ γ D1

)
− α pc(t)(D2 + D4).

We choose D3 = D4 and D2 = D5 to ensure negativity of the two first terms.
We finally have the following expression for V ′, with the different choices made

for coefficient values:

V ′ = −ri0−1ci0−1(t)c1(t)(i0S1 − D5) + ci0(t)

×
(
S1μ

i0−1∑

i=2

i Ki0,i − D5

(
γ + μ

2

)
− D1γ

)

− D5δci0(t)pc(t) − D3δci0(t − τ)pc(t − τ) − α pc(t)(D2 + D4).

Let us recall that this derivative should be equal to zero at steady state and negative else-

where. To guarantee this, we finally choose D5 = (i0−1)S1 and D1 = μ
∑i0−1

i=2 i Ki0,i

γ
S1.
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Expression (23) is finally obtained by taking S1 = 1. By construction this function
is equal to zero at steady state and positive elsewhere, with a non-positive derivative.
One can easily verify that the derivative is equal to zero only at steady state. 	


We prove that this model admits a unique solution, which remains non-negative
provided that the initial conditions are non-negative. Moreover, we find a unique
steady state, which is globally stable. From a biological point a view, this means that
regardless of the initial conditions of the experiment, all monomers will eventually
polymerize into oligomers that will be transported in the amyloid plaque, while all
PrPC prions will be misfolded in PrPol prions.

In the following section, we focus on the global kinetics, to comprehend the role
and the impact of each parameter on the dynamics without any experimental data.

4 Numerical analysis

We perform a sensitivity analysis and different numerical simulations. We focus on
the impact of model parameters on the dynamics of prion proteins, as they might drive
the neuronal loss in Alzheimer’s disease, and is the new feature in this model.

4.1 Numerical simulations

First, we randomly sample 5000 parameter sets and simulate the model with each of
them. We arbitrarily set i0 = 20 and i f = 40, and choose ri = r f ,i = a × i as the
polymerization rate for proto-oligomers andfibrils,where i is the polymer size (number
of monomers it contains). Initial values for monomers and prions are respectively
m = 1 and p = 1. We keep a set of parameters for which all PrPC are misconformed
in PrPol. To prevent a direct transformation of PrPC in PrPol, we force α to take a
small value. Parameter values are the following, and the corresponding simulations
are displayed on Fig. 2. Note that these parameters should next be estimated with
experimental data, to determine optimal values and corresponding units. However, to
the best of our knowledge such data are still really challenging to obtain.

i0 = 20, i f = 40, a = 4.7113,
b = 3.0945, b f = 2.3194, bp = 3.6038,
γ = 0.0358, γ f = 0.9675, δ = 3.7945,
τ = 9.4082, μ = 0.0168, α = 0.001.

As expected, themass of oligomeric prions tends to the PrPC initial value, as it is the
steady state value (see Sect. 3.2). Similarly, themass of oligomers in the plaque tends to
the initial mass of Aβ monomers. The misconformation of PrPC in PrPol is mainly due
to the interaction between prions and oligomers, as the value of direct transformation
rate α is small. Because the reaction rate between PrPC and Aβ oligomers is greater
than the displacement rate of oligomers into the plaque (δ > γ ), oligomers are more
likely to interact with prions to form complexes. After τ units of time, they are released
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Stability analysis of a steady state of a model…

Fig. 2 Numerical simulations with parameter values as given in the main text. Top left: Time evolution of
prions PrPC (dashed line) and oligomeric prions PrPol (solid line). Top right: Time evolution of Aβ/PrPC

complex mass (assumed to be i0). Bottom left: Time evolution of oligomer mass. Bottom right: Time
evolution of the mass of oligomers in plaque

from this complex, causing oscillations in the evolution of complexes and oligomers.
The formation of complexes decreases with time as less PrPC are remaining.

4.2 Sensitivity analysis

To better understand the impact of each parameter on the emergence of PrPol, we
perform a sensitivity analysis through first order Sobol’ indices (Iooss and Lemaître
2015) given by the following expression:

Si = V (E[Y |Xi ])
V (Y )

, i = 1, . . . N , (24)

where Y is the model output (evolution of PrPol in our case), Xi is a model parameter,
V (Y ) represents the total variance ofY ,E[Y |Xi ] is the conditionalmean ofY given Xi ,
and N is the number of model parameters. First order Sobol’ indices Si determine how
much the model output varies when a parameter value varies. A parameter associated
with a Sobol’ index close to 1 has a large impact on Y variability, meaning that the
model output is very sensitive to change in this parameter. In this work, we apply a
sensitivity analysis to highlight the impact of each parameter on PrPol emergence and
to determine which ones contribute most to the output. We limit our study to first order
Sobol’ indices. Note that the impact of the interaction of several parameters on model
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Fig. 3 Evolution of Sobol’ indices with time for each parameter. Solid lines are used for parameters
impacting PrPol emergence most, dashed lines are used for parameters with a small impact and dotted lines
for parameters with no impact

output can be also be assessed through Sobol’ indices, but can be more difficult to
interpret. Because we do not know ranges of values for the different parameters, the
interpretation of Sobol’ indices should be taken with caution. Figure 3 displays results
of sensitivity analysis: for each parameter, Sobol’ index is calculated and its evolution
with time is represented.

Based on these results, parameters can be divided in three groups:

– Parameters that impact model output most (solid lines on Fig. 3): displacement
rate of oligomers in plaque γ , reaction rate between Aβ oligomers and PrPC δ,
duration of oligomers and PrPC interaction τ and rate of direct transformation of
PrPC into PrPol α,

– Parameters having little impact on model output (dashed lines on Fig. 3): oligomer
size i0, polymerization rate a (ri = r f ,i = a × i) and depolymerization rates of
proto-oligomers b and fibrils in plaque bp,

– Parameters having no impact on model output (dotted lines on Fig. 3): maximal
fibril size i f , depolymerization rate of fibrils b f , displacement rate of fibrils in
plaque γ f and proportion of oligomer fragmentation μ.

This is consistent with the role of each parameter. Indeed, we expect that parameters
related to Aβ oligomers/PrPC interaction play a greater role in the emergence of PrPol.
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As Aβ oligomers are required to misconform PrPC in PrPol, it seems reasonable that
parameters related to oligomer formation also impact PrPol emergence. However,
fibrils do not interact with PrPC and therefore do not impact PrPol evolution. To
go further, we illustrate the impact of parameters a (polymerization rate), b (proto-
oligomer depolymerization rate), γ (displacement rate of oligomers in plaque) and
δ (reaction rate between Aβ oligomers and PrPC). These parameters are chosen as
they have a relatively strong impact on PrPol evolution. Moreover, the processes they
describe could constitute new therapeutic targets to slow down the emergence of
PrPol, and thus the progression of Alzheimer’s disease.

4.3 Impact of displacement rate of oligomers into the plaque �

Figure 4 displays the impact of parameterγ , the displacement rate ofAβ oligomers into
plaque, on the evolution of PrPol. We perform model simulations with different values
for this parameterwhile the others are fixed to the values given previously.We represent
the evolution of PrPol (Fig. 4, top left) along with evolutions of Aβ/PrPC complexes
(top right), Aβ oligomers (bottom left) and oligomers in plaque (bottom right). These
simulations represent the impact of γ on the dynamics described by the model. As
expected, for small values of γ , Aβ oligomers are less likely to be transported to the
plaque, and therefore can bind to PrPC. Consequently, more complexes are created,
leading to a faster emergence of PrPol. On the contrary, for larger values of γ , the mass
of Aβ oligomers in plaque increases faster, and therefore less PrPC are misconformed
in PrPol.

4.4 Impact of reaction rate between oligomers and PrPCı

Figure 5 displays the impact of δ, the reaction rate between Aβ oligomers and prions
PrPCon evolutions of PrPol (top left), complexes (top right), oligomers (bottom left)
and oligomers in plaque (bottom right). For small values of δ, Aβ oligomers are less
likely to interact with PrPC than to be transported in the plaque. This is the reason
why we observe a stronger increase of the mass of oligomers in the plaque, while few
complexes are created. For greater values of δ, Aβ oligomers interact with PrPC and
therefore more PrPol are created. We observe that for these values oligomers are found
in the form of complexes or in the plaque, but few are left free.

4.5 Impact of polymerization rate a

We also study the impact of polymerization parameters on the emergence of PrPol.
Although the polymerization rate a does not explicitly take part in the interaction
sub-model, it impacts the evolution of PrPol through the formation of oligomers.
Results of simulations for this parameter are displayed on Fig. 6. We observe that for
small values of a, few PrPol are created. Indeed, because the polymerization rate is
small, few oligomers are formed and therefore the interaction between PrPC and Aβ

oligomers is less likely to occur. As a value increases, we observe an increase in the
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Fig. 4 Impact of the displacement rate of oligomers into plaque γ on different outputs. Simulations are
obtained with different values of γ (γ = 0.01: blue curve, γ = 0.05: red curve, γ = 0.2: yellow curve,
γ = 0.5: purple curve and γ = 2: green curve), while other parameters are fixed to the values given
previously. Top left: evolution of oligomeric prions PrPol. Top right: evolution of Aβ/PrPC complexes.
Bottom left: evolution of Aβ oligomers. Bottom right: evolution of Aβ oligomers in plaque (colour figure
online)

mass of complexes and of oligomers, leading to a faster emergence of PrPol. We notice
that the decrease of a value also slows down the increase of oligomer mass into the
plaque. Indeed, as less oligomers are created, less are transported into the amyloid
plaque. Consequently, the system will take more time to reach the steady state and Aβ

monomers remain free in the brain.

4.6 Impact of depolymerization rate b

We finally present results of simulations for different values of the depolymeriza-
tion rate of Aβ proto-oligomers b (Fig. 7). For this parameter, we observe two cases.
For small values of b, proto-oligomers do not depolymerize a lot, and therefore the
monomer reserve cannot renew. Consequently, proto-oligomers have difficulties to
evolve in bigger structures and to form oligomers. Prions PrPC are then less likely to
interact with Aβ oligomers and PrPol emergence is slowed down. With greater values
of b, PrPC are misconformed in PrPol faster. Depolymerization of proto-oligomers
is stronger and enables monomer concentration to remain at a sufficient level to
induce polymerization process and formation of oligomers. This leads to the inter-
action between Aβ oligomers and PrPC, and to the emergence of PrPol. Note that for
b = 3, less oligomers are present in the plaque at the end of the simulation, due to
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Fig. 5 Impact of the reaction rate between Aβ oligomers and PrPCδ on different outputs. Simulations are
obtained with different values of δ (δ = 0.05: blue curve, δ = 0.1: red curve, δ = 0.5: yellow curve, δ = 1:
purple curve and δ = 3: green curve), while other parameters are fixed to the values given previously.
Top left: evolution of oligomeric prions PrPol. Top right: evolution of Aβ/ PrPC complexes. Bottom left:
evolution of Aβ oligomers. Bottom right: evolution of Aβ oligomers in plaque (colour figure online)

polymeriation slowing down. Similarly for the effect of parameter a, we observe that
for small values of b, less oligomers are transported into the amyloid plaque.

4.7 Plausible therapeutic approaches?

These four parameters could constitute plausible new therapeutic targets to treat
Alzheimer’s disease, as they slow down the emergence of oligomeric prions, that
are supposedly toxic for the neurons. However, they do not have the same impact on
monomers and oligomers. Indeed, while parameters γ and δ favours one mechanism
between PrPol emergence and oligomer displacement into the plaque, parameters a
and b also reduce the mass of oligomers in the plaque. It is then relevant to analyse
monomer and proto-oligomer evolutions, to determine under which structures Aβ

monomers could be found in the brain.
We perform four additional numerical simulations using parameter values as given

previously. For each of these simulations, we replace γ , δ, a or b values with the value
that reduces the most the emergence of PrPol (from previous simulations), and we
compare the evolution of monomers, proto-oligomers of size 10, PrPol and oligomers
in the plaque (Fig. 8). As expected, γ and δ have the same impact on monomer
and proto-oligomer evolutions, and similar results in terms of evolutions of PrPol

and oligomers in the plaque. However, because the value of a is low, few proto-
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Fig. 6 Impact of the polymerization rate a (ri = r f ,i = a×i) on different outputs. Simulations are obtained
with different values of a (a = 0.5: blue curve, a = 0.8: red curve, a = 1: yellow curve, a = 2: purple
curve and a = 3: green curve), while other parameters are fixed to the values given previously. Top left:
evolution of oligomeric prions PrPol. Top right: evolution of Aβ/PrPC complexes. Bottom left: evolution
of Aβ oligomers. Bottom right: evolution of Aβ oligomers in plaque (colour figure online)

oligomers and oligomers are created and consequently monomers remain free in the
brain. The effect of b is quite the opposite: proto-oligomers are created, but because the
depolymerization rate is low, themonomer reserve is not renewed and proto-oligomers
cannot evolve in bigger structures and accumulate in the brain.

5 Discussion

Aβ oligomers and prions seem to play an important role in the emergence of
Alzheimer’s disease although it remains to be fully understood. Recent evidence sug-
gests that oligomers can bind to neuron membrane receptors such as prions PrPC.
This interaction induces first a structural re-arrangement of PrPC , leading then to its
oligomerization into PrPol. This last phenomenon is responsible for the transmission
of a death signal to neurons and has been proposed to be one of the mechanisms
responsible of neuron loss (Cissé and Mucke 2009; Laurén et al. 2009; Gimbel et al.
2010).

In this work, based on individually well characterized pathways, we present a
mathematical model describing the formation of oligomers and their interaction with
PrPC. The sub-model for polymerization process (oligomerization and fibrillation) is
composed of differential equations, based on Becker–Döring equations (Becker and
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Fig. 7 Impact of the depolymerization rate of proto-oligomers b on different outputs. Simulations are
obtained with different values of b (b = 0.05: blue curve, b = 0.1: red curve, b = 0.5: yellow curve, b = 1:
purple curve and b = 3: green curve), while other parameters are fixed to the values given previously.
Top left: evolution of oligomeric prions PrPol. Top right: evolution of Aβ/PrPC complexes. Bottom left:
evolution of Aβ oligomers. Bottom right: evolution of Aβ oligomers in plaque (colour figure online)

Döring 1935). They include different mechanisms: polymerization/depolymerization,
displacement in amyloid plaque and fragmentation of oligomers. The sub-model for
Aβ/PrPC interaction is based on delayed differential equations and describes misfold-
ing due to this interaction as well as direct transformation of PrPC into PrPol, due
to possible other mechanisms we are not aware of. We prove that this model admits
one unique solution, which remains non-negative for non-negative initial conditions.
Moreover, the model has an unique non-trivial steady state. We demonstrate that this
steady state is globally stable, through the construction of a Lyapunov function, which
constitutes the main result of this work. Although the mathematical tools used in this
work are quite standard, we believe that finding a relevant Lyapunov function could
prove to be quite challenging. From a biological point of view, this means that, regard-
less of the initial conditions, the system tends to a unique state, where all monomers
have polymerized in oligomers and are in the amyloid plaques, while all prions are
misconformed into oligomeric prions.

We analyse the model from a numerical point of view, using sensitivity analysis and
numerical simulations. We highlight the impact of different parameters, namely the
reaction rate between oligomers and PrPC δ, the displacement rate of oligomers in the
plaque γ , the polymerization rate a and the depolymerization rate of proto-oligomers
b, on the evolution of PrPol. We show that small values of parameters a and b slow
down the emergence of oligomeric prions, as they prevent a fast polymerization into
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Fig. 8 Comparison between “best” values of γ , δ, a and b parameters, ie values that slow down the
emergence of PrPol: γ = 2 (black), δ = 0.05 (blue), a = 0.5 (red) and b = 0.05 (yellow). Top left:
evolution of monomers. Top right: evolution of proto-oligomers of size 10 (i0/2). Bottom left: evolution of
oligomeric prions PrPol. Bottom right: evolution of oligomers in the amyloid plaque (colour figure online)

oligomers. Moreover, as less oligomers are created, we see that the mass of oligomers
in the amyloid plaque is drastically reduced, and therefore it will take more time for
the system to reach the steady state. This is not observed for parameters δ and γ

because these parameters favour one mechanism between Aβ oligomers and PrPC

interaction and oligomer displacement into the plaque. Although our results should be
assessed with experimental data, we think that these processes could constitute targets
for the pharmaceutical industry, to slow down the emergence of Alzheimer’s disease
(Canter et al. 2016).Different strategies could be considered. Reducing proto-oligomer
polymerization or depolymerization may slow down the emergence of oligomers and
therefore the emergence of oligomeric prions, but induces an accumulation of free
monomers or proto-oligomers into the brain. Decreasing the reaction rate between
oligomers and prions or increasing the transport of oligomers in the amyloid plaque
may slow down the emergence of oligomeric prions, but oligomer mass in the plaque
increases faster. One should then find the right balance between the emergence of
oligomeric prions, the accumulation of monomers or proto-oligomers into the brain,
and the increase of oligomers into the amyloid plaque.

To go further, experimental data is required to validate the model from a biological
point of view, and estimate model parameters. Besides, the model should include two
types of Aβ monomers: Aβ-40, which is the most common type of monomers present
in the brain, and Aβ-42, whose presence may indicate the emergence of Alzheimer’s
disease. It could be interesting to study the impact of these two types of monomers on
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the whole dynamics. Indeed they do not have the same polymerization kinetics (Bitan
et al. 2003; Johnson et al. 2013), and may not interact with prions in the same way,
which could constitute another therapeutic strategy. However, without experimental
data comparing their dynamics, it is quite difficult to model their differences.

Acknowledgements The authors thank Prof Glenn F. Webb for his valuable reading and corrections.
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