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A MODEL FOR MEGAKARYOPOIESIS WITH STATE-DEPENDENT
DELAY∗

LOÏS BOULLU† , LAURENT PUJO-MENJOUET‡ , AND JIANHONG WU§

Abstract. We analyze the stability of a system of differential equations with a threshold-defined
delay arising from a model for platelet production. We consider a maturity-structured population
of megakaryocyte progenitors and an age-structured population of platelets, where the cytokine
thrombopoietin (TPO) increases the maturation rate of progenitors. Using the quasi-steady-state
approximation for TPO dynamics and the method of characteristics, partial differential equations
are reduced to a system of two differential equations with a state-dependent delay accounting for
the variable maturation rate. We start by introducing the model and proving the positivity and
boundedness of the solutions. Then we use a change of variables to obtain an equivalent system
of two differential equations with a constant delay, from which we prove existence and uniqueness
of the solution. As linearization around the unique positive steady state yields a transcendental
characteristic equation of third degree, we introduce the main result, a new framework for stability
analysis on models with fixed delays. This framework is then used to describe the stability of the
megakaryopoiesis with respect to its parameters. Finally, with parameters being obtained and esti-
mated from data, we give an example in which oscillations appear when the death rate of progenitors
is increased 10-fold.
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1. Introduction.

1.1. Objectives. The aim of this work is to study the stability of a new system
of two delay differential equations with state-dependent delays. We use a change of
variable introduced by Smith [51] to obtain an equivalent system of delay differential
equations with a distributed delay. Then we analyze the stability of this system using
an adaptation of the framework proposed by Beretta and Kuang [6]. Meanwhile, a
new model of platelet production is formulated relying solely on the regulation of the
maturation process of progenitor cells. The stability analysis presented before is then
applied to explore the potential sources of oscillations in platelet count.
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1.2. Biological background.

Platelets, megakaryocytes, and disorders. Platelets are the blood cells in
charge of preserving the structural integrity of the blood vessels. Among the smallest
cells in the human body (2–3 µm), they originate from the hematopoietic stem cells
(HSCs) located in the bone marrow. It is well known that HSCs also generate other
blood cells like white blood cells (10–30 µm) and red blood cells (6–8 µm). Although
platelets lack a nucleus, like red blood cells, the generating process of platelets is dif-
ferent as it cannot be traced back to a cell which excluded its nucleus. Instead, large
differentiated HSCs called megakaryocytes undergo endomitosis, that is, multiple di-
visions of the nucleus without division of the cytoplasm. This process increases the
ploidy of the cell (the number of DNA copies it contains) and modifies the structure
of its cytoplasm, and platelets result from the fragmentation of this modified cyto-
plasm. Platelet counts are usually between 150,000 and 450, 000 per µL of blood, and
platelet counts whose distance to this norm is clinically significant exhibit two kinds of
pathologies: thrombocytopenia (below 150, 000 platelets per µL) and thrombocytosis
(above 500, 000/µL) [22]. Both of these disorders may lead to severe complications.
On one hand, aggravated thrombocytopenia (< 50, 000/µL) may be associated with
morbidity and complications in medical management of patients with conditions such
as cancer, liver disease, or chronic hepatitis C virus infection [1]. On the other hand,
aggravated thrombocytosis may induce thrombotic complications and (counterintu-
itively) bleeding associated with illness and death [46]. These two disorders may
also be involved in a condition known as cyclic thrombocytopenia (CT) [52], where
platelet count oscillates between very low (1 × 103/µL) to normal or very high lev-
els (2000 × 103/µL) with a period usually between 20 and 40 days. Although the
pathogenesis of CT is not clear, most cases are thought to belong to one of the fol-
lowing two categories. Autoimmune CT corresponds to patients with a high level
of platelet-specific antibodies such that the destruction rate of platelet is increased
although megakaryocyte levels are normal; amegakaryocytic CT corresponds to pa-
tients with the presence of specific antibodies targeting either mature megakaryocytes
or megakaryocyte progenitors (MkPs), i.e., with an increased megakaryocyte destruc-
tion rate. Both involve autoimmune antibodies, resembling immune thrombocytope-
nia purpura: this often causes misdiagnosis, leading patients with CT to receive risky
medical treatments (corticosteroids and splenectomy, i.e., removal of the spleen) with
no result [26].

Figure 1.1 depicts a clinical case of cyclic oscillations in platelet count, where the
patient was found to be positive for antibodies targeting MkPs and mature megakary-
ocytes [58].

Platelet regulation: role of the thrombopoietin. Since the discovery of
platelets, megakaryopoiesis has been thought to be regulated by a similar mechanism
as in erythropoiesis (production process of red blood cells). It has been believed in-
deed that low cell count was stimulating the release of a cytokine enhancing platelet
production. But while such a cytokine, called thrombopoietin (TPO), was identified
with certainty in the 1990s [33], it was later found that TPO level regulation was car-
ried out by TPO receptors on the surface of platelets and other megakaryocytic cells
[15, 47]. Similarly, many attempts were carried out to pinpoint the exact phase point
where TPO would act on the megakaryocytic cell line. Results ranged from stem cell
expansion [50] and reduced apoptosis in megakaryocytes [57] to an amplification of the
endomitosis phase, where a bigger nucleus would imply more platelets per megakary-
ocyte [9]. But regarding this last hypothesis, several studies posed the question of the
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Fig. 1.1. (a) Cyclical oscillations of platelet counts over 160 days, as they appear in the case
report by Zent et al. [58]. The blue dashed line represents the average platelet level 20.3 × 109/kg
(that is, 284×103/µL), and the red dashed line represents the limit for aggravated thrombocytopenia
3.8× 109/kg (that is, 50× 103/µL). (b) The corresponding normalized Lomb periodogram associates
potential periods T with a score P (T ) (blue line). Using p = NeP (T ) (red dotted lines), where N
is the number of data points as an approximation of the significance level [23], we see that a period
30 ≤ T ≤ 33 days is significant (p ≤ 0.001).

potency of TPO levels to control platelet production through endomitosis enhance-
ment. First, Zimmet et al. explored the in vivo effect of the overexpression of cyclin
D3 [59]. Their measurements showed that despite the increasing ploidy of transgenic
mice, the difference between platelet counts was not significant. Later, two studies by
Ng et al. [41] and Meyer et al. [40] were conducted to assess the potency of MkPs to
be fully responsible for the increased production of platelets if needed. Disabling TPO
interaction with mature megakaryocytes and platelets (through altering, respectively,
the production of c-Mpl receptors [41] and the expression of the kinase Jak2 [40]),
both teams observed a significant increase in platelet production. Therefore, whether
the action of TPO on endomitosis might is dispensable is an open question.

Previous mathematical modeling approaches. The progress made regard-
ing biological knowledge is nicely paralleled with the evolution of mathematical models
for thrombopoiesis, starting in 1979 with Wichmann et al. [56]. Using three compart-
ments corresponding to HSCs, megakaryocytes (whose proliferation is upregulated by
TPO) and assuming a platelet-regulated TPO production, these authors successfully
reproduced the overshoot that is observed following platelet depletion induced by ex-
change transfusion. The same authors later introduced an age-structure in their model
via the McKendrick–von Foerster partial differential equation, although they focused
only on platelet survival [55]. This idea was extended six years later by Eller et al. [21]
where the McKendrick–von Foerster equation was also used to describe the dynamics
of HSCs and of megakaryocytes: these authors proved existence and uniqueness of
solutions, but stability results remained limited [27]. From 2000 onward two tenden-
cies arose. The first was dedicated to obtaining results on the effect of chemotherapy
and irradiations in medical treatment on megakaryopoiesis. Building upon previous
successes reproducing the dynamics of granulopoiesis under heavy and/or repetitive
stress [48], Scholz et al. [49] developed a model of megakaryopoiesis under chemother-
apy with successful simulations of both cell count and TPO levels [49]. Results of the
same quality were obtained later by Wentz et al. [54] with a model of megakary-
opoiesis under radiations. Unfortunately, these last models seem, to the best of our
knowledge, unfit for an extensive analytical work due the tendency to use successive
compartments. The second tendency focused on oscillatory dynamics once TPO was
purified, allowing measurements of TPO level [29]. Indeed, preliminary works [10, 53]
involving delay differential equations were updated by Santillan et al., leading to a
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model where transition dynamics from different levels of ploidy is upregulated by TPO
[45]. Authors reproduced both stable and oscillating platelet counts, but no analytic
account was given of this change of stability. Modeling of megakaryocyte growth was
later changed from discrete ploidy classes to continuous megakaryocyte volume in a
paper by Apostu and Mackey integrating each of the three hematopoietic lineages [2].
Exploring the effect of changes of the accelerated peripheral destruction of platelets
on stability, the hypothesis of a Hopf bifurcation as the source of oscillations was
formulated but not verified. This gap was filled nine years later when the same group
managed to fit a refined model to both stable and oscillating platelets count from
clinical data [34]: stability analysis revealed that there was indeed a Hopf bifurcation
occurring along the parameter changes, inducing oscillations.

However, according to the experimental work presented above, these models might
be more complicated than needed. In this paper, our aim is to answer the following
question: is a TPO-induced increase in progenitor growth sufficient to produce a
model with the ability to produce oscillatory behaviors consistent with CT pathogen-
esis? Considering this single feedback leads to a simpler model, implying that a more
extensive stability analysis can be performed. We build a framework to explore the
impact that different changes in parameters have on the onset of oscillations.

Our paper is organized as follows. We start with a description of the dynamics of
progenitors, platelets, and TPO with nonlinear differential equations (section 2) that
we reduce to a system of threshold-delay differential equations using the quasi-steady
state approximation. We then prove the well-posedness of our model as well as the
boundedness and positivity of the solution (section 3). Next, we transform this system
into a standard functional differential equation system using the change of variable
described by Smith [51] and use this new formulation to prove existence and unique-
ness of solutions (section 4). This is followed by the main result, a new framework
for stability analysis on models with a fixed delay, adapted from Beretta and Kuang
[6], with more specific results for a special kind of third-order characteristic equation
(section 5). Finally, we apply this framework to our model of megakaryopoiesis to
show that an increase in the death rate of MkPs induces oscillations in the amount
of platelets (section 6).

2. A maturity-structured model for megakaryopoiesis. In our model we
consider three quantities.

• The MkP count: upon commitment, HSCs are assumed to enter the progeni-
tors compartment with a constant rate and mature with a speed upregulated
by the TPO blood level; hence, we use a maturity-structured model. The
total amount of progenitors is written M (cells/kg).

• The platelet count: the platelets are only affected with a random decay, not
by TPO level; hence we use an age-structured model. The total amount of
platelets is written P (cells/kg).

• And finally, TPO blood level, which is considered quasi-stationary with re-
gards to the two other quantities. The concentration of TPO in the blood is
written T (pg/mL).

2.1. MkP dynamics.

2.1.1. Progenitors as a maturity-structured population. MkPs appear
when the division of an HSC gives birth to two committed cells. We represent them
with a maturity structure, assuming that they divide again once they reach maturity
x = 1. The maturity x increases with a speed V (T (t),M(t), P (t)) as the cells progress
in the maturation process, depending on the current state of the system. We give a
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Fig. 2.1. The maturity-structured model for megakaryopoiesis as presented in section 2.1.1: as
detailed in system (2.1), progenitors arrive from the pool of HSCs, they die randomly with a rate
δ, and they mature with a rate Ṽ (t) until they reach maturity 1, where they release platelets and
disappear.

formulation of V (.) in section 2.3, but until then we write Ṽ (t) = V (T (t),M(t), P (t))
for a lighter reading. Readers should nevertheless keep in mind that our model remains
autonomous.

This maturity-structured population is described by the following equation:

(2.1)


∂

∂t
m(t, x) +

∂

∂x
(Ṽ (t)m(t, x)) = −δm(t, x), 0 < x ≤ 1, t > 0,

m(t, 0) = κ/Ṽ (t), t > 0,

m(0, x) = m0(x), 0 ≤ x ≤ 1.

Here, m(t, x) represents the number of MkPs of maturity x at time t, such that
when an MkP reaches maturity x = 1 it releases its platelets and is removed from
the MkP population. δ > 0 is the constant death rate of progenitors, κ > 0 is the
constant arrival rate of HSCs into the progenitor compartment, V : R3

+ → R∗+ is
a strictly positive, continuous increasing function representing the TPO-dependent
maturation speed of progenitors (we recall that we write Ṽ (t) = V (T (t),M(t), P (t))
for a lighter reading), and m0 ∈ C0([0, 1]) is the distribution of progenitors at time
t = 0. This system is represented in Figure 2.1. For details on the derivation of the
boundary condition, see Craig, Humphries, and Mackey [16, section 3.3].

2.1.2. A differential equation for progenitors count: method of
characteristics. We introduce t1 > 0 the solution of

∫ t
0
Ṽ (y) dy = 1, and for all

t ≥ t1 we define τ(t) > 0 as the solution of∫ t

t−τ(t)
Ṽ (y)dy = 1.

At a time t, τ(t) represents the time that MkPs that are maturing at time t have
spent maturing; that is, if an MkP is of maturity 1 at time t, then it entered the MkP
compartment at time t− τ(t).

The method of characteristics on system (2.1) then implies that for t ≥ t1, we
have

(2.2) m(t, 1) = m(t− τ(t), 0)e−δτ(t).

The total number of progenitors is
∫ 1

0
m(t, x)dx and denoted by M(t). When we

differentiate this integral, we combine the first two equations of system (2.1) with
(2.2) to obtain the following differential equation on M(t) for t ≥ t1:
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Fig. 2.2. Model of megakaryopoiesis, where M(t) and P (t) are the total amount of MkPs and
platelets, respectively.

(2.3) M ′(t) = −δM(t) + κ
[
1− Ṽ (t)e−δτ(t)/Ṽ (t− τ(t))

]
.

While the method of characteristics also yields an expression for 0 ≤ t ≤ t1 of
M ′(t), it is out of the scope of this paper which focuses on long-term dynamics.

2.2. An age-structured population of platelets. Progenitors undergo suc-
cessive divisions until they become megakaryocytes. But the number of these divisions
is currently unknown, and we believe that one TPO-induced division might already
capture detailed dynamics. Therefore, we consider that when it reaches maturity, the
progenitor divides itself into two mature megakaryocytes which immediately shed a
constant quantity of A platelets each. This implies that this quantity A needs to be
increased above the standard interval [1000, 3000] [28] for the platelet count to reach
its real order of magnitude, accounting for the missing divisions.

We assume that platelets are age-structured with decay γ > 0 such that p(t, a)
represents the amount of platelets of age a at time t. We obtain the following equations
for t > t1: 

∂

∂t
p(t, a) +

∂

∂a
p(t, a) = −γp(t, a),

p(t, 0) = 2Aκ
Ṽ (t)

Ṽ (t− τ(t))
e−δτ(t),

p(t,∞) = 0 and p(0, a) = p0(a).

This system is represented in Figure 2.2.
Here the link between the incoming flux of platelets and flux of maturing MkPs

is straightforward for t ≥ t1:

p(t, 0) = 2A.m(t, 1)Ṽ (t) = 2A.e−δτ(t)m(t− τ(t), 0)Ṽ (t) = 2Aκ
Ṽ (t)

Ṽ (t− τ(t))
e−δτ(t).

Now if we account for the total population of platelets P (t) =
∫ +∞
0

p(t, a)da, we
get the following differential equation for t > t1:

(2.4)
d

dt
P (t) = −γP (t) + 2Aκ

Ṽ (t)

Ṽ (t− τ(t))
e−δτ(t).

2.3. The cytokine TPO upregulates the maturation process. As stated
previously, the platelet production increases with TPO, and it has been observed that
the acceleration of the division dynamics is a sufficient mechanism to obtain a complete
feedback mechanism [40, 41]. As announced in section 2.1.1, we now fully denote the
speed of maturity given by Ṽ (t) = V (T (t),M(t), P (t)). As T (t) the quantity of
TPO is “perceived” by progenitors through their c-Mpl receptors, we assume that
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maturation rate is a function of the TPO available through this mechanism, leading
to the following for t ≥ 0:

(2.5) V (T (t)) = α
Tn(t)

Kn
T + Tn(t)

+ β.

We use a saturating function of T (t), representing the binding dynamics of the c-Mpl
and TPO complex (see (2.6)). We add a fix coefficient β to account for the observations
that megakaryopoiesis is still happening without an effective TPO feedback (10% of
the normal count [17], possibly due to stimulation by other cytokines).

TPO itself is produced constitutively by the liver, stable in plasma [35], and
cleared through binding to c-Mpl receptors on circulating platelets and progenitors
[18, 35]. We formulate the binding dynamics with a Hill function and obtain the
following differential equation for t ≥ 0:

(2.6)
d

dt
T (t) = Tprod − αT (αMM(t) + αPP (t))

T (t)n

Kn
T + T (t)n

.

Similarly to Colijn and Mackey [14, equation (10)] or earlier Bernard, Belair, and
Mackey [7, Appendix A], we assume that the process of TPO binding to c-Mpl is
much faster than changes in the number of progenitors and platelets, implying that
dynamics equilibrium is reached at any time for TPO, i.e., dT

dt (t) ≈ 0 for all t. This
is called the quasi-steady-state approximation, and it leads to

(2.7) 0 = Tprod − αT (αMM(t) + αPP (t))
T (t)n

Kn
T + T (t)n

such that if αT (αMM(t) + αPP (t)) > Tprod we have

T (t)n

Kn
T + T (t)n

=
Tprod/αT

αMM(t) + αPP (t)
.

What we see here is that if αT (αMM(t) + αPP (t)) is less than Tprod, there is no T
such that dT/dt = 0. This implies that if αT (αMM(t) + αPP (t)) get closer to Tprod,
T virtually goes to infinity.

Using this expression, (2.5) gives V the maturation rate as a function of M(t) and
P (t), t ≥ 0:

(2.8) V (T (t)) = V(αMM(t) + αPP (t)) := α
Tprod/αT

αMM(t) + αPP (t)
+ β.

The system formed with (2.3), (2.4), and (2.8) is our age and maturity-structured
system of thrombopoiesis dynamics, as shown in Figure 2.3. In the next section, we
formulate it as a system of threshold-defined delay differential equations. We also
show that the solutions are positive and bounded.

3. A system of threshold-defined delay differential equations for
megakaryopoiesis. Using (2.8) in (2.3) and (2.4), we obtain the following system
for t > t1:

(3.1)
d
dtM(t) = −δM(t) + κ

[
1− V(αMM(t) + αPP (t))

V(αMM(t− τ(t)) + αPP (t− τ(t)))
e−δτ(t)

]
,

d
dtP (t) = −γP (t) + 2Aκ

V(αMM(t) + αPP (t))

V(αMM(t− τ(t)) + αPP (t− τ(t)))
e−δτ(t),

where τ(t) is such that
∫ t
t−τ(t) V(αMM(s) + αPP (s))ds = 1 from (2.2).
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Fig. 2.3. The quantities of megakaryocytes M(t) and P (t) downregulate the total amount of
TPO T (t) which in turn upregulates the speed of maturation of MkPs.

We introduce a new variable, and note W (t) = αMM(t) + αPP (t) for all t ≥,
which represents the total amount of c-Mpl receptors in the system. We prove the
following basic properties.

Proposition 3.1. Assume that initial conditions M(s), P (s) are such that
W (s) ≥ Tprod/αT for s ∈ [0, t1], 2AαP ≥ αM , and αMκ > Tprod/αT max(δ, γ).
Then solutions of system (3.1) are nonnegative and eventually bounded, and W (t)
stays above Tprod/αT for all t ≥ t1.

Proof. We divide the proof into three steps.
1. Eventual boundedness of the solutions: if t is such that γP (t) + 2AδM(t) ≥

2Aκ, then

dP

dt
+ 2A

dM

dt
= −γP (t)− 2AδM(t) + 2Aκ ≤ 0.

This implies that if P (t1) and M(t1) are finite, P (t) and M(t) remain finite
for all t ≥ t1, i.e., the system is bounded (as both variables are nonnegative).

2. Positivity of the solutions: assume that there exists a t ≥ t1 such that P (t) =
0 and M(t) > 0. Therefore

d

dt
P (t) = 2Aκ

V(αMM(t))

V(αMM(t− τ(t)) + αPP (t− τ(t)))
e−δτ(t),

which is always positive. This implies that P is always positive.
In order to prove the positivity of M , we recall that it is defined as M(t) =∫ 1

0
m(t, x) dx. On the other hand, we know that for all t > t1 and all x ∈ [0, 1],

there exists a σ(t, x) ∈ R∗+ such that
∫ t
t−σ(t,x) Ṽ (y) dy = x, and the method

of characteristics implies m(t, x) = m(t − σ(t, x), 0)e−δσ(t,x). Finally, for all
t > t1, m(t, 0) = κ/V(αPP (t) + αMM(t)) is positive, implying the positivity
of m(t, x) for all t > t1, x ∈ [0, 1], which in turns implies the positivity of
M(t) for all t > t1.

3. W (t) stays above Tprod/αT for all t ≥ t1: we write

dW

dt
(t) = αP (δ− γ)P (t)− δW (t) + κ

[
αM + (2AαP − αM )

V(W (t))e−δτ(t)

V(W (t− τ(t)))

]
.
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We first notice that given M(t) > 0, W (t) > αPP (t) such that

αP (δ − γ)P (t)− δW (t) ≥ −max(δ, γ)W (t).

Therefore if W (t) = Tprod/αT , we use 2AαP > αM , καM >
Tprod

αT
max(δ, γ)

and the positivity of V to obtain dW
dt (t) > 0. Because dW

dt (t) > 0 when
W (t) = Tprod/αT , then there exists W > Tprod/αT such that W (t) = W

implies dW
dt (t) ≥ 0: W (t) > Tprod/αT for all t > 0.

Provided that initial conditions satisfy the conditions given in Proposition 3.1,
system (3.1) is a closed system of differential equations with a delay defined by thresh-
old. But in order to study the stability of our system, in the next section we transform
it into a system of functional differential equations using a change of variable. We also
use this formulation to obtain a result on existence and uniqueness of the solutions.

4. A change of variable transforms the threshold-defined delay differ-
ential equation model into a system of functional differential equations.
Following Smith’s method [51], we introduce a new time variable θ. It is linked to
the original time scale by the function t, which for every solution (M(t), P (t)), t ≥ 0
associates to every θ > 0 the value t(θ) such that

(4.1)

∫ t(θ)

0

V(αMM(s) + αPP (s)) ds = θ.

This function represents the “physiological” time scale along which the maturation of
progenitors is a linear process.

We see that by definition of the function τ , if θ is such that t(θ) > t1, then∫ t(θ−1)

0

V(αMM(s) + αPP (s))ds = θ − 1

=

∫ t(θ)

0

V(αMM(s) + αPP (s))ds−
∫ t(θ)

t(θ)−τ(t(θ))
V(αMM(s) + αPP (s))ds,

=

∫ t(θ)−τ(t(θ))

0

V(αMM(s) + αPP (s))ds.

Because V is a positive function, the integral is always positive, which implies
that t(θ − 1) = t(θ)− τ(t(θ)). Next we notice that (4.1) implies, for θ ≥ 1,

1 =
dθ

dθ
=

d

dθ

∫ t(θ)

0

V(αMM(s) + αPP (s))ds =
dt(θ)

dθ
V(αMM(t(θ)) + αPP (t(θ))).

For all θ > 1, we now define M(θ) := M(t(θ)), P(θ) := P (t(θ)), W(θ) := W (t(θ)).
We then deduce from above

τ(t(θ)) = t(θ)− (t(θ)− τ(t(θ))) = t(θ)− t(θ − 1) =

∫ 0

−1

1

V(Wθ(r))
dr,

where Wθ(.) is defined on [−1, 0] by Wθ(r) =W(θ + r).

We define τ0 : C0 → R as τ0 : φ 7→
∫ 0

−1 1/V(φ(r)) dr and we use (3.1) to obtain,
for θ ≥ 1,

dP
dθ

(θ) =
dP

dt
(t(θ))

dt(θ)

dθ
=

(
−γP(θ) + 2A

κe−δτ0(Wθ)V(W(θ))

V(W(θ − 1))

)
V(W(θ))−1.
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Reproducing the calculation for M, (3.1) becomes, for θ ≥ 1,

(4.2)


dM
dθ

= −δ M(θ)

V(W(θ))
+ κ

[
1

V(W(θ))
− e−δτ0(Wθ)

V(W(θ − 1))

]
,

dP
dθ

=
−γP(θ)

V(W(θ))
+

2Aκe−δτ0(Wθ)

V(W(θ − 1))
.

We notice that for θ ≥ 1,

dW
dθ

=
αP (δ − γ)P(θ)− δW(θ)

V(W(θ))
+ κ

[
αM

V(W(θ))
+ (2AαP − αM )

e−δτ0(Wθ)

V(W(θ − 1))

]
,

allowing us to write (4.2) of the form
(4.3)

dW
dθ

=
αP (δ − γ)P(θ)− δW(θ)

V(W(θ))
+ κ

[
αM

V(W(θ))
+

(2AαP − αM )e−δτ0(Wθ)

V(W(θ − 1))

]
,

dP
dθ

=
−γP(θ)

V(W(θ))
+

2Aκe−δτ0(Wθ)

V(W(θ − 1))
.

Now defining for all w ∈ R, f(w) := 1/V(w) =
w

αTprod/αT + βw
, (4.3) becomes,

for θ ≥ 1,

(4.4)



dW
dθ

(θ) = (αP (δ − γ)P(θ)− δW(θ))f(W(θ))

+ κ
[
αMf(W(θ)) + (2AαP − αM )e−δτ0(Wθ)f(W(θ − 1))

]
,

dP
dθ

(θ) = −γP(θ)f(W(θ)) + 2Aκe−δτ0(Wθ)f(W(θ − 1)),

where τ0 is defined as τ0(φ) =
∫ 0

−1 f(φ(r)) dr. We use this formulation to obtain
existence and uniqueness of the solutions.

Proposition 4.1. We assume that αM ≤ 2AαP . For every positive initial data
M(s),P(s) for θ ∈ [0, 1] such that W(θ) ≥ Tprod/αT for θ ∈ [0, 1], there exists a
unique solution of (4.4) on θ ≥ 1 which is nonnegative and bounded.

Proof. Boundedness and positivity are deduced from the previous section. To
show that the solution exists and is unique, we introduce x(θ) = (W(θ),P(θ))
such that system (4.3) writes ẋ(t) = G(xt) = g(xt(0)) + h(xt) where xt(.) is
defined on [−1, 0] by xt(r) = x(t + r) and functions g = (g1, g2) ∈ C1(R2),
h = (h1, h2) : C1(R2)→ R2

+ are defined as
g(x) = f(x1)

(
αP (δ − γ)x2 − δx1 + αMκ

−γx2

)
,

h(φ) = κe−δ
∫ 0
−1

f(φ1(r)) drf(φ1(−1))

(
2AαP − αM

2A

)
.

We give the outline of the proof that G is Lipschitz continuous, which according to
Diekmann et al. [20, section VII.6] implies that for every continuous initial condition
ψ(θ), θ ∈ [0, 1], a unique solution exists.
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We show that G is Lipschitz continuous by defining, for all neighborhood N ∈
C1(R2) of ψ, a constant LN such that for all χ ∈ N ,

(4.5)
| g1(ψ(0))− g1(χ(0)) |+ | g2(ψ(0))− g2(χ(0)) |

+ | h1(ψ)− h1(χ) | + | h2(ψ)− h2(χ) |
≤ LN max{ sup

t∈[−1,0]
| ψ1(t)− χ1(t) |, sup

t∈[−1,0]
| ψ2(t)− χ2(t)},

where ψ0
i = ψi(0),∆i = χi(0)− ψ0

i , i = 1, 2. We define

LN = F 0
1

∣∣αP (δ − γ)− δ
∣∣+ F

′0
1

∣∣(αP (δ − γ)M0
2 + αMδM

0
2 + αMκ

∣∣+ |M0
2F
′0
1 + F 0

1 |

+ |2A(1 + αP )− αM |κ|ENF 1
1 + S1F

′1
1 |,

where F1 = max
φ∈N

( max
t∈[−1,0]

|f(φ1(t))|), F ′1 = max
φ∈N

( max
t∈[−1,0]

|f ′(φ1(t))|), M0
2 = max

φ∈N
|φ2(0)|,

Si = sup
t∈[−1,0]

|ψi(t) − χi(t)|, i = 1, 2, and EN is a strictly positive value such that for

all φ,χ ∈ N ,

| e−δ
∫ 0
−1

f(χ1(r)) dr − e−δ
∫ 0
−1

f(φ1(r)) dr |< EN ,

which exists as the image of a bounded domain by f is bounded and the exponen-
tial function is locally Lipschitz continuous. Simple calculations then show that LN
satisfies (4.5): we prove existence and uniqueness of solutions.

Finally, we introduce the function θ(.,.) : C2
1 (R+) → C0([0,+∞]), defined as

θ(.,.) : (M(θ),P(θ))θ≥0 7→ θ(M(.),P(.)), where θ(M(.),P(.)) is a function which associates

t ∈ [0,+∞] to a value θ(M(.),P(.))(t) such that∫ θ(M(.),P(.))(t)

0

1

V(αMM(s) + αPP(s))
ds = t.

Therefore, if (M(θ),P(θ))θ≥0 is a solution of system (4.2) for θ ≥ 1, then
(M(θ(t)),P(θ(t))t≥0 is solution of (3.1) for t ≥ θ(M(.),P(.))(1).

With this new formulation of our model, we study the stability of our system
using a more general formulation of (4.4). In order to study the onset of oscillations,
we focus our work more particularly on possible changes in stability due to Hopf
bifurcations.

5. Stability analysis for the delay-differential system. Consider a gener-
alized formulation of our system,

(5.1)



dW
dθ

(θ) = (αP (δ − γ)P(θ)− δW(θ))f(W(θ))

+ κ
[
αMf(W(θ)) + (2AαP − αM )e−δτ0(Wθ)f(W(θ − 1))

]
,

dP
dθ

(θ) = −γP(θ)f(W(θ)) + 2Aκe−δτ0(Wθ)f(W(θ − 1)),

where f is a continuous function on R+ such that f(0) = 0 and f is strictly increasing
on R+ (unlike in (4.4) where f is specifically defined as 1/V).

We assume that

2AαP ≥ αM ,(5.2a)

αMκ/max(δ, γ) > x0(5.2b)
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for some value x0 > 0. Therefore, according to Proposition 3.1, W(θ) > x0 for
θ ∈ [0, 1] implies W(θ) > x0 for θ ≥ 0.

We start by identifying the steady states.

5.1. Equilibrium. We consider an equilibrium (W0,P0) of (5.1) such that{
0 = [αP (δ − γ)P0 − δW0]f(W0) + κ

[
αMf(W0) + (2AαP − αM )e−δf(W0)f(W0)

]
,

0 = −γP0f(W0) + 2Aκe−δf(W0)f(W0).

For every P0 > 0, the point (0,P0) is a steady state. But as mentioned above,
assumptions (5.2a) and (5.2b) imply that this steady state can be ignored if we assume
that W(θ) > x0 for θ ∈ [0, 1].

We introduce the function u defined for all X ∈ Ix0 := ]x0,+∞) by

u(X) := X − κ
[
αM/δ +

(
2AαP
γ
− αM

δ

)
e−δf(X)

]
.

We have the following result.

Theorem 5.1. If condition (5.2b) holds, then the system (5.1) has a steady state
(W0,P0) such that W0 > x0 defined as a solution of

(5.3)

{
W0 = κ

[
αM/δ + ( 2AαP

γ − αM
δ )e−δf(W0)

]
,

P0 = 2Aκe−δf(W0)/γ.

Furthermore, if (5.2b) is verified and 2Aαpδ− γαM ≥ 0, then this steady state is
the only one such that W0 > x0.

Indeed, if (W0,P0) with W0 > x0 is an equilibrium, then W0 is a root of u.
The condition (5.2b) implies that 0 is contained in the image of Ix0

by u, and
2Aαpδ − γαM ≥ 0 implies that u is strictly increasing on Ix0

(as f is an increasing
function on Ix0). Therefore the theorem is proved.

From this point on we assume that 2Aαpδ − γαM ≥ 0.

5.2. Linearization about (W0,P0). Before linearizing about the equilibrium,
we rewrite (5.1) as(

Ẇ(θ)

Ṗ (θ)

)
= H

((
W(θ)
P(θ)

)
,

(
W(θ − 1)
P(θ − 1)

)
,

(
Wθ

Pθ

))
,

where for X,Y ∈ R2 and φ ∈ C0([−1, 0]), H denotes

H(X,Y,φ) =(
(αP (δ − γ)X2 − δX1 + καM )f(X1) + κ(2AαP − αM )e−δ

∫ 0
−1

f(φ1(r)) drf(Y1)

− γX2f(X1) + 2Aκe−δ
∫ 0
−1

f(φ1(r)) drf(Y1)

)
.

Using (5.3), we compute J0, the Jacobian of H with respect to X applied at the
point (P0,W0):

J0 = −

(
(2AαP − αM )κe−δf(W0)f ′(W0) + δf(W0) −αP (δ − γ)f(W0)

2Aκe−δf(W0)f ′(W0) γf(W0)

)
.

We also compute J1 and J2, the Jacobian of H with respect to Y and φ, respec-
tively, both applied at the point (P0,W0):
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J1 =

(
2AαP − αM 0

2A 0

)
κf ′(W0)e−δf(W0), and J2 = −δf(W0)J1.

We set p(θ) = P(θ) − P0 and w(θ) = W(θ) −W0. Then (4.3) linearized about
(W0,P0) is(

ẇ(θ)
ṗ(θ)

)
= J0

(
w(θ)
p(θ)

)
+ J1

(
w(θ − 1)
p(θ − 1)

)
+ J2

(∫ 0

−1 w(θ + r) dr∫ 0

−1 p(θ + r) dr

)
.

5.3. Characteristic equation. We equate p(θ) and w(θ) to eλθ, obtaining the
following expression:
(5.4)

∆(λ) = λI +

(
δf(W0) −αP (δ − γ)f(W0)

0 γf(W0)

)

+

(
2AαP − αM 0

2A 0

)
κe−δf(W0)f ′(W0)(1− e−λ + δf(W0)

∫ 0

−1
eλr dr).

This gives the characteristic equation det(∆(λ)) = 0. We verify easily that the as-
sumption 2AδαP ≥ γαM implies det(∆(0)) > 0, hence λ 6= 0. This means that the
integral in (5.4) is computed so that

δf(W0)

∫ 0

−1
eλr dr =

δf(W0)

λ
(1− e−λ).

Therefore, if we multiply both sides of the equation det(∆(λ)) = 0 by λ, we get
det(∆̂(λ)) = 0, a new equation which has the same roots plus λ = 0 with

∆̂(λ) =

(
λ2 + λδf(W0) −λαP (δ − γ)f(W0)

0 λ2 + λγf(W0)

)
+

(
2AαP − αM 0

2A 0

)
κe−δf(W0)f ′(W0)(λ+ δf(W0))(1− e−λ).

Now, we compute det(∆̂(λ)):

det(∆̂(λ)) =λ4 + λ3(γ + δ)f(W0) + λ2γδf(W0)2 + κe−δf(W0)f ′(W0)(λ+ δf(W0))

(1− e−λ)
[
λ2(2AαP − αM ) + λf(W0)(2AαP δ − γαM )

]
.

For λ 6= 0, det(∆̂(λ)) = 0 is equivalent to

(5.5) λ3 + aλ2 + bλ+ c+ (dλ2 + gλ− c)e−λ = 0,

where
a = a1 + a2, b = b1 + c1 + δf(W0)a2, c = δf(W0)c1,

d = −a2, g = −(c1 + δf(W0)a2),

with
a1 = (γ + δ)f(W0) > 0, a2 = K(2AαP − αM ) > 0,

b1 = γδf(W0)2 > 0, c1 = Kf(W0)(2AαP δ − γαM ) > 0,

and K = κe−δf(W0)f ′(W0).
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5.4. A framework for stability analysis. Equation (5.5) is a third-order tran-
scendental equation. In Beretta and Kuang [6], these authors proposed a geometric
method to assess whether or not a change in the delay τ affects the stability of a given
system. That is, for a characteristic equation of the form

(5.6) D(λ, τ) := P (λ, τ) +Q(λ, τ)e−λτ = 0,

where P,Q are polynomials in λ with τ -dependent complex coefficients. This relies
on detecting the appearance of purely imaginary eigenvalues, which corresponds to a
Hopf bifurcation leading to a change in stability.

However, in our case, the delay is fixed at τ = 1 by construction. Therefore,
to study Hopf bifurcations, we need to adapt Beretta and Kuang’s framework: we
study the changes in eigenvalues of transcendental equations with respect to a variable
ν ∈ R+ which is not the delay. In such a case the characteristic equation is written

(5.7) D(λ, ν) := P (ν, λ) +Q(ν, λ)e−λ = 0,

where P,Q are polynomials in λ with ν-dependent complex coefficients, which we
divide between real and imaginary part as

(5.8) P (λ, ν) = PR(λ, ν) + iPI(λ, ν), Q(λ, ν) = QR(λ, ν) + iQI(λ, ν).

Now, we define ω(ν) as the solution of

(5.9) F (ω, ν) := |P (iω, ν)|2 − |Q(iω, ν)|2 = 0,

and I ⊆ R+0 the subset such that there exists a solution ω(ν) if and only if ν ∈ I.
For every such ν, we define two functions{

ψ(ν) = −PR(iω(ν), ν)QI(iω(ν), ν) + PI(iω(ν), ν)QR(iω(ν), ν),
φ(ν) = PR(iω(ν), ν)QR(iω(ν), ν) + PI(iω(ν), ν)QI(iω, ν)

and then a third

(5.10) ζ(ν) =


arctan(−ψ(ν)/φ(ν)) if ψ(ν) > 0, φ(ν) < 0,
π/2 if ψ(ν) = Q2

R +Q2
I , φ(ν) = 0,

π/2 + arctan(−ψ(ν)/φ(ν)) if φ(ν) > 0,
3π/2 if ψ(ν) = −(Q2

R +Q2
I), φ(ν) = 0,

2π + arctan(−ψ(ν)/φ(ν)) if ψ(ν) < 0, φ(ν) < 0.

Finally, for all n ∈ N we introduce a function Sn(ν) defined for ν ∈ I by

(5.11) Sn(ν) := ω(ν)− (ζ(ν) + 2nπ).

Given these notations, we state the following result.

Lemma 5.2. Assume that ω(ν) is a positive real root of (5.9) defined for ν ∈ I,
and at some ν∗ ∈ I,

Sn(ν∗) = 0 for some n ∈ N.
Then a pair of simple conjugate pure imaginary roots λ+(ν∗) = iω(ν∗), λ−(ν∗) =
−iω(ν∗) of (5.7) exists at ν = ν∗ which crosses the imaginary axis from left to right
if σ(ν∗) > 0 and crosses the imaginary axis from right to left if σ(ν∗) < 0, where

(5.12)

σ(ν∗) = sign

{
d Reλ

dν

∣∣∣
λ=iω(ν∗)

}
= sign {F ′ω(ω(ν∗), ν∗)} sign

{
dSn(ν)

dν

∣∣∣
ν=ν∗

}
.
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Proof. First, we notice that if λ = iω, then (5.7) is equivalent to
sin(ω) =

−PR(iω, ν)QI(iω, ν) + PI(iω, ν)QR(iω, ν)

|Q(iω, ν)|2
,

cos(ω) =
−PR(iω, ν)QR(iω, ν) + PI(iω, ν)QI(iω, ν)

|Q(iω, ν)|2
.

Let iω(ν) be a root of (5.7): the above system implies that F (ω(ν), ν) = 0. Moreover,
as in [6], we easily prove that it also implies that if ζ(ν) is given by (5.10), then
ζ(ν) ∈ [0, 2π] and

sin(ζ(ν)) =
−PR(iω(ν), ν)QI(iω(ν), ν) + PI(iω(ν), ν)QR(iω(ν), ν)

|Q(iω(ν), ν)|2
,

cos(ζ(ν)) =
−PR(iω(ν), ν)QR(iω(ν), ν) + PI(iω(ν), ν)QI(iω(ν), ν)

|Q(iω(ν), ν)|2
.

This implies that λ+(ν∗) = iω(ν∗), λ−(ν∗) = −iω(ν∗) are a pair of pure imaginary
roots of (5.7) if and only if F (ω(ν∗), ν∗) = 0 and there exists n ∈ N such that
ω(ν∗)− (θ(ν∗) + 2nπ) = 0.

The proof of the geometric criterion (5.12) is similar to that of Lemma 2.1 of
Beretta and Kuang [6]. Differentiating both sides of (5.7) by ν gives

dλ

dν
= − P ′ν(λ, ν) +Q′ν(λ, ν)e−λ

P ′λ(λ, ν) + (Q′λ(λ, ν)−Q(λ, ν))e−λ
.

The same (5.7) also gives eλ = −Q(ν,λ)
P (ν,λ) such that

(
dλ

dν

)−1
=

(
−P

′
λ(λ, ν)

P (ν, λ)
+
Q′λ(λ, ν)

Q(ν, λ)
− 1

)/(
P ′ν(λ, ν)

P (ν, λ)
− Q′ν(λ, ν)

Q(ν, λ)

)
.

Assume that λ = iω(ν), where ω(ν) is a solution of (5.9); then

(5.13)

(
dλ

dν

)−1
=
−P ′λ(λ, ν)P (λ, ν) +Q′λ(λ, ν)Q(λ, ν)− |P (iω, ν)|2

P ′ν(λ, ν)P (λ, ν)−Q′ν(λ, ν)Q(λ, ν)

Now we remark that iP ′λ(iω, ν) = P ′ω(iω, ν) and iQ′λ(iω, ν) = Q′ω(iω, ν); hence,

(5.14)

−P ′λ(iω, ν)P (iω, ν) +Q′λ(iω, ν)Q(iω, ν)

= i[(P ′RωPR + P ′IωPI)− (Q′RωQR +Q′IωQI)]

− [(P ′IωPR − PIP
′
Rω )− (Q′IωQR −QIQ

′
Rω )].

We notice that differentiating (5.9) with respect to ν gives

(5.15) F ′ω(ω, ν)ω′ + F ′ν(ω, ν) = 0, ν ∈ I,

where {
F ′ω = 2[(P ′RωPR + P ′IωPI)− (Q′RωQR +Q′IωQI)],
F ′ν = 2[(P ′RνPR + P ′IνPI)− (Q′RνQR +Q′IνQI)].
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Therefore, (5.14) becomes

−P ′λ(iω, ν)P (iω, ν) +Q′λ(iω, ν)Q(iω, ν)

= i
F ′ω(ω, ν)

2
− [(PIωPR − PIPRω )− (QIωQR −QIQRω )].

Similarly, we have

P ′ν(λ, ν)P (iω, ν)−Q′ν(λ, ν)Q(iω, ν)

=
F ′ν(ω, ν)

2
+ i[(P ′IωPR − PIP

′
Rω )− (Q′IωQR −QIQ

′
Rω )].

Using these two equalities and (5.15), (5.13) becomes(
dλ

dν

)−1
=
−2(U + |P (iω, ν)|2) + iF ′ω(ω, ν)

−ω′F ′ω(ω, ν) + 2iV

=
(

2(U + |P (iω, ν)|2)ω′F ′ω(ω, ν) + 2V F ′ω(ω, ν)

+ i(4(U + |P (iω, ν)|2)V − ω′F ′ω(ω, ν)2)
)/(

(ω′)2F ′ω(ω, ν)2 + 4V 2
)
,

where
U := (PIωPR − PIPRω )− (QIωQR −QIQRω ),

V := (P ′IωPR − PIP
′
Rω )− (Q′IωQR −QIQ

′
Rω ).

This implies that

Re

((
dλ

dν

)−1)
=
(
(U + |P (iω, ν)|2)ω′ + V

) 2F ′ω(ω, ν)

(ω′)2F ′ω(ω, ν)2 + 4V 2
.

Therefore, we have

sign

{
d Reλ

dν

∣∣
λ=iω

}
= sign

{
F ′ω(ω, ν)

}
sign

{
V + (U + |P (iω, ν)|2)ω′

}
.

Finally we use Sn(ν) ≡ ω(ν)− (ζ(ν) + 2nπ) to get

S′n(ν) = ω′(ν)− θ′(ν).

Since θ′(ν) = − Uω′+V
|P (iω,ν)|2 , we conclude that

sign

{
d Reλ

dν

∣∣
λ=iω

}
= sign

{
F ′ω(ω, ν)

}
sign

{
S′n(ν)

}
.

This lemma provides a tool to analyze any characteristic equation of the form
(5.7). Because our model of platelet production induces (5.5) which is of degree
three, we now apply this lemma to a transcendental equation of degree three.

5.5. Application to a system with a third-degree transcendental equa-
tion. Using the framework presented above on system (5.1), we obtain the following
result.

Proposition 5.3. Let ν be a parameter of system (5.1) among A, δ, γ, αP , αM
as defined in section 2. Let ρ(ν) := 2AαP δ − γαM .

1. Let ν = ν0 the solution of ρ(ν) = 0. Then

(W0,P0) =
(
καM/δ, 2Aκe

−δf(καM/δ)/γ
)

is a locally asymptotically stable equilibrium of (5.1).
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2. Suppose that ν takes a value ν∗ such that ρ(ν∗) > 0. Then if (5.9) has a
positive solution, it is unique and given by

ω =
√

4κe−δf(W0)f ′(W0)AαP (δ − γ)f(W0)− γ2f(W0)2,

where ν∗ replaces the appropriate parameter.
In addition, suppose that for such a value ν∗ of ν, ρ′(ν∗) > 0 (resp., ρ′(ν∗) <
0). We consider two possible cases.
(a) If for all ν ∈ [0, ν∗] (resp., ν ∈ [ν∗,+∞]) and all n ∈ N we have

Sn(ν) 6= 0 (where Sn is given by (5.11)), then the equilibrium of the
system for ν = ν∗ is locally asymptotically stable.

(b) Suppose there exists a sequence of pairs (ni, νi)i=0,...,I with νi < ν∗

(resp., νi > ν∗) such that Sni(νi) = 0. We index the pairs such that
the sequence (νi)i=0,...,I is increasing (resp., decreasing). Then, when
ν = ν0 a Hopf bifurcation occurs at (W0,P0) and periodic solutions ap-
pear.
Moreover, (W0,P0) for ν = ν∗ is a locally asymptotically stable equilib-
rium if and only if

I∑
i=0

sign
{
S′ni(νi)

}
= 0.

Otherwise, (W0,P0) is an unstable equilibrium.

We remark that ν0 exists if and only if maxν(S0(ν)) > 0 and maxν(S0(ν)) −
minν(S0(ν)) > 2π.

Proof. We present the proof in several steps.
1. We start by noticing that if 2AαP δ − γαM = 0 and 2AαP − αM = 0, then
δ = γ such that (5.5) becomes

0 =λ2 + 2λδf(W0) + δ2f(W0)2 = (λ+ δf(W0))2.

There is a negative double root λ = −δf(W0) < 0, implying that the equi-
librium is locally asymptotically stable.
In the case where 2AαP δ − γαM = 0 and 2AαP − αM > 0, (5.5) for λ 6= 0 is
equivalent to

(5.16) λ2 + aλ+ b+ dλe−λ + ge−λ = 0

with

a = (γ + δ)f(W0) +K(2AαP − αM ), d = −K(2AαP − αM ),

b = γδf(W0)2 + δf(W0)K(2AαP − αM ), g = −δf(W0)K(2AαP − αM ).

From Beretta and Kuang [6], we know that if λ = iω is a solution of this
characteristic equation, then we have

cos(ω) = − (b− ω2)g + ω2ad

ω2d2 + g2
= 1 +

γf(W0)

K(2AαP − αM )
> 1.

Therefore, it is impossible for (5.16) to have purely imaginary roots. Com-
bined with the fact that all eigenvalues have a negative real part for
2AαP − αM = 0, this implies that (W0,P0) is always a locally asymptot-
ically stable equilibrium of (5.1) for 2AαP δ− γαM = 0 and 2AαP −αM > 0.

2. In the case of (5.1), the characteristic equation is written in the form of (5.7),
where
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(5.17) D(ν, λ) = λ3 + a(ν)λ2 + b(ν)λ+ c(ν) + (d(ν)λ2 + g(ν)λ− c(ν))e−λ

such that the decomposition of D given by (5.7) and (5.8) gives{
PR(iω, ν) = c− aω2, QR(iω, ν) = −dω2 − c,
PI(iω, ν) = ω3 − bω, QI(iω, ν) = gω.

This implies that F (ω, ν) = ω2(ω4 + pω2 + q), and since we excluded 0 as a
solution, (5.9) is equivalent to

(5.18) ω4 + pω2 + q = 0

with p = a2 − 2b − d2 and q = −2ac + b2 − 2cd − g2. We apply this to our
case with

a = a1 + a2, b = b1 + c1 + δf(W0)a2, c = δf(W0)c1,

d = −a2, g = −(c1 + δf(W0)a2),

with
a1 = (γ + δ)f(W0), a2 = K(2AαP − αM ),

b1 = γδf(W0)2, c1 = Kf(W0)(2AαP δ − γαM ),

and K = κe−δf(W0)f ′(W0). We easily show that

q = δ2f(W0)3
[
4KAαP (γ − δ) + γ2f(W0)

]
, p =

q + δ4f(W0)4

δ2f(W0)2
.

Because p > q, q > 0 implies p > 0 such that (5.18) has one nonzero positive
root if and only if q < 0. In such a case, this root is given by

ω(ν) =

√
−p+

√
p2 − 4q

2
=
√

4KAαP (δ − γ)f(W0)− γ2f(W0)2.

Finally, as ω(ν) is the largest of the roots of F (ω, ν) and lim
ω→∞

F (ω, ν) = +∞,

the derivative of F at ω(ν) is always positive. Therefore, the geometrical
criterion (5.12) is now given by

δ(ν∗) =

{
dSn(ν)

dν

∣∣∣
ν=ν∗

}
.

According to Lemma 5.2, as ν shifts away from ν0 the number of pairs of
conjugate roots with a positive real part is given by

∑
i<i sign{S′ni(νi)}.

Noticing that (W0,P0) is a locally asymptotically stable equilibrium of (5.1)
if and only if all roots of (5.7) have negative real part, we complete the
proof.

In the next section, we use this criterion to assess the impact of an increase of
MkP death rate on the stability of our system.

6. Application of the framework for stability analysis on the megakary-
opoiesis model.

6.1. Choice of parameters. Except for the expansion rate A, our choice of
parameters is a combination of what is found in the literature and what is deducible
from fitting our model to single values available in the literature (like P ∗ the average
platelet count). Below, we give details for parameters requiring calculation or fitting.
Other parameters are given in Table 6.1.
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Table 6.1
Parameters obtained independently from our model.

Name Interpretation Unit Value Source

κ Progenitor input rate cells/kg*day
−1

3.7× 103 [7, 16]

δ Progenitor death rate days−1 0.069 [37]
αM TPO receptors per progenitor receptor/MkP 1.04× 103 [32, 35, 42]

γ Platelet death rate days−1 0.27 [29]
αP TPO receptors per platelet receptor/Pl. 56 [35]
P0 Average platelet count Pl./kg 20.28× 109 [25]
P− Pl. count without TPO − 10% [17]
n TPO clearance Hill coefficient − 2 [19]
KT TPO half-max clearance pg/ml 5.7× 103 [24, 35]
T0 Mean TPO concentration pg/ml 80.1 [43]

• By fitting a G0 model for HSC differentiation and renewal to mouse data,
Mackey [37] managed to infer the rate of differentiation and the rate of random
death of HSCs. We use the inferred value for HSC death rate as the death
rate of MkPs: δ = 0.069 days−1.
Furthermore, the product of the inferred value for HSC differentiation rate
0.010 days−1 and the value for HSC density 1.1× 106 cells/kg obtained from
mice data by Bernard, Belair, and Mackey [7] gives us the differentiation rate
to the megakaryocytic line,

κ = 1.1× 106 × 0.010/3 = 3.7× 103 cells/kg*days
−1
,

where we assume that HSCs differentiate equally to all three hematopoietic
cell lines.

• Using the mean platelet volume of 6.6 fL (6.6× 10−15L) obtained by Paulus
[42] and considering a platelet as a perfect sphere, we compute the area of
the surface of a platelet as aP = 17× 10−12m2 = 17 pm2. The area of MkP
surface is computed using a diameter of 10 µm [32], and considering them
also as a perfect spheres we get

aM = 4π52 = 314 pm2.

The amount of c-Mpl receptor per platelet is evaluated in [35] to be on av-
erage αP = 56. Considering that the amount of c-Mpl on the surface of a
megakaryocytic cell is proportional to the area of its surface, we get

αM = αP
aM
aP

= 1.04× 103.

• If we fit the differential equation P ′(t) = −γP (t) using linear regression to
the platelet disappearance curve available in [29], we obtain a death rate for
platelet of γ = 0.27 day−1.

• Using the average platelet count per liter of blood P0 from [43] and assuming
5L of blood for a person of 70kg we get

P0 = 284× 109 × 5/70 = 20.28× 109 platelets/kg.

• According to Li, Xia, and Kuter [35], platelet binding sites for TPO have an
average binding dissociation affinity KT = 163pM = 163 × 10−12mol/L. We
convert this value to pg/mL, using the molecular mass of TPO 35 kg/mol [24]:

KT = 5.7× 10−9 kg/L = 5.7× 103 pg/ml.
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• When the c-Mpl receptors are deactivated, the platelet count drops to P− =
P0/10 [17] and f(W0) takes the value 1/β. Therefore, (5.3) implies

β = δ/
(

log(2Aκ)− log(γP−)
)
.

• Knowing the normal value of platelet count P0 and (5.3), we obtain the value
of f(W0) at steady state as f(W0) =

(
log(2Aκ)− log(γP0)

)
/δ. We use this

value to first compute W0 from (5.3), and then α from (2.5):

α =
(

1/f(W0)− β
) (Kn

T + Tn0 )

Tn0
.

The value ofW0 is also used to compute Tprod/αT from the quasi-steady state
approximation (2.7):

Tprod
αT

=
W0T

n
0

Kn
T + Tn0

.

Recall from the introduction that CT can be explained through two different
pathogenesis: platelet-specific antibodies and antibodies targeting megakaryocytes
and progenitors. Therefore, Table 6.1 and Proposition 5.3 tell us that our model
cannot reproduce platelet-specific antibody-induced CT. Indeed, γ, the platelet death
rate, is larger than that of progenitors, δ, while Proposition 5.3 says that γ < δ
is a necessary condition for oscillations to appear. Therefore, oscillations cannot
be obtained through increasing the platelet destruction rate, i.e., γ. In contrast,
Proposition 5.3 is compatible with the pathogenesis of amegakaryocytic CT, which
corresponds to an increase of δ.

6.2. An increase in progenitor death rate δ leads to oscillations, then
a return to stability. With the parameters chosen as above, changes of stability
occur only when A ≥ 7.5× 107. As announced in section 4, the amplitude of A needs
to account both for the fragmentation of platelets from megakaryocytes and for the
successive divisions of progenitors not represented in our model. Figure 6.1 represents
the result of stability analysis when setting A = 216 × 2000, that is, accounting for
a total of 17 divisions before platelet shedding with 2000 platelets per shed by each
megakaryocyte [28]. The results are presented using the time variable t correspond-
ing to system (3.1): solutions are computed from system (5.1), then transformed as
explained at the end of section 4.

We see that (0, 0.6) and (0, 4.02) are the only two pairs (n, δ) ∈ N×R+ such that
Sn(δ) = 0. Using Proposition 5.3, we deduce the stability of our system from the
above graph as follows:

• From δ = γαM/(2AαP ), i.e., such that ρ(δ) = 0, to δ = δ0 = 0.67, there is
no pair (ni, δi) ∈ N× [δ, δ0] such that Sni(δi) = 0. Therefore the equilibrium
is locally asymptotically stable.

• As δ0 is the smallest value of δ such that for some n ∈ N (here n = 0) we
have Sn(δ) = 0, a Hopf bifurcation occurs at δ = δ0.

• (0, δ0) and (0, δ1), where δ1 = 4.02, are the only pairs of N × R+ such that
Sni(δi) = 0. Plus, S′0(δ0) > 0 and S′0(δ1) < 0. Therefore, first, for δ ∈ [δ0, δ1]
the equilibrium gets unstable and solutions are oscillating as shown on Figure
6.2. Second, for δ > δ1 we have

∑
i signS′ni(δi) = 0 such that the equilibrium

is locally asymptotically stable.
Overall our system generates oscillations upon an increase in the death rate of

megakaryocytes, reproducing qualitatively the pathogenesis of amegakaryocytic CT
[26].
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Fig. 6.1. The scores S0(δ) (dark blue line) and S1(δ) (light blue line) are plotted against δ.
S0(δ) intersects with 0 (dashed red line) twice, as indicated by the black dotted lines, for δ0 = 0.6
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Fig. 6.2. Long-term behavior of platelet count: when the death rate of progenitors is set to
δ = 1 days−1, we have δ ∈ [δ0, δ1] such that the quantity of platelets oscillates, as predicted by
Proposition 5.3.

7. Discussion. Previous attempts to build a model of megakaryopoiesis were
based on the assumption that the enhancement by TPO of endomitosis, with en-
hancement of progenitor division, is the key to understanding dynamics in platelet
count. This assumption led to the successful reproduction of periodic dynamics as
observed in CT, but stability analysis could not give a clear interpretation of how CT
is explained through the parameters [2, 34]. Therefore we have decided to explore a
new hypothesis based on recent biological results [40, 41], that is, that the main action
of TPO is to enhance progenitors division. We considered a population of progenitors
structured in maturity with TPO increasing maturation speed, a population of platelet
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structured in age, and the concentration of TPO, with the hypothesis of quasi-steady-
state for TPO concentration with respect to the quantity of platelets and progenitors.
This led to a system of two delay differential equations with a state-dependent delay.
We started with a preliminary analysis of this model, showing well-posedness of the
system, as well as eventual boundedness and positivity of the solutions. These results
required to assume that 2AαP ≥ αM , that is, that the amount of c-Mpl receptors that
appear when a megakaryocyte sheds its platelets is bigger than the amount of c-Mpl
receptors of this megakaryocyte (in accordance with all available biological data; see
Table 6.1). It also required αMκ > Tprod/αT max(δ, γ), that is, to ensure that the
rate of production of c-Mpl receptors is big enough for the quasi-steady-state equi-
librium to be possible at all times. Next, we used the change of variable proposed
by Smith [51] to transform the state-dependent delay into a fixed delay. It allowed
to prove that given the conditions exposed earlier for positivity and well-posedness,
the solution to our system exists and is unique. This new formulation was then used
to perform a stability analysis of our system. Upon linearization, we established that
the stability of the unique nontrivial equilibrium is assessed using a transcendental
polynomial of degree three. We decided to adapt the framework proposed by Beretta
and Kuang [6] to analyze the effect of parameters other than the delay on the stabil-
ity of equilibriums. It resulted in a new geometrical criterion for the appearance of
eigenvalues with positive real parts. This framework was then used on the character-
istic equation of the system describing megakaryopoiesis, leading to a result linking
changes in parameters of the system to the occurrence of Hopf bifurcations, that is,
the onset of periodic solutions. Finally, parameters of the model were obtained and
computed from existing literature such that the ability of our model to reproduce
qualitatively the pathogenesis of amegakaryocytic CT could be evaluated. Parame-
ters were used to compute the evolution of the geometrical criterion mentioned earlier
as the megakaryocyte death rate δ increases. This revealed that increasing the death
rate of progenitors lead to the onset of oscillations in platelet count, in agreement
with observations of amegakaryocytic CT cases [26].

Because Lemma 5.2 is given for the general form (5.7), it could be used for any
model with a threshold-defined delay differential equation transformed into a equation
with fixed delay using [51]. Although the threshold used to define the delay might
be different from 1 (for example, in [16]), the function of maturation or aging speed
V (.) is a tool rather than the exact description of a quantitative process: rescaling it
to bring the threshold to 1 has little consequence. Moreover, we expect that Lemma
5.2 can be adapted to a version of (5.7) with e−τλ instead of e−λ. However, it is
unlikely that Lemma 5.2 could be adapted for systems with more than one delay
like that of Langlois et al. [34]. Unlike Lemma 5.2, Proposition 5.3 relies on the
fact that our model yields a characteristic equation of the form (5.17). We did not
have to modify our initial model in order to obtain this particular form; therefore,
we expect it to appear in other problems than platelet production. However, up to
now previous works relied on characteristics equations too complicated to obtain an
explicit expression for ω(ν) as we did, and when stability was studied analytically,
authors of [11, 30, 39] chose to fix the maturation speed to V (t) := 1. Proposition
5.3 could therefore be adapted to other systems (among which other hematopoietic
cells lines), providing a compromise between mathematical analysis and accuracy with
respect to biology.

Regarding biology, our goal was to assess whether underlying anomalies observed
in CT patients could indeed be the changes leading to oscillations. We provided
an example in which oscillations appear when the death rate of progenitors δ is
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increased 10-fold, which is consistent with the pathogenesis of amegakaryocytic CT.
The conceptual way in which oscillations appear, however, is not compatible with
cases characterized by antiplatelet antibodies, as explained at the beginning of sec-
tion 6. Langlois et al. [34] were successful in generating oscillations in a model of
megakaryopoiesis after an alteration of the platelet destruction mechanism, namely,
an increase in the maximal removal rate of platelets by macrophages. Therefore we
plan on adding a macrophage-mediated clearance of platelets to our model in order
to reproduce qualitatively both amegakaryocytic and autoimmune CT.

Additionally, we could not reproduce the quantitative features of CT: as our exam-
ple shows, we did not manage to produce a simulation of platelet count matching the
amplitude observed in CT patients (fluctuations of a span above 7× 109 platelets/kg
[26]). Currently, the amplitude is only accessible through numerical simulations of
solutions, such that an exhaustive exploration of the effect of parameters on ampli-
tude is a heavy computational task: we could try to see if an explicit expression of
the amplitude as a function of parameters can be obtained via a simplification of the
model, as can be seen, for example, in [44]. On the other hand, we might obtain
simulations closer to clinical data if we increase the complexity of our modeling of
the expansion of progenitors. Indeed, our choice of a TPO-dependent speed of cell
division (rather than overall volume expansion as in [34]) together with the necessity
of an A >> 3000 implies that a progenitor divides multiple times as it goes from
one end of the compartment M (see Figure 2.1) to the other. Taking this feature
into account in the computation of the concentration on c-Mpl receptors (instead of
αMM(t)+αPP (t) currently) could be enough to reproduce the clinical features of CT.
An example of a model for megakaryopoiesis with multiple compartments, although
with a fixed division time τ , is found in [8].

The system formed with (2.3), (2.4), and (2.8) is such that the tools developed
in [51] can be used to obtain a system of differential equations with a fixed delay on
which the tools developed in [6] can be used. However, subsequent versions of the
model might not be suitable for such a transformation, and it might be necessary
to perform the stability analysis on the state-dependant delay formulation following
works like [3, 31] or even on the age- and maturity-structured PDE formulation using
results on Hopf bifurcation such as [13, 36]. This is the object of our future work.

Problem (5.7) has been addressed in its general form by Pontryagin: using func-
tions F (ω) and G(ω) defined as, respectively, the real and imaginary part of D(iω, ν),
he proved a theorem giving sufficient conditions for all eigenvalues to have a negative
real part [5, section 13.6]. This theorem was applied by Cahlon and Schmidt [12]
to a transcendental characteristic equation of third degree of a more general form
than (5.17). However, we did not use these results for our problem: on one hand the
necessary condition for stability [12, theorem 3.1] cannot be applied to our problem
as (5.17) is studied for λ 6= 0, and on the other hand computations necessary for the
“general algorithmic stability test” renders this test unfit for finding changes in sta-
bility. Nevertheless, many results for simpler characteristic equations relying on this
same theorem from Pontryagin are found in [5, 12]. Other results for characteristic
equations of second degree are found in [4, 51]: these results cannot be extended to
our problem because our characteristic equation involves W0, a term given by an im-
plicit function of parameters of interest. Some authors encountered the same problem
in two papers on erythropoiesis [11, 39], and each time a geometrical method specific
to the model was developed to find Hopf bifurcations. Finally, other authors also
relied on exclusively numerical methods to handle more complicated forms of (5.7).
In [34], Langlois et al. used a method from Mahaffy [38] to compute the eigenvalues
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of a characteristic equation of degree four with three distinct delays. Computations
show that as four parameters vary linearly from values associated with normal platelet
count (i.e., a stable solution) to values associated with CT patients (i.e., an oscillating
solution), the eigenvalues cross the imaginary axis from left to right. In comparison,
our work allows us to study the specific effect of each parameter on stability.
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boundary conditions of the maturity-structured model.
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