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PERIODIC OSCILLATIONS OF BLOOD CELL POPULATIONS INCHRONIC MYELOGENOUS LEUKEMIAMICHAEL C. MACKEY ∗, CHUNHUA OU † , LAURENT PUJO-MENJOUET ‡ , ANDJIANHONG WU, §Abstra
t. We develop some te
hniques to prove analyti
ally the existen
e and stability of longperiod os
illations of stem 
ell populations in the 
ase of periodi
 
hroni
 myelogenous leukemia.Su
h a periodi
 os
illation p∞ 
an be analyti
ally 
onstru
ted when the hill 
oe�
ient involved inthe nonlinear feedba
k is in�nite, and we show it is possible to obtain a 
ontra
tive returning map(for the semi�ow de�ned by the modeling fun
tional di�erential equation) in a 
losed and 
onvex
one 
ontaining p∞ when the hill 
oe�
ient is large, and the �xed point of su
h a 
ontra
tive mapgives the long period os
illation previously observed both numeri
ally and experimentally.Key words. 
ell proliferation, G0 stem 
ell model, periodi
 
hroni
 myelogenous leukemia, longperiod os
illations, delay di�erential equations, Hill fun
tion, Walther's method.������������������������-AMS subje
t 
lassi�
ations. 34C25, 34K18, 37G151. Introdu
tion. �How do `short' 
ell 
y
les give rise to `long' period os
illa-tions?� This question has arisen from the observation of blood 
ell population os
il-lations in the 
ase of periodi
 myelogenous leukemia (PCML) [7℄, a blood disease tobe dis
ussed in some details below. Indeed, it has long been observed in the bonemarrow that there is an enormous di�eren
e between the relatively short 
ell 
y
leduration whi
h ranges between 1 to 4 days [12℄, [17℄ , [18℄ and the long period os
il-lations in PCML (between 40 to 80 days) [7℄. The link between these relatively short
y
le durations and the long periods of peripheral 
ell os
illations is un
lear, to thebest of our knowledge, has neither been biologi
ally explained nor understood. Anattempt to answer this question has been made by Pujo-Menjouet and Ma
key in [23℄and Pujo-Menjouet et al. in [22℄, where they investigated the role of ea
h parameterof the mathemati
al model involved in the 
ell 
y
le and the in�uen
e of ea
h param-eter on the long period and the amplitude of the peripheral 
ell os
illations. Theyshowed qualitatively that the 
ell 
y
le regulation parameters have major in�uen
e onthe os
illation amplitude while the os
illation period is 
orrelated with the 
ell deathand di�erentiation parameters, and they obtained these results in the parti
ular 
asewhere the hill 
oe�
ient involved in the model formulation is in�nite. Our obje
tivehere is to prove analyti
ally that the similar 
on
lusions and results remain true inthe more biologi
ally realisti
 
ase where the hill 
oe�
ient is �nite.More spe
i�
ally, from the previous studies, it is known that the evolution of
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2 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WUthe 
ells in resting phase involves the Hill fun
tion in both the term representing theinstantaneous loss of proliferating 
ells to 
ell division and to di�erentiation and theterm representing the delayed produ
tion of proliferating stem 
ells. A key parameterin the Hill fun
tion is the integer n whi
h is usually large, and this Hill fun
tionredu
es to the Heaviside step fun
tion when n = ∞. As will be shown, the underlyingsystem with n = ∞ be
omes a pie
ewise linear s
alar delay di�erential equationthat, after non-trivial but straightforward 
al
ulations, has a periodi
 solution oflarge periods and amplitudes with very strong stability and attra
tivity properties.The main purpose of this paper is to 
onstru
t a 
onvex 
losed 
one 
ontaining theaforementioned periodi
 solution (when n = ∞) and a 
ontra
tive returning mapde�ned on this 
one su
h that a �xed point of su
h a returning map gives a stableperiodi
 solution of the model equation for the 
ells in resting phase when n is large.This method was �rst developed in Walther [29℄, [30℄ for a s
alar delay di�erentialequation with 
onstant linear instantaneous fri
tion and a negative delayed feedba
k,and was later extended to state-dependent delay di�erential equations [31℄,[32℄ andto delay di�erential systems [32℄, [34℄. This method was further enhan
ed re
entlyin [21℄ by in
orporating some ideas from 
lassi
al asymptoti
 analysis and mat
hingmethod. Appli
ations of this method to the model for 
ells in the resting phase seemto be highly non-trivial sin
e both the instantaneous loss of proliferating 
ells and thedelayed produ
tion of proliferating stem 
ells involve the nonlinearity and there is noanalyti
 formula for the periodi
 solution in the limiting 
ase (n = ∞).We should emphasize that periodi
 hematologi
al diseases have attra
ted a signif-i
ant amount of modelling attention in various domain su
h as periodi
 auto-immunehemolyti
 anemia [2℄, [16℄ and 
y
li
al thrombo
ytopenia [25℄, [27℄. It has been ob-served that the periodi
 hematologi
al diseases of this type involve periodi
ity betweentwo and four times the bone marrow produ
tion delay. This observation has a 
learexplanation within a modelling 
ontext. Some other hematologi
al diseases su
h like
y
li
al neutropenia ([3℄, [9℄, [10℄, [14℄, [15℄, [17℄) and 
hroni
 myelogenous leukemia [7℄involve more than one blood 
ell type (i.e. white 
ells, red blood 
ells and platelets).It is believed that the os
illations in these diseases originate in the pluripotential stem
ell 
ompartment and have very long period durations (of order of weeks to months)in general. In the parti
ular 
ase of the periodi
 
hroni
 myelogenous leukemia, theperiod 
an range from 40 to 80 days and two lines of eviden
e appear to prove thatthe os
illations are due to a destabilization of the stem 
ell population based in thebone marrow. The �rst eviden
e is due to the gene mutation in the Philadelphia
hromosome and responsible for the disease . The mutated 
ells have been observedin all the blood 
ell lineages [4℄, [6℄, [8℄, [11℄, [28℄. The se
ond line of eviden
e is givenin [7℄ where the authors 
olle
ted 
lini
al data from the literature, and proved thatwhite blood 
ells, erythro
ytes and platelets os
illate with the same period.Periodi
 
hroni
 myelogenous leukemia (or PCML) takes its name from the 
lini
al
hara
ter and the type of leukemia it des
ribes. Leukemia is a malignant disease
hara
terized by un
ontrolled proliferation of immature and abnormal white blood
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ells in the bone marrow, the blood, the spleen and the liver. Its 
hara
ter 
an be
hroni
 (in the early stage of myelogenous leukemia) or a
ute (in the late stage). Thetype of 
ells involved are myeloid, lymphoid or mono
yti
 depending on the damagedbran
h of blood 
ell produ
tion. The stem 
ell model by Pujo-Menjouet and Ma
key in[23℄ and Pujo-Menjouet et al. in [22℄ (also 
alled G0 model due to the 
onsideration ofthe G0 resting phase in the 
ell 
y
le) is developed in order to des
ribe the me
hanismof the disease under 
onsideration [5℄, [19℄, [26℄.The remaining part of this paper is organized as follows. In Se
tion 2 we presentthe model in detail. In Se
tion 3 we re
all some previous results from Pujo-Menjouetet al. in [22℄ in the 
ase where the Hill 
oe�
ient n is in�nite. Then, we introdu
e amore general result on the perturbed delay equation given in se
tion 4, and we presentour main results in se
tion 5 in
luding the full asymptoti
 expansion for the periodi
solutions.2. Des
ription of the model. The G0 model, whose early features are due toLajtha [13℄ and Burns and Tanno
k [5℄, is derived from an age stru
tured 
oupledsystem of two partial di�erential equations, 
oupled with some boundary and initial
onditions [24℄, [14℄, [15℄, and [20℄. Using the method of integration along 
hara
-teristi
s [33℄ these equations 
an be transformed into a pair of non-linear �rst-orderdi�erential delay equations [14℄, [15℄, [17℄. The model 
onsists of a proliferating phasewhere the 
ell population is denoted by P (t) at time t, and a G0 resting phase, with apopulation of 
ell N(t). In the proliferating phase, 
ells are 
ommitted to undergo 
elldivision a 
onstant time τ after their entry. Note that the 
hoi
e of τ as a 
onstantis to simplify the problem, though some models with a non 
onstant value of τ exist[1℄, [3℄. The loss rate γ in the proliferating phase is due to apoptosis (programmed
ell death). At the point of 
ytokinesis (
ell division), a 
ell divides into two daughter
ells whi
h enter the resting phase. In this phase, 
ells 
an not divide but they havethe 
hoi
e of between three di�erent fates. They may have one of three possible fates:di�erentiate at a 
onstant rate δ, reenter the proliferating phase at a rate β, or simplyremain in G0. Note that the reentering rate β will be a nonlinear term in our equationand the fo
us of our study (see Figure (2.1) for an s
hemati
 illustration of the 
ell
y
le).The model, des
ribed by a 
oupled non-linear �rst order delay equations, takesthe following form
dP (t)

dt
= −γP (t) + β(N)N − e−γτβ(Nτ )Nτ , (2.1)and

dN(t)

dt
= −[β(N) + δ]N + 2e−γτβ(Nτ )Nτ , (2.2)where Nτ = N(t − τ). The resting to proliferative phase feedba
k rate β is taken tobe a Hill fun
tion of the form

β(N) =
β0θ

n

θn + Nn
.



4 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WU
Proliferative phase P

Resting

phase (G0)

N

differentiation/death rate δ

G1 S G2 M

apoptosis rate γ

cell cycle duration τ

proliferation rate β

Fig. 2.1. A s
hemati
 representation of the G0 stem 
ell model. Proliferating phase 
ells (P )in
lude those 
ells in G1, S (DNA synthesis), G2, and M (mitosis) while the resting phase (N) 
ellsare in the G0 phase. δ is the rate of di�erentiation into all the 
ommitted stem 
ell populations, and
γ represents a loss of proliferating phase 
ells due to apoptosis. β is the rate of 
ell reentry from G0into the proliferative phase, and τ is the duration of the proliferative phase. See [14℄, [15℄, [17℄ forfurther details.In equation (2.2), the �rst term represents the loss of proliferating 
ells to 
ell division(β(N)N) and to di�erentiation (δN). The se
ond term represents the produ
tion ofproliferating stem 
ells, with the fa
tor 2 a

ounting for the amplifying e�e
t of 
elldivision while e−γτ a

ounts for the attenuation due to apoptosis. Note that, we onlyneed to understand the dynami
s of the G0 phase resting population (governed byequation (2.2)) sin
e the proliferating phase dynami
s (governed by equation (2.1))are driven by the dynami
s of the resting 
ells.By introdu
ing the dimensionless variable x = N/θ, we 
an rewrite equation (2.2)as

dx

dt
= −[β(x) + δ]x + kβ(xτ )xτ , (2.3)where

β(x) = β0
1

1 + xn
, (2.4)and k = 2e−γτ . The steady state x∗ of equation (2.3 ) are given by the solution of

dx/dt ≡ 0. Then we have x∗ ≡ 0 , or
x∗ =

(

β0
k − 1

δ
− 1

)1/n

. (2.5)Here we require
τ < −

1

γ
ln

δ + β0

2β0
,so that β0

k − 1

δ
> 1 in (2.5).Note that when n → ∞, x∗ → 1 in (2.5) and β(x) tends to a pie
ewise 
onstantfun
tion (the Heaviside step fun
tion).



PERIODIC SOLUTIONS IN CHRONIC MYELOGENOUS LEUKEMIA 5A solution of Equation (2.3) is a 
ontinuous fun
tion x : [−τ, +∞) → R+ obeying(2.3) for all t > 0. The 
ontinuous fun
tion ϕ : [−τ, 0) → R+, ϕ(t) = x(t) for all
t ∈ [−τ, 0], is 
alled the initial 
ondition for x. Using the method of steps, it is easyto prove that for every ϕ ∈ C([−τ, 0]), where C([−τ, 0]) is the spa
e of 
ontinuousfun
tions on [−τ, 0], there is a unique solution of equation (2.3) subje
t to the initial
ondition ϕ.3. Periodi
 solutions: limiting nonlinearity. In this se
tion we study thedynami
s of equation (2.3) when β(x) is redu
ed to the step fun
tion

β(x) =

{

0, x > 1,
β0, x < 1.As in the paper by Pujo-Menjouet et al. [22℄, we introdu
e two 
onstants by

α = β0 + δ, Γ = 2β0e
−γτ = kβ0.Inserting the above step fun
tion β(x) into equation (2.3), we have

dx

dt
=















−δx, 1 ≤ x, xτ ,
−αx, 0 ≤ x ≤ 1 ≤ xτ ,
−αx + Γxτ , 0 ≤ x, xτ ≤ 1,
−δx + Γxτ , 0 ≤ xτ ≤ 1 ≤ x,

(3.1)where xτ = x(t − τ).For the equation (3.1), we 
hoose the initial fun
tion ϕ(t) ≥ 1 + η for t ∈ [−τ, 0)and ϕ(0) = 1+η where η is a small positive 
onstant 
hosen later. We should remarkthat if we 
hoose ϕ(t) ≤ 1 + η for t ∈ [−τ, 0), the results and the te
hniques to beobtained and developed are similar. By the 
ontinuity of the solution x, we have fromequation (3.1) the existen
e of a t1 su
h that x(t) and x(t − τ) are greater than 1 for
t ∈ [0, t1) and x(t1) = 1. The solution x(t) then satis�es

dx

dt
= −δx, for t ∈ [0, t1]. (3.2)Thus solving the above equation, we 
an have x(t) = ϕ(0)e−δt = (1 + η)e−δt. Itfollows that

t1 =
lnϕ(0)

δ
=

ln(1 + η)

δ
. (3.3)In the next interval of time, de�ned by [t1, t1 + τ ], the dynami
s are given by

dx

dt
= −αx. (3.4)The solution is then given by x(t) = e−α(t−t1) for t ∈ [t1, t1+τ ] and satis�es x(t1+τ) =

e−ατ whi
h is independent of the initial fun
tion ϕ(t). In other words, the solutiondestroys all memory of the initial data.



6 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WUThe solution in the next interval will be su
h that x, xτ < 1. In order thatequation (3.1) has periodi
 solutions, we should impose an extra 
ondition on Γ and
α so that

−αx + Γxτ ≥ 0. (3.5)Otherwise, if −αx + Γxτ ≤ 0, then the solution may tend to zero as t approa
hesin�nity and thus we 
annot expe
t periodi
 solution. In parti
ular, if
−αx + Γxτ ≈ 0,then the solution may stay below the line of x = 1 so long that the analysis be
omesvery 
ompli
ated. This is also undesirable biologi
ally sin
e the period will be ex-tremely long. Note that for t ∈ [t1 + τ, t1 + 2τ ] , x(t − τ) = e−α(t−t1−τ). Then, from(3.1), we have dx

dt
= −αx + Γxτ = −αx + Γe−ατ(t−t1−τ) whi
h gives

x(t) = e−α(t−t1−τ)(e−ατ + Γ(t − t1 − τ)). (3.6)For the sake of simpli
ity, we impose an extra 
ondition on Γ:
Γ > max{

1

τ
(eατ − e−ατ ), αeατ}, (3.7)so that (3.5) holds when x ≤ 1 (due to x(t − τ) ≥ e−ατ ), and also x(t1 + 2τ) =

e−ατ (e−ατ + Γτ) > 1 by (3.6). 1Sin
e x(t) is in
reasing in t ∈ [t1 + τ, t1 + 2τ ], there exists a unique point t2 ∈

(t1 + τ, t1 + 2τ) so that x(t2) = 1. Assume t2 = t1 + τ + u, u ∈ (0, τ). Then from (3.6)we have
eαu = e−ατ + Γu. (3.8)The above equation (3.8) is a trans
endental equation and 
annot be solved expli
itly.But we 
an expand eαu by Taylor's series, that is 1 + αu +

(αu)2

2
and solve u by theapproximated equation

1 + αu +
α2

2
u2 ≈ e−ατ + Γu.Next for t ∈ [t2, t1 + 2τ ], the dynami
s are

dx

dt
= −δx + Γxτ = −δx + Γe−α(t−t1−τ),whi
h gives

x(t) = e−δτ(t−t2){1 −
Γ

β0
eα(t1+τ)−δt2

(

e−β0t − e−β0t2
)

}. (3.9)1Note that this 
ondition allows us to get the shortest period length for the solution. In order toget longer periods, we should assume other 
onditions on Γ su
h that x(t1 + 2τ) < 1, thus the slopeof the in
reasing part of the solution would be less steep.



PERIODIC SOLUTIONS IN CHRONIC MYELOGENOUS LEUKEMIA 7Finally for t ∈ [t1 + 2τ, t2 + τ ],

dx

dt
= −δx + Γxτ ,

= −δx + Γe−α(t−t1−2τ)(e−ατ + Γ(t − t1 − 2τ)),that is
x(t) = e−δ(t−t1−2τ) [x(t1 + 2τ) + Γ (j(t) − j(t1 + 2τ))] ,where

j(t) =
1

(δ − α)

(

e−ατ + Γ(t − t1 − 2τ) −
Γ

δ − α

)

e(δ−α)(t−t1−2τ).We now 
laim that
x(t) > 1, t ∈ (t2, t2 + τ ]. (3.10)Indeed, at the point t2, x(t2) = 1, x(t2 − τ) ≥ e−ατ . By (3.7) we have
x′(t2) > −δx + Γxτ > 0.Suppose, y way of 
ontradi
tion, that there exists a point h ∈ (t2, t2 + τ) su
h that

x(h) = 1, x′(h) ≤ 0 and x(t) > 1 for t ∈ (t2, h). Then using equation ( 3.1) we haveby (3.7)
x′(h) = −δ + Γx(h − τ) ≥ −δ + Γe−ατ > 0.This is a 
ontradi
tion and our 
laim is true.After the time t2 + τ , both x1 and x are greater than 1, and the solution satis�es

x′ = −δx(t) (3.11)and hen
e is de
reasing. Therefore, there exists a point, say t = d so that x(d) = 1.Now we 
an use (3.10) and (3.11) to 
hoose a small positive 
onstant η su
h that atsome point Tx < d

x(Tx) = 1 + η, x(Tx + s) > 1 + η, s ∈ [−τ, 0). (3.12)A
tually, this Tx is exa
tly the period of the solution x(t). Summarizing the aboveanalysis, we have the following result:Theorem 3.1. Assume that x is the solution of (3.1) subje
t to the initial 
on-dition φ ≥ 1 + η where η is a small positive 
onstant de�ned in (3.12). Suppose that
Γ satis�es ( 3.7). Then x is a periodi
 solution.4. Periodi
 solutions: general nonlinearity.



8 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WU4.1. Perturbed delay equation. With the detailed analysis of the G0 modelwhen the Hill fun
tion redu
es to the Heaviside step fun
tion, we 
an now 
onsiderthe general nonlinearity from the viewpoint of regular perturbation. More pre
isely,we 
onsider the perturbed problem
dy

dt
= −[β(y) + δ]y + kβ(yτ )yτ , (4.1)i.e., we return to the original problem with β = β0

1

1 + yn
. Denote by ε = 1/n, we
an rewrite the Hill fun
tion as

β(y) = β0
1

1 + y1/εAs a te
hni
al preparation, we now des
ribe some elementary properties of the abovespe
i�
 Hill fun
tion.Lemma 4.1. Assume that ε is su�
iently small. We have(a) If y >

(

1

ε

)ε/(1−ε)

, then
β(y) < β0ε, yβ(y) < β0εand if 0 < y < εε, then

β0 > β(y) > β0(1 − ε) , and |yβ(y) − β0y| < β0ǫ. (4.2)(b)Moreover,
∣

∣

∣

∣

d(yβ(y))

dy

∣

∣

∣

∣

< β0ε , for y >

(

1

ε

)2ε

,and
∣

∣

∣

∣

d(yβ(y) − β0y)

dy

∣

∣

∣

∣

< β0ε , for 0 < y < (
ε2

1 + ε
)ε.Proof (a). If y >

(

1

ε

)ε/(1−ε)

, then
β(y) =

β0

1 + y1/ε
<

β0

y1/ε
<

β0
(

1

ε

)1/(1−ε)
< β0ε,and

yβ(y) =
β0y

1 + y1/ε
<

β0

y
1

ε
−1

< β0ε.If 0 < y < εε, then
β0 > β(y) =

β0

1 + y1/ε
> β0(1 − y1/ε) ≥ β0(1 − ε),
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|yβ(y) − β0y| = |β0

y1/ε+1

1 + y1/ε
| < β0y

1/ε+1 < β0ε.(b) If y > (1/ε)2ε , then
∣

∣(yβ(y))′
∣

∣ = β0

∣

∣

∣

∣

(
1

ε
− 1)y1/ε − 1

∣

∣

∣

∣

(1 + y1/ε)2
≤ β0(

1

ε
− 1)y−1/ε < β0ε.Sin
e the fun
tion

f(x) =
(1 +

1

ε
)x +

1

ε
x2

1 + xis in
reasing for x ∈ (0,
ε2

1 + ε
) and f(

ε2

1 + ε
) < ε, then

∣

∣(yβ(y) − β0y)
′
∣

∣ = β0

(1 +
1

ε
)y1/ε +

1

ε
y2/ε

1 + y1/ε
< β0ε,if 0 < y < (

ε2

1 + ε
)ε.Returning to equation (4.1), we let the initial fun
tion ϕ(t) be 
hosen in thefollowing 
losed 
onvex sets

A(η) = {ϕ(t) ∈ C([0, 1]) : 1 + η ≤ ϕ(t) and ϕ(0) = 1 + η},where η is a small positive 
onstant de�ned in the previous se
tion. For given ϕ(t) in
A(η), we 
an have a unique solution to equation (4.1). The relations

Fβ(t, ϕ) = yt, yt = y(t + s), −τ ≤ s ≤ 0, t ≥ 0de�ne a 
ontinuous semi�ow F = Fβ on C([−τ, 0]).We �nd that for the simpler equation (3.1), if ϕ(t) ∈ A(η), then the solutionwill return to A(η) after �nite time. We like to know whether or not this situationstill happens for equation (4.1). The study of this point be
omes ne
essary and alsoimportant in order to build a returning map. Fortunately, we haveLemma 4.2. Let y(t) be the solution of equation (4.1) with any initial fun
tion
ϕ ∈ A(η). Then

y(t) = x(t) + O(ε log ε),for t ∈ [0, Tx] where Tx is the period of periodi
 solution x(t), de�ned in Theorem 3.1,to equation (3.1).



10 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WUProof From (4.1) we know that the solution y(t) is de
reasing in t in the rightneighborhood of the starting point t = 0. We 
an further 
laim that there exist threepoints η1, t
y
1 , η2, η1 < ty1 < η2, so that

y(η1) =

(

1

ε

)2ε

, y(ty1) = 1, y(η2) =

(

ε2

1 + ε

)ε

, (4.3)and in the interval (0, η2), the solution y(t) is de
reasing. Indeed, if y(t) >

(

1

ε

)2ε

>

(

1
ε

)ε/(1−ε) , and y(t − τ) >

(

1

ε

)2ε

>
(

1
ε

)ε/(1−ε)
, then by Lemma 4.1 we have

β(y)y < β0ε, β(yτ )yτ < β0εand it follows from equation (4.1) that
dy

dt
= −(δ + β(y))y + kβ(yτ )yτ ,

< −
δ

2
as ε → 0, (4.4)whi
h means that y(t) is de
reasing and there exists a point η1 su
h that y(η1) =

(1/ε)
2ε and 1+ η > y(t) > (1/ε)

2ε, for t ∈ (0, η1). Similarly at the right neighborhoodof η1, say (η1, η1 + τ/2),we have β(yτ )yτ = O(ε) and ( 4.4) still holds. This means thesolution is still de
reasing in t and there exist two points ty1 , η2, η1 < ty1 < η2 so that
y(ty1) = 1, y(η2) =

(

ε2

1 + ε

)ε

.By the Mean�Value Theorem, it is easy to know that
|y(η1) − y(η2)| ≥

δ

2
|η1 − η2|or equivalently

η2 − η1 ≤
2

δ
(y(η1) − y(η2)) = O(−ε log ε).Therefore,

ty1 − η1 < η2 − η1 = O(−ε log ε). (4.5)Now using again the equations (4.1) and (3.1) for t ∈ [0, η1], we have from Lemma 4.1
(x − y)′ = −δ(x − y) + O(ε),whi
h implies that

|x(t) − y(t)| = O(ε)
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ular at the point t = η1,

x(η1) = y(η1) + O(ε) =

(

1

ε

)ε/(1−ε)

+ O(ε) = 1 + O(−ε log ε).It follows from (3.2) and (3.4) that t1, de�ned in (3.3) satis�es
t1 = η1 + O(−ε log ε),and
t1 = ty1 + O(−ε log ε).For t ∈ [η1, η2], sin
e both the derivative of x(t) and y(t) are of the order of O(1)and the length of the interval [η1, η2] is of the order of O(−ε log ε), we 
an 
on
ludethat

y(t) = x(t) + O(−ε log ε). (4.6)For t ∈ [η2, τ + η1], y(t − τ) > (1/ε)
2ε

. By Lemma 4.1, we still have
y(t − τ)β(y(t − τ)) = O(ε).By equation (4.1) we know that the solution y(t) will still be de
reasing for t ∈

[η2, τ + η1]. Note that 0 < y(t) < y(η2) = εε, so that (4.2) in Lemma 4.1 holds. Thuswe 
an derive from (4.1) that
y′(t) = −αy(t) + O(ε), (4.7)for t ∈ [η2, τ + η1]. Coupling this equation with (3.4) and using (4.6) at the point

t = η2 gives
y(t) = x(t) + O(ε log ε)for t ∈ [η2, τ + η1].For t ∈ [τ + η1, τ + η2], using again the fa
t that both the derivatives of x(t) and

y(t) are bounded by O(1) and the length of this interval is of order O(−ε log ε), wehave
y(t) = x(t) + O(ε log ε).For t ≥ 1 + η2, the solution y(t) begins to in
rease sin
e Γ satis�es (3.7). By thesimilar argument used above, it follows that there exist three point η3, t

y
2 , η4, η3 < ty2 <

η4 su
h that
y(η3) =

(

ε2

1 + ε

)ε

, y(ty2) = 1, y(η4) =

(

1

ε

)2ε

,and
η3 = ty2 + O(ε log ε), η4 = ty2 + O(ε log ε), (4.8)
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ty2 = t2 + O(ε log ε). (4.9)We 
an 
ontinue the pro
ess above and it is not di�
ult to �nd that y(t) will satisfy

y(t) = x(t) + O(ε log ε),for t ∈ [0, η4].By (3.7) and (4.1) we �nd that the solution y(t) is in
reasing at the point t = η4and in the interval [η4, τ + η3], y(t) and x(t) satisfy
(x − y)′ = −δ(x − y) + O(ε),and

(x − y)|η4
= O(ε log ε).So we have

x − y = O(ε log ε), for t ∈ [η4, τ + η3].For t ∈ [τ + η3, τ + η4], using the same argument as in the interval [τ + η1, τ + η2], wehave
y(t) = x(t) + O(ε log ε). (4.10)Finally for t ≥ τ + η4, the solution is de
reasing and attains the value 1 + η at somepoint Ty. To be more spe
i�
, we have
y(t)′ = −δy(t) + O(ε), (4.11)and

x(t) = −δx(t). (4.12)Using (4.10), (4.11) and (4.12) we 
an derive that
y(t) = x(t) + O(ε log ε), (4.13)and

Ty = Tx + O(ε log ε). (4.14)Furthermore, we also have y(Ty) = 1 + η and
y(t) ≥ 1 + η for [Ty − τ, Ty] (4.15)provided that ε is su�
iently small.Remark 4.3. By Lemma 4.2 and equation (4.1) we 
an have two positive 
on-stants M1 and M2 whi
h are independent of ε, so that

|y(t)| ≤ M1, (4.16)
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∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

≤ M2. (4.17)Now we are ready to de�ne a 
ontinuous returning map
R : A(η) ∋ ϕ → yq(ϕ) = Fβ(q(ϕ), ϕ) ∈ A(η),where q(ϕ) = Ty. In order to verify that there exists a unique �xed point in A(η) forthis map R, we need to derive its Lips
hitz 
onstant estimation and show this map Ris 
ontra
tive, i.e., its Lips
hitz 
onstant is less than 1.4.2. Lips
hitz 
onstant for the map R. Lips
hitz 
onstants of maps T :

DT → Y, DT ⊂ X, X and Y normed linear spa
e, are given by
L(T ) = sup

x∈DT ,y∈DT ,x 6=y

||T (x) − T (y)||

||x − y||
.In the 
ase when DT = X = R and σ = [x1, x2] ∈ R, and f = T we set

L[x1,x2](f) = L(f |[x1, x2]).In the 
ase when f = yβ(y), we de�ne the following four Lips
hitz 
onstants
L1 = L[1+η,+∞)(yβ(y)),

L2 = L
[(
1

ε
)2ε,+∞)

(yβ(y)),

L3 = L(0,+∞)(yβ(y)),

L4 = L

0,





ε2

1 + ε





ε



(yβ(y)).Similarly for the fun
tion f = yβ(y)− β0y, we also de�ne the following Lips
hitz
onstant for later use,
L5 = L

0,





ε2

1 + ε





ε



(yβ(y) − β0y).Theorem 4.4. When ε is small, the Lips
hitz 
onstant for the map R satis�es
lim
ε→0

LR = 0 < 1



14 M. C. MACKEY, C. OU, L. PUJO-MENJOUET and J. WUProof Step 1. For φ, φ̄ in A(η). By a similar manner as in the proof of Lemma4.2, we 
on
lude that there exist η1, η2 and η̄1, η̄2 su
h that, respe
tively,
yφ(η1) =

(

1

ε

)2ε

, yφ(η2) = (
ε2

1 + ε
)ε, η1 − η2 = O(−ε log ε, )and

yφ̄(η̄1) =

(

1

ε

)2ε

, yφ̄(η̄2) = (
ε2

1 + ε
)ε, η̄1 − η̄2 = O(−ε log ε).Let

ηmin = min{η1, η̄1},and
ηmax = max{η2, η̄2}.Then by (4.5) we have

ηmax − ηmin = O(ε log ε). (4.18)For t ∈ [0, ηmin], using the equation (4.1) for yφ(t) and yφ̄(t) , respe
tively, gives
dyφ(t)

dt
= −[δ + β(yφ(t))]yφ(t) + kβ(yφ(t − τ))yφ(t − τ), (4.19)and

dyφ̄(t)

dt
= −[δ + β(yφ̄(t))]yφ̄(t) + kβ(yφ̄(t − τ))yφ̄(t − τ). (4.20)Now we begin to estimate the di�eren
e between yφ(t) and yφ̄(t). Coupling with (4.19)and (4.20) yields

(yφ − yφ̄)′ = −δ(yφ − yφ̄) (4.21)
−[β(yφ)yφ − β(yφ̄)yφ̄]

+k[β(yφ
τ )yφ

τ − β(yφ̄
τ )yφ̄

τ ].Substituting the following inequalities
|β(yφ)yφ − β(yφ̄)yφ̄| ≤ L2|y

φ − yφ̄|,and
|β(yφ

τ )yφ
τ − β(yφ̄

τ )yφ̄
τ | ≤ L1||φ − φ̄||into (4.21), we have

(yφ − yφ̄)′ ≤ (δ + L2) |y
φ − yφ̄| + kL1||φ − φ̄||. (4.22)
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(yφ − yφ̄) ≤

∫ t

0

(

(δ + L2) |y
φ − yφ̄| + kL1||φ − φ̄||

)

ds.Similarly we have
−(yφ − yφ̄) ≤

∫ t

0

(

(δ + L2) |y
φ − yφ̄| + kL1||φ − φ̄||

)

ds.Thus,
|yφ − yφ̄| ≤

∫ t

0

(

(δ + L2) |y
φ − yφ̄| + kL1||φ − φ̄||

)

ds. (4.23)Solving (4.23) ( or by Gronwall inequality), we obtain
|yφ − yφ̄| ≤ C1||φ − φ̄||, (4.24)where

C1 =
e(δ+L2)ηmin − 1

δ + L2
kL1. (4.25)Step 2. Next for t ∈ [ηmin, ηmax], we have

|β(yφ)yφ − β(yφ̄)yφ̄| ≤ L3|y
φ − yφ̄|,and

|β(yφ
τ )yφ

τ − β(yφ̄
τ )yφ̄

τ | ≤ L1||φ − φ̄||.Thus from (4.19) and (4.20) we 
an obtain as before
|yφ − yφ̄| ≤

∫ t

ηmin

(

(δ + L3) |y
φ − yφ̄| + kL1||φ − φ̄||

)

ds + C1||φ − φ̄||.Then by Gronwall inequality we have
|yφ − yφ̄| ≤ C2||φ − φ̄|| (4.26)where

C2 = C1e
(δ+L3)(ηmax−ηmin) +

eδ+L3(ηmax−ηmin) − 1

δ + L3
kL1 > C1. (4.27)Step 3. For t ∈ [ηmax, τ + ηmin],

|β(yφ)yφ − β0y
φ − (β(yφ̄)yφ̄ − β0y

φ̄)| ≤ L5|y
φ − yφ̄|and

|β(yφ
τ )yφ

τ − β(yφ̄
τ )yφ̄

τ | ≤ L2||φ − φ̄||.
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|yφ − yφ̄| ≤

∫ t

ηmax

(

(α + L5)|y
φ − yφ̄| + kL2C1||φ − φ̄||

)

ds + C2||φ − φ̄||,and to 
on
lude that (due to 1 + ηmin − ηmax < τ)
|yφ − yφ̄| ≤ C3||φ − φ̄||, (4.28)where

C3 = C2e
ατ+τL5 +

eατ+τL5 − 1

α + L5
kL2C1 > C2. (4.29)Step 4. When t ≥ 1 + ηmin, We note that from the proof of Lemma 4.2, thereexist η3 < η4, and η̄3 < η̄4 so that

yφ(η3) = (
ε2

1 + ε
)ε, yφ(η4) =

(

1

ε

)2ε

, η4 − η3 = O(−ε log ε)and
yφ̄(η̄3) = (

ε2

1 + ε
)ε, yφ̄(η̄4) =

(

1

ε

)2ε

, η̄4 − η̄3 = O(−ε log ε).Let
η3
min = min{η3, η̄3}, η4

max = max{η4, η̄4}.Then by (4.8) we have
η4
max − η3

min = O(ε log ε). (4.30)For t ∈ [τ + ηmin,η
3
min], we similarly have

|yφ − yφ̄| ≤

∫ t

τ+ηmin

(

(α + L5)|y
φ − yφ̄| + kL3C3||φ − φ̄||

)

ds + C3||φ − φ̄||,and
|yφ − yφ̄| ≤ C4||φ − φ̄||, (4.31)where

C4 = C3e
(α+L5)(η

3

min
−τ−ηmin) +

e(α+L5)(η
3

min
−τ−ηmin) − 1

α − L5
kL3C3 > C3. (4.32)Step 5. For t ∈ [η3

min, η
4
max],

|yφ − yφ̄| ≤

∫ t

η3

min

(

(δ + L3)|y
φ − yφ̄| + kL4C4||φ − φ̄||

)

ds + C4||φ − φ̄||.
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|yφ − yφ̄| ≤ C5||φ − φ̄|| (4.33)where

C5 = C4

(

eδ+L3(η
4

max
−η3

min
) +

eδ+L3(η
4

max
−η3

min
) − 1

δ + L3
kL4

)

.. (4.34)Step 6. For t ∈ [η4
max, τ + η4

max], we have
|yφ − yφ̄| ≤

∫ t

ηmax

(

(δ + L2)|y
φ − yφ̄| + kL3C5||φ − φ̄||

)

ds + C5||φ − φ̄||and
|yφ − yφ̄| ≤ C6||φ − φ̄||, (4.35)where

C6 = C5(e
(δ+L2)τ +

e(δ+L2)τ − 1

δ − L2
kL3). (4.36)Step 7. When t ≥ τ + η4

max, both y and ȳ are de
reasing and will take the value
1 + η after �nite time. Suppose that s and s̄ satisfy

yφ(s) = 1 + η, yφ̄(s̄) = 1 + η.For the later proof, we only 
onsider the 
ase s < s̄, sin
e the 
ase when s ≥ s̄ 
an besimilarly dealt with and the proof will be omitted. By Lemma 4.2 we know
yφ(t) = x(t) + O(ε log ε), yφ̄(t) = x(t) + O(ε log ε).By (4.8), (4.9) and (4.14) we 
an also obtain

s − (τ + η4
max) = Tx − (τ + t2) + O(ε log ε)and

s̄ − (τ + η4
max) = Tx − (τ + t2) + O(ε log ε)where Tx is the period of fun
tion x(t). Be
ause the distant between τ+η4

max and s maybe greater than τ. Thus we need split the interval [τ +η4
max, s] as [τ +η4

max, 2τ +η4
max],

[2τ +η4
max, 3τ +η4

max], · · · , [mτ +η4
max, s] where the length of ea
h interval is exa
tly τex
ept the last one. Herem is the largest integer less than or equal to (s−(τ+η4

max))/τ.We 
an estimate |yφ − yφ̄| interval by interval and �nally to obtain
|yφ − yφ̄| ≤ C7||φ − φ̄||, (4.37)with

C7 = C6

(

e(δ+L2)τ +
e(δ+L2)τ − 1

δ − L2
kL2

)Tx

. (4.38)
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tion yφ̄(t) satis�es
yφ̄(t) = 1 + η + O(ε log ε), t ∈ [s, s̄] and yφ̄(s̄) = 1 + η,from whi
h and the equation (4.1) we know that yφ̄(t) is de
reasing and

|
dyφ̄(t)

dt
| =

∣

∣

∣−(δ + β(yφ̄))yφ̄ + kβ(yφ̄
τ )yφ̄

τ

∣

∣

∣ ,

= |−δ(1 + η) + O(ε log ε)| ,

≥
δ(1 + η)

2
,when ε is small. Applying the Mean-Value theorem to the fun
tion yφ̄(t) implies theexisten
e of ρ ∈ [s, s̄] su
h that

|yφ̄(s̄) − yφ̄(s)| = |yφ̄(ρ)′(s̄ − s)| ≥
δ(1 + η)

2
|s̄ − s|or by (4.37),

|s̄ − s| ≤
2

δ(1 + η)
|yφ̄(s̄) − yφ̄(s)| =

2

δ(1 + η)
|yφ(s) − yφ̄(s)|, (4.39)

≤
2C7

δ(1 + η)
||φ − φ̄||.Our ultimate goal is give the estimate of |yφ̄

s̄ (θ)− yφ
s (θ)| where θ ∈ [−τ, 0]. Indeed

|yφ̄
s̄ (θ) − yφ

s (θ)| ≤ |yφ̄
s̄ (θ) − yφ̄

s (θ)| + |yφ̄
s (θ) − yφ

s (θ)|. (4.40)The �rst term of the right hand side is bounded by
∫ s̄+θ

s+θ

dyφ̄(t)

dt
dt ≤ M2 |s̄ − s| .where M2 is the maximum value of derivative of the fun
tion yφ̄(t), see remark 4.3.The se
ond term of (4.40) is bounded by C7||φ − φ̄||. Thus from (4.40), we have

|yφ̄
s̄ (θ) − yφ

s (θ)| ≤ C7(1 +
2M2

δ(1 + η)
)||φ − φ̄||. (4.41)When ε → 0, we have

L1 = O(
1

ε(1 + η)1/ε
), L2 = O(ε), L3 = O(1/ε), L4 = O(1), L5 = O(ε).Sin
e L1 is exponentially small as ε → 0, we 
on
lude from (4.25), (4.27), (4.29),(4.32), ( 4.34), (4.36) and (4.38) that LR is exponentially small and satis�es
lim
ε→0

LR = lim
ε→0

C7(1 +
2M2

δ(1 + η)
) = 0.This 
ompletes our proof.Sin
e LR < 1, it means that the returning map R is 
ontra
tive and there existsa unique �xed-point φ in A(η) so that R(φ) = φ. Thus we �nd a slowly os
illatingperiodi
 solution y(t, φ) for the equation (4.1). This periodi
 solution is also globallyattra
tive for any initial fun
tion ϕ in A(η).
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 Expansion for the Periodi
 Solution. In the previousse
tion we use �xed-point theory to prove that there exists a unique periodi
 solutionin A(η) for the equation (4.1) . Now we like to give a quantitative analysis to thissolution. Sin
e the map R is 
ontra
tive with the Lips
hitz 
onstant LR being expo-nentially small, it is possible to give a full asymptoti
 expansion for this parti
ularsolution.If we take the initial fun
tion φ = 1 + η, then we get a solution y(t, 1 + η) whi
hmay not be periodi
. But by Lemma 4.2, y(t, 1+η) = x(t)+O(ε log ε) when t is �niteand there exists a T1+η > 0 su
h that
y(T1+η, 1 + η) = 1 + η, y(T1+η + θ, 1 + η) ≥ 1 + η, θ ∈ [−τ, 0).Then y(θ + T1+η, 1 + η) ∈ A(η).Assume that y(t) is the periodi
 solution to (4.1) whi
h 
an be extended to

(−∞, +∞) and satis�es y(t) ∈ A(η) for t ∈ [−τ, 0]. Suppose also that for t ∈ [−τ, 0],

y(t) has the following asymptoti
 formula
y(t) =

∞
∑

i=0

φi(t) (5.1)where φ0(t) = y(t + T1+η, 1 + η) and φi(t, ε), i ≥ 1 will be determined later. Let
y0(T0 + θ) denote the image of the returning map of R on φ0, i.e.,

y0(T0 + θ) = Fβ(T0, φ0), θ ∈ [−τ, 0]where T0 > 0 satis�es
y0(T0) = 1 + η, y0(T0 + θ) ≥ 1 + η, θ ∈ [−τ, 0).similarly by indu
tion set

φ1(θ) = y0(T0 + θ) − φ0,

yi−1(Ti−1 + θ) = Fβ(Ti−1,

i−1
∑

j=0

φj) = Fβ(Ti−1, yi−2), i ≥ 2,and
φi(θ) = yi−1(θ + Ti−1) − yi−2(θ + Ti−2), i ≥ 2,where for i ≥ 1, Ti > 0 and also satis�es
yi(Ti) = 1 + η, yi(Ti + θ) ≥ 1 + η, θ ∈ [−τ, 0).Using the result in (4.39) we 
an also have

|Ti − Ti−1| ≤ (LR)i−1|T1 − T0|,
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h means that the series
T0 +

∞
∑

j=1

(Tj − Tj−1)is absolutely 
onvergent to some 
onstant, say Tε. Sin
e by Theorem 4.4 we have for
θ ∈ [−τ, 0],

|yi(θ + Ti) − yi−1(θ + Ti−1)| = |F (Ti, yi−1) − F (Ti−1, yi−2)| (5.2)
≤ LR |yi−1(θ + Ti−1) − yi−2(θ + Ti−2)|

≤ (LR)i−1 |y1(θ + T1) − y0(θ + T0)|

≤ (LR)i|y0(t, φ0) − φ0|.Then for s ∈ [−τ, 0], we 
on
lude that
y0(s + T0) +

∞
∑

j=1

(yj(s + Tj) − yj−1(s + Tj−1)) (5.3)is absolutely 
onvergent and have the same value as the initial fun
tion ∑∞
i=0 φi(s).Sin
e LR is exponentially small, It is easy to prove that the value of Tε is dominatedby T0 and likewise the value of (5.3) is dominated by y0(s+T0), ea
h of whi
h has theexponential error bound. For the leading term y0(t), obviously we have from Lemma4.2 the rough estimates

y0(t) = x(t) + O(ε log ε), T0 = Tx + O(ε log ε).Next we would like to give the re�ned estimate for y0(t) and T0 by using this infor-mation and developing the idea of Lemma 4.2.Like in Lemma 4.2, we shall split the interval [0, T0] and estimate y0(t) intervalby interval. For illustration, we only need to show the �rst interval's estimate to thereaders. Keep in mind that the initial data is taken as y(t + T1+η, 1 + η) whi
h isgreater than 1 + η when t lies in the interval [−τ, 0). Let η1 and η2 be still the valuein Lemma 4.2 and ty0

1 satisfy y0(t
y0

1 ) = 1. We denote y0(t) = y0(t). Integrating theequation (4.1) from 0 to t, t ∈ [0, ty0

1 ], gives
y0(t) − y0(0) = −δ

∫ t

0

y0(t)dt −

∫ t

0

β(y0)y0(t)dt (5.4)
+k

∫ t

0

β(y0(t − τ))y0(t − τ)dt.It is obvious that the last term of the right hand side of (5.4) is exponentially smalland 
an be viewed as O(ε). Next we 
laim that
∫ t

0

β(y0)y0(t)dt = O(ε). (5.5)
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reasing in t ∈ [0, ty0

1 ] and dy0/dt is theorder of O(1) or more pre
isely
−α(1 + η) ≤

dy0

dt
= −[β(y0) + δ]y0 + O(ε) ≤ −δ + O(ε). (5.6)Thus from (5.6) and the fa
t

∫ t

0

β(y0)y0(t)
dy0

dt
dt ≤

∫ t
y0

1

0

β(y0)y0(t)
dy0

dt
dt,

=

∫ 1

1+η

β0y

1 + y1/ε
dy,

= O(ε),we know that ∫ t

0
β(y0)y0(t)dt is also the order of O(ε) and the 
laim of (5.5) is true.It follows then from (5.4)

y0(t) = −δ

∫ t

0

y0(t)dt + 1 + η + O(ε).Solving this integral equation, we get
y0(t) = (1 + η + O(ε))e−δt,whi
h implies

y0(t) = y0(t, ε) = x(t) + O(ε), t ∈ [0, ty1]. (5.7)Using the same approa
hes above we 
an prove that in the whole interval [0, T0], (5.7)is still true. Furthermore, we 
an prove that
T0 = Tx + O (ε) ,whi
h 
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