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GLOBAL STABILITY OF CELLULAR POPULATIONS
WITH UNEQUAL DIVISION

LAURENT PUJO-MENJOUET AND RYSZARD RUDNICKI

ABSTRACT. A two-phase model for the growth of a single
cellular population is presented. In this model the reproduc-
tion occurs by fission into two unequal parts. The evolution
of the population is described by a nonlinear partial differ-
ential equation with time delay and integral term containing
maturity variable. We give conditions for global stability of
the solutions of this equation.

1. Introduction. In this paper we investigate a maturity structure
model of a cellular population. The cellular population number is
described by a system of first order partial differential equations with
time delay and a nonlocal dependence in the maturity variable due to
cell replication.

The use of partial differential equations as population models has
had a long history starting with the papers [2], [16], [17], [19], [22],
[23]. A survey of many applications is given in the book edited by
Metz and Diekmann [15]. In many papers on this subject, models are
investigated in which reproduction is by fission into two equal parts,
[3] [5], [7], [11] [14], [18].

In particular Mackey and Rudnicki [13] consider a two-phase model
for the growth of a cellular population. They assume that cells are
capable of simultaneous proliferation and maturation. Maturity can be
size, weight, volume of a cell or concentration of some special substance.
Maturity of a cell decides on the capacity of a cell for replication. The
aim of this paper is to generalize results from [13] to a model with
unequal division. In some biological situations, models with unequal
division are more suitable. For example, in mutant strains of bacteria
we usually observe unequal division of the size. Models with unequal
division were considered in papers [1], [6], [8], [9], [20].

The paper is organized as follows. In Section 2 we present the
model. In Section 3 we reduce the problem of asymptotic behavior
of the solutions of the main equation to two simpler equations: a delay
differential equation and linear partial differential equation with an

Copyright c©2000 Rocky Mountain Mathematics Consortium

185



186 L. PUJO-MENJOUET AND R. RUDNICKI

integral perturbation. Section 4 gives the statement and proof of global
stability. Since our paper generalizes results from [13], proofs of some
of them are similar and we omit these.

2. Presentation of the model. We consider a model of a cell
population in which the cells may be either actively proliferating or in a
resting phase. Moreover, we consider here a population of cells capable
of both proliferation and maturation. Each phase is represented by a
partial differential equation.

2.1. Proliferating phase. After entering the proliferating phase,
a cell is committed to undergo cell division a fixed time τ later. The
generation time τ is assumed to consist of four phases, G1 the pre-
synthetic phase, S the DNA synthesis phase, G2 the post-synthetic
phase and M the mitotic phase. These four phases put together form
the active phase. The density function of proliferating cells is denoted
by p(t,m, a), where t > 0 represents time, m ∈ (0, 1) maturity and
a ∈ [0, τ ] their age in the cycle. The cells of both types (resting
and proliferating) mature with a velocity V (m). We assume that
V : [0, 1] → [0,∞) is a continuously differentiable function such that
V (m) > 0 for all m ∈ (0, 1), and V (0) = V (1) = 0. We also assume
that cells in the active phase die at a rate γ depending on maturity m.
The cell density function p satisfies the following equation

(1)
∂p

∂t
+

∂p

∂a
+

∂(V p)
∂m

= − γp

with initial conditions

p(0,m, a) = Γ(m, a) for (m, a) ∈ (0, 1)× [0, τ ],

where Γ is assumed to be continuous. Finally, we define the density of
proliferating cells at a given time and maturity level as follows

P (t,m) =
∫ τ

0

p(t,m, a) da.

2.2. Resting phase. Just after the division, both daughter cells
go into the resting phase called G0-phase. Once in this phase, they
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can either return to the proliferating phase and complete the cycle or
die before ending the cycle. This is why the cellular age in the resting
population ranges from a = 0 (when cells enter this phase) to a = +∞.
The function n(t,m, a) represents the density of the cells in the resting
phase. We denote by

N(t,m) =
∫ +∞

0

n(t,m, a) da

the density with arbitrary age level in the resting phase. The total
number of resting cells at all age and maturity levels is given by

N(t) =
∫ +∞

0

N(t,m) dm.

In view of the above assumptions, we consider here two causes of loss,
in the righthand side of the equation below.

(a) The first loss is random and has a rate δ which depends on
maturity of a cell.

(b) The second one is the reintroduction of the cell into the prolifer-
ating phase with a rate β, where β depends on m and the total number
of cells in the resting phase N . We also assume that β is a decreasing
function of N .

The conservation equation is

(2)
∂n

∂t
+

∂n

∂a
+

∂(V n)
∂m

= −(δ + β)n

with the initial condition

(3) n(0,m, a) = µ(m, a) for (m, a) ∈ (0, 1)× [0,+∞)

and
lim

a→+∞µ(m, a) = 0.

We always assume that µ and β are continuous functions.

2.3. Boundary conditions. The first boundary condition describes
biologically the fact that a mother cell can divide its maturity in an
unequal manner

(4) n(t,m, 0) = 2
∫ 1

0

p(t, x, τ)k(x,m) dx
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with m representing maturity of the daughter cells at age a = 0 and x
maturity of the mother cell at the point of cytokinesis. The function
m �→ k(x,m) is the density of maturity of a daughter cell assuming
that the mother cell has maturity x. The function k is nonnegative,
continuous and satisfies conservation consistency

(5)
∫ 1

0

k(x,m) dm = 1 for every x ∈ (0, 1).

Moreover, we assume that there exist κ1 and κ2 with 0 < κ1 < κ2 < 1
such that

(6) k(x,m) = 0 for m ≤ κ1x or κ2x ≤ m.

This means that maturity of the daughter cell cannot be too small or
too big.

The second boundary condition

(7) p(t,m, 0) =
∫ +∞

0

β(N(t),m)n(t,m, a) da = β(N(t),m)N(t,m)

represents the population efflux from the resting compartment into the
proliferative one.

2.4. Equations for N and P . In this section we recall some results
from [13] that will be used later. First, we define the maturity flow
πsm as the solution of the equation

dπsm

ds
= V (πsm)

with the initial condition
π0m = m.

From the assumption on maturity velocity V , it follows that πsm ∈
(0, 1), for all s ≥ 0 and m ∈ (0, 1). We also define the following
function

(8) ϕ(m, s) =
V (π−sm)
V (m)

exp
{
−

∫ m

π−sm

γ(y)
V (y)

dy

}
.
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Using the method of characteristics we check that p(t,m, a) = p(t −
a, π−am, 0)ϕ(m, a) for every t ≥ a. From (1) and (7) it follows that

p(t,m, τ) = β(N(t− τ ), π−τm)N(t− τ, π−τm)ϕ(m, τ )

for t ≥ τ . Consequently

n(t,m, 0) = 2
∫ 1

0

β(N(t− τ ), π−τx)N(t− τ, π−τx)ϕ(x, τ)k(x,m) dx.

Now we focus on the equation (2) modelling the resting phase. Inte-
grating (2) with respect to age a, we obtain

(9)
∂N

∂t
+

∂(NV )
∂m

= −(δ + β)N + n(t,m, 0).

For t ≥ τ the partial differential equation (9) becomes

(10)
∂N

∂t
+

∂(V N)
∂m

= − (
δ(m) + β(N,m)

)
N

+ 2
∫ 1

0

β(N(t−τ ), π−τx)N(t−τ, π−τx)ϕ(x, τ)k(x,m) dx.

Integrating (1) with respect to the age variable and using the boundary
condition (7) we obtain

(11)
∂P

∂t
+

∂(V P )
∂m

= − γ(m)P + β(N,m)N −N(t− τ, π−τm)

· β(N(t− τ ), π−τm)ϕ(m, τ )

for t ≥ τ .

Observe that solutions of equation (11) depend on the solutions of
equation (10). Moreover, knowing the asymptotic behavior of the
solutions of equation (10), it is easy to forecast the behavior of the
solutions of equation (11) because equation (11) can be solved by the
method of characteristics. This is the reason why we will concentrate
our study on equation (10).

Using similar arguments as in Section 3 of [13] one can prove the
following proposition.
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Proposition 1. We suppose that δ, β, γ, V ′, Γ and N(0,m) are
bounded continuous functions. Then (10) has a unique solution.

3. Analysis of equation (10).

3.1. Markov operator. In the following we consider the case with
δ, β and γ independent of maturity m. In this case (10) takes the form

(12)
∂N

∂t
+
∂(NV )
∂m

= − (
δ + β(N)

)
N+2e−γτβ(N(t−τ ))PN(t−τ,m),

where N = N(t,m). From now on N without arguments means
N(t,m) and, similarly, N = N(t). P is the operator defined on the
space L1(0, 1) given by

(13) Pf(m) = eγτ

∫ 1

0

ϕ(x, τ)k(x,m)f(π−τx) dx.

We check that P is a Markov operator [10], i.e.,

(i) P is a linear operator on L1,

(ii) f ≥ 0 implies that Pf ≥ 0 and

(iii) ∫ 1

0

Pf(m) dm =
∫ 1

0

f(m) dm.

Conditions (i) and (ii) are obvious. It remains to check (iii). To
compute

∫ 1

0
Pf(m) dm we substitute x = πτy. As γ is independent of

maturity we have

(14) ϕ(πτy, τ ) =
V (y)

V (πτy)
exp {− γτ}

and since

(15)
∂

∂y
πτy =

V (πτy)
V (y)
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we obtain∫ 1

0

Pf(m) dm = eγτ

∫ 1

0

( ∫ 1

0

k(x,m) dm
)
f(π−τx)ϕ(x, τ) dx

= eγτ

∫ 1

0

ϕ(πτy, τ )
V (πτy)
V (y)

f(y) dy

=
∫ 1

0

f(y) dy.

Denote by D the subset of L1 (0, 1) consisting of all the densities, i.e.,
f ∈ D if f ≥ 0 and

∫ 1

0
f(x) dx = 1. Then P is a Markov operator if

and only if P is linear and P(D) ⊂ D.

3.2. Equation for N(t). Since P is a Markov operator, after
integrating (12) with respect to maturity m, we obtain

(16) N
′
(t) = − (

δ + β(N)
)
N(t) + 2e−γτβ(N(t− τ ))N(t− τ )

which corresponds exactly to (15) of [13]. The analysis of the behavior
of the solutions of this equation is given in [13]. Now we recall some
facts. First, all solutions are bounded. If δ > (2e− γτ − 1)β(0), then
the trivial solution N ≡ 0 is globally asymptotically stable. This
inequality has a simple biological interpretation. Namely, it holds if
the death rates δ and γ are large or the phases are long (τ is large or
β(0) is small). In both cases the reproduction rate is smaller than the
death rate and the population will die out.

If the above inequality does not hold and β has a typical form
β(x) = [b/(c+ x)], then equation (16) has a nonzero globally stable
solution N0, and N(t) converges exponentially to N0. From now on,
we will assume that solutions of equation (16) have the above property.

3.3. Linear form of equation (10). Let M(t,m) = [(N(t,m))/
(N(t))]. Then

∫ 1

0
M(t,m) dm = 1. Using (16) we obtain

(17)
∂M

∂t
+

∂(VM)
∂m

= c(t) [−M(t,m) + PM(t− τ,m)]

with

(18) c(t) =
2e−γτN(t− τ )β(N(t− τ ))

N(t)
.
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Since M(t, ·) ∈ D for every t, the solutions of (17) will be investigated
in the set D. Our aim is to prove some theorem concerning asymptotic
stability of equation (17). The properties of equation (17) depend on
the function c. Since N(t) converges to N0 > 0 in an exponential way,
the function c(t) converges to some constant c0 > 0 and

(19)
∫ ∞

0

|c(t)− c0| dt < ∞.

We compare the solutions of (17) with the solutions of the following
linear equation

(20)
∂F

∂t
+

∂(V F )
∂m

= − cF (t,m) + cPF (t− τ,m),

where c is a constant.

Proposition 2. Let M and F be solutions of (17) and (20),
respectively. Assume that M(t,m) = F (t,m) and M(t, ·) ∈ D for
t ∈ [t0 − τ, t0]. Then

(21)
∫ 1

0

|M(t,m)− F (t,m)| dm ≤
∫ t

t0

2|c(s)− c| ds for t ≥ t0.

Proof. This proposition was proved in [13] for the operator P given
by the formula

Pf(m) = k′(m)f(k(m)).

The proof is exactly the same when P is an arbitrary Markov operator.
So we omit it here.

4. Stability. In this section we generalize Theorem 1 of [13] to the
case of unequal division.

Theorem 1. Assume that

(22) κ1 > exp(−V ′(0)[(1/c) + τ ]).
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Then there exists f∗ ∈ D such that for every solution of (20) we have

lim
t→+∞ ‖F (t)− f∗‖ = 0,

where ‖ · ‖ is the norm in L1 (0, 1).

Remark 1. This theorem implies that if (16) has a nonzero globally
asymptotically stable solution N0, then all solutions of (10) converge
in L1 to N0f

∗.

Remark 2. Condition (22) has an interesting biological interpretation.
It shows that the stability of the population is highly dependent on the
dynamics of low mature (small) cells. Indeed, if we rewrite (22) in the
following way

c ln(b) < V ′(0),

with c = c0 = 2e−γτβ(N0) = δ + β(N0) as a solution of the stationary
solution of (16), and b = (1/κ1)e−τV ′(0). The coefficient c represents
the rate of leaving of the resting phase (by being lost or by entering
the proliferating phase). Using condition (6), we obtain the following
inequality

1
κ1

>
x

m
,

where x is the maturity of the mother cell just before dividing and m
the maturity of the daughter cell at its birth. So, we obtain

b >
xe−τV ′(0)

m
,

where xe−τV ′(0) is the maturity of the mother at the beginning of its
proliferating phase. Since V ′(0) is the rate at which small cells mature,
condition (22) means that the maturation of a big part of small cells
will increase in the next generation.

Instead of (20) we can consider a simpler equation. Let y be the
solution of the following problem

(23)
{
cy′(x)x = V (y(x)),

y(1) = mN.
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It is easy to check that y is an increasing function from the interval
(0,∞) onto the interval (0, 1). We make the following substitution

(24) u(t, x) = y′(x)F (t, y(x))

for x ∈ (0,∞). Then u satisfies the following equation

(25)
∂u

∂t
+
∂(cxu)
∂x

= − cu(t, x)+cy′(x)
∫ ∞

0

u(t−τ, r)k(πτy(r), y(x)) dr.

Setting

(26) q(r, x) = y′(x)k(πτy(r), y(x)),

we can check that

q(r, x) ≥ 0 for all (r, x) and
∫ ∞

0

q(r, x) dx = 1.

Now equation (25) takes the form

(27)
∂u

∂t
+ cx

∂u

∂x
= − 2cu+ c

∫ ∞

0

u(t− τ, r)q(r, x) dr.

Since Tf(x) = y′(x)f(y(x)) is a linear isometric transformation from
D to D(0,+∞), the set of densities of L1(0,+∞), it is sufficient to
prove the theorem for equation (27). The solutions of (27) satisfy the
integral equation

(28)
u(t, x) = e−2ctu(0, e−ctx)

+ c

∫ t

0

e−2cs

∫ ∞

0

u (t− τ − s, ξ) q(ξ, xe−cs) dξ ds.

First we check that for any solutions u and ū of (27) that we have
‖u(t)− u(t)‖ → 0 as t → ∞. Then, after showing that there exists
a stationary solution u0 of (27), i.e., independent on t, we will obtain
that ‖u(t)− u0‖ → 0 as t → ∞. We prove the following lemmas.

Lemma 1. Assume that κ1 > exp(−V ′(0) [(1/c) + τ ]). Then there
exist a > 0 and b > 2a such that for every solution of (27) there is a
time t0 = t0(u) for which

(29)
∫ b

a

u(t, x) dx >
1
2

for t ≥ t0.
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Proof. We first prove that for sufficiently large t, there exists a > 0
such that

∫ a

0
u(t, x) dx < (1/4), and there exists b > 0 such that∫ ∞

b
u(t, x) dx < (1/4). Since u ∈ D we will have

∫ b

a
u(t, x) dx > (1/2).

We denote by D0 the dense subset of D consisting of bounded
functions f such that

∫ ∞
0

x−rf(x) dx < ∞ with r ∈ (0, 1) and
limx→∞ xf(x) = 0. Let u be a solution of (27) such that u(t, ·) ∈ D0

for t ∈ [−τ, 0]. Using (28) one can check that u(t, ·) ∈ D0 for t ≥ 0.
We set

G(t) =
∫ ∞

0

x−ru(t, x) dx.

From (27) the function G satisfies

G′(t) = − c(1 + r)G(t) + c

∫ ∞

0

u(t− τ, s)
(∫ ∞

0

x−rq(s, x) dx
)
ds.

From (6) and (26) we obtain

∫ ∞

0

x−rq(s, x) dx =
∫ 1

κ1πτ y(s)

(
y−1(z)

)−r
k(πτy(s), z) dz.

Since y−1 is an increasing function and
∫ 1

κ1πτ y(s)
k(πτy(s), z) dz = 1,

we have ∫ ∞

0

x−rq(s, x) dx ≤ (
y−1 (κ1πτy(s))

)−r
.

We claim that there exists r ∈ (0, 1) such that

(30) lim
s→0

[(
y−1 (κ1πτy(s))

)
s

]−r

< 1 + r.

Indeed, from inequality κ1 > exp(−V ′(0) [(1/c) + τ ]), we obtain

(31) κ1πτy(s) > y(e−1s)

for sufficiently small s > 0. Since

lim
s→0

y(e−1s)
y(s)

= e−V ′(0)/c and lim
s→0

πτy(s)
y(s)

= κ1e
τV ′(0)
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from (31) it follows that

lim
s→0

[(
y−1 (κ1πτy(s))

)
s

]
> e−1.

Since limr→0(1 + r)−1/r = e−1, from the last inequality it follows that
there exists r ∈ (0, 1) such that (30) holds. Thus K < 1+ r and B > 0
exist such that [(

y−1 (κ1πτy(s))
)

s

]−r

≤ K +Bsr

which gives

(32)
∫ ∞

0

x−rq(s, x) dx ≤ [(
y−1 (κ1πτy(s))

)]−r ≤ Ks−r +B.

Hence we obtain that

G′(t) ≤ − c(1 + r)G(t) + cKG(t− τ ) +Bc.

Let G̃(t) be the solution of the differential delayed equation

(33) G̃′(t) = − c(1 + r)G̃(t) + cKG̃(t− τ ) +Bc,

such that G̃(t) = G(t) for t ∈ [−τ, 0]. By the method of steps we can
check that

G̃(t) ≥ G(t) for t ≥ 0.

Since K < 1 + r, the stationary solution

G̃ =
B

1 + r −K

of (33) is globally asymptotically stable. Hence

lim sup
t→∞

G(t) ≤ B

1 + r −K
.

Consequently, there exists a>0 independent of u such that
∫ a

0
u(t, x) dx <

(1/4) for t ≥ t0(u). We show now that there exists b such that
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∫ ∞
b

u(t, x) dx < (1/4). From (26) and condition (6) it follows that
if x ≥ y−1(κ2) then q(r, x) = 0 (where κ2 is chosen as in Section 2.3).
We set y−1(κ2) = x0. Then for every x ≥ x0, (27) becomes

(34)
∂u

∂t
+ cx

∂u

∂x
= − 2cu.

Set U(t, x) =
∫ ∞

x
u(t, y) dy for x ≥ x0. It is easy to check that U exists

and satisfies the equation

(35)
∂U

∂t
+ cx

∂U

∂x
= − cU.

The solution of (35) is given by

U(t, x) = x−1x0U

(
t− 1

c
ln

(
x

x0

)
, x0

)
.

Consequently, for x ≥ 4x0 and for t ≥ (1/c) ln 4, we have U(t, x) ≤
(1/4). Since D0 is dense in D, condition (29) holds for every solution
of (27). This completes the proof.

Lemma 2. There exists a nonnegative function K ∈ L1 (0,∞) with
‖K‖ > 0 such that u(t, x) ≥ K(x) for every solution u of (27) and
sufficiently large t.

Proof. Let x0 be the same as in the proof of Lemma 1. It is easy to
check by the method of characteristics that for t ≥ (1/c) ln(x/x0) and
x ≥ x0, the solution of (34) is given by

(36) u(t, x) = x−2x2
0u

(
t− 1

c
ln

(
x

x0

)
, x0

)
.

From (28) it follows that

(37) u(t, x0) ≥ c

∫ t

0

e−2cs

∫ ∞

0

u (t− τ − s, ξ) q
(
ξ, x0e

−cs
)
dξ ds.

From (36) and (37) it follows that

u(t, x0) ≥
∫ x̄

x0

∫ t(ξ)

0

ce−2csξ−2x2
0u

(
t− τ − s− 1

c
ln

(
ξ

x0

)
, x0

)

· q(ξ, x0e
−cs) ds dξ,
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where x̄ = x0e
c(t−τ) and t(ξ) = t − τ − (1/c) ln(ξ/x0). Substituting

z = x0e
−cs in the last equation, we obtain

u(t, x0) ≥
∫ x0ec(t−τ)

x0

∫ x0

ξec(τ−t)
zξ−2u

(
t− τ +

1
c
ln

(
z

ξ

)
, x0

)
q(ξ, z) dz dξ,

for sufficiently large t. Fix ξ0 > x0. The function q(ξ, z) vanishes
outside the set D(ξ) =

[
y−1 (κ1πτy(ξ)) , y−1 (κ2πτy(ξ))

]
. Since D(ξ) ⊂

(0, x0) and the function q is continuous, there exist λ0 > 0, δ > 0 and
z0 ∈ (ξ0ec(τ−t) + δ, x0 − δ) such that q(ξ, z) > λ0 for (ξ, z) ∈ ∆δ, where
∆δ = [ξ0 − δ, ξ0 + δ]× [z0 − δ, z0 + δ]. This implies that

u(t, x0) ≥
∫∫

∆δ

λ0zξ
−2u

(
t− τ +

1
c
ln

(
z

ξ

)
, x0

)
dξ dz.

Let s0 = τ − (1/c) ln(z0/ξ0) and s = (1/c) ln(z0/ξ0) − (1/c) ln(z/ξ).
Since z/ξ is bounded from above and below, there exist λ1 > 0 and
ε > 0 such that

u(t, x0) ≥ λ1

∫ z0+ε

z0

∫ ε

0

u(t− s0 − s, x0) ds dz,

≥ λ1ε

∫ ε

0

u(t− s0 − s, x0) ds.

for sufficiently large t. From this inequality it follows that

u(t, x0) ≥ λn
2

∫ ε

0

· · ·
∫ ε

0

u (t− ns0 − s1 − · · · − sn, x0) ds1 · · · dsn

for t large enough. By induction, we check that

(38) u(t, x0) ≥ λn
2

(
ξ

3

)n−1 ∫ 2ε(n−1)/3

ε(n−1)/3

u (t− ns0 − s, x0) ds.

Now repeating arguments similar to that in the proof of Lemma 2 of
[13], one can check that there exists a nonnegative function K with
‖K‖ > 0 such that u(t, x) ≥ K(x) for t ≥ t0(u).

The proof of the following lemma is the same as the proof of Lemma
3 [13].
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Lemma 3. Let u(t)(x) = u(t, x) and ū(t)(x) = ū(t, x) be two
solutions of (27). Then

lim
t→∞ ‖u(t)− u(t)‖ = 0.

Now we show that a stationary solution of (27) exists. From this
and Lemma 3, Theorem 1 follows immediately. A density f ∈ D is a
stationary solution of (27) if it satisfies the equation

(39) xf ′(x) + 2f(x) =
∫ ∞

0

f(s)q(s, x) ds.

This equation can be rewritten as the integral equation

x2f(x) =
∫ ∞

0

f(s)
[∫ x

0

zq(s, z) dz
]
ds.

Consequently, f is a stationary solution of (26) if and only if f is a
fixed point of the operator

(40) Qf(x) =
1
x2

∫ ∞

0

f(s)
[ ∫ x

0

zq(s, z) dz
]
ds.

It is easy to check that Q : L1(0,∞) → L1(0,∞) is a Markov operator.

We show that the operator Q has a fixed point in the set of densities.
In the proof we will use the following theorem of SocaJla [21].

Theorem 2. A Markov operator Q has a fixed point in the set of
densities if a density f , a set A with finite measure and a number δ > 0
exist such that, for every measurable subset E of A with measure less
than δ, we have

(41) lim sup
n→∞

∫
E∪(X\A)

Qnf dx < 1.

Lemma 4. The operator Q has a fixed point in the set of densities.
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Proof. According to (32) there exist r > 0, K < 1 + r and B > 0
such that

(42)
∫ ∞

0

x−rq(s, x) dx ≤ Ks−r +B.

Let f be a density such that
∫ ∞
0

x−rf(x) dx < ∞. Then from (42) it
follows that∫ ∞

0

x−rQf(x) dx =
∫ ∞

0

f(x)
{∫ ∞

0

[
x−r−2

∫ x

0

zq(s, z) dz
]
ds

}
dx

=
∫ ∞

0

f(x)
{∫ ∞

0

1
r + 1

z−rq(s, z) dz
}
dx

≤
∫ ∞

0

f(x)
{

K

r + 1
x−r +B

}
dx

≤ L

∫ ∞

0

x−rf(x) dx+B,

where L = K/(r+ 1) and L < 1. By an induction argument we obtain∫ ∞

0

x−rQnf(x) dx ≤ Ln

∫ ∞

0

x−rf(x) dx+
B

1− L
.

Consequently

(43) lim sup
n→∞

∫ ∞

0

x−rQnf(x) dx ≤ B

1− L
.

Let ε ∈ (0, 1) be such that (B/(1− L))εr ≤ (1/4). Then from (43) it
follows that

(44) lim sup
n→∞

∫ ε

0

Qnf(x) dx ≤ 1
4
.

Moreover, since q(r, x) = 0 for x ≥ y−1(κ2) we have

(45)
Qf(x) =

1
x2

∫ ∞

0

f(s)
(∫ y−1(κ2)

0

zq(s, z) dz
)
ds

≤ 1
x2

y−1(κ2).
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Since the function g(x) = (1/x2) is integrable in the interval [1,+∞),
there exists M > 1 such that

(46) lim sup
n→∞

∫ ∞

M

Qnf(x) dx ≤ 1
4
.

From the definition of the operator Q it follows that

(47) Qnf(x) ≤ M

ε2
for x ∈ [ε,M ].

Now setting A = (0,M) and δ = (ε2/(3M)) we obtain (41) and this
completes the proof.
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