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ABSTRACT

Embryonic development is a largely self-organizing process, in which the adult body plan arises from a ball of cells with initially nearly equal potency. The reaction-
diffusion theory first proposed by Alan Turing states that the initial symmetry in embryos can be broken by the interplay between two diffusible molecules, whose
interactions lead to the formation of patterns. The reaction-diffusion theory provides a valuable framework for self-organized pattern formation, but it has been
difficult to relate simple two-component models to real biological systems with multiple interacting molecular species. Recent studies have addressed this shortcoming
and extended the reaction-diffusion theory to realistic multi-component networks. These efforts have challenged the generality of previous central tenets derived from
the analysis of simplified systems and guide the way to a new understanding of self-organizing processes. Here, we discuss the challenges in modeling multi-
component reaction-diffusion systems and how these have recently been addressed. We present a synthesis of new pattern formation mechanisms derived from

these analyses, and we highlight the significance of reaction-diffusion principles for developmental and synthetic pattern formation.

1. Introduction

Patterns are ubiquitous in nature — from the molecular arrangements
in crystals and snowflakes to the dynamics of societies and the formation
of galaxies. Many of these spatial patterns are strikingly similar across
orders of magnitude in length scales, but it is currently largely unclear
whether equivalent patterns are formed by similar self-organizing
mechanisms. Numerous theories have been put forward with the goal
to unravel the principles of pattern formation (reviewed in Roth, 2011),
but few of them are as universal as the theory of reaction-diffusion (RD)
systems first proposed by Alan Turing (1952). Turing’s theory explains
the complex self-organizing mechanisms underlying embryonic
patterning using simple reactions of just two diffusible components.
These systems have fascinating properties: First, they can form truly
self-organized patterns in the absence of initial asymmetries, thereby
generating de novo positional information (Meinhardt and Gierer, 2000).
Second, a large variety of pattern forms (e.g. spots and stripes, Fig. 1a)
can be generated by simply varying the reaction and diffusion parameters
(Kondo and Miura, 2010; Marcon and Sharpe, 2012), which could in
principle account for the structural and morphogenetic diversity of life
forms. Third, RD patterns are responsive to external perturbations and
possess the remarkable ability to regenerate after perturbations (Gierer
and Meinhardt, 1972; Kondo, 2017; Miiller and Niisslein-Volhard, 2016).

The dynamics of a number of biological systems that are compatible

with the principles underlying the RD mechanism have recently been
quantitatively studied (Diego et al., 2018; Marcon et al., 2016; Nakamasu
et al., 2009; Raspopovic et al., 2014; Scholes et al., 2019; Zheng et al.,
2016), but it remains unclear how commonly the principles of RD sys-
tems are actually realized in living systems. Qualitative similarities be-
tween in silico RD patterns and in vivo patterns are generally not sufficient
to conclude the involvement of an RD mechanism (Hiscock and Megason,
2015). In addition, owing to its simplicity, Turing’s theory has been
questioned by developmental biologists: How could a simple
two-component RD system explain the complex morphogenetic program
orchestrated by multiple genetic and molecular regulators? Due to
mathematical and computational limitations it has been difficult to
address this long-standing criticism and to extend simple RD models to
realistic multi-component biological processes. Here, we discuss how
these challenges have been tackled in recent studies, yielding new in-
sights into the mechanisms and conditions that lead to pattern formation
in realistic RD systems.

2. The local self-activation and lateral inhibition proposal

The simplest and most well-known example of an RD system is the
activator-inhibitor system. The activator-inhibitor system, coined by Hans
Meinhardt and Alfred Gierer (Gierer and Meinhardt, 1972), consists of
two diffusible components that interact through specific reactions.
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Fig. 1. The basic concept of reaction-diffusion (RD)-mediated pattern
formation. (a) Network representation of a self-organizing activator-inhibitor
system. The activator X promotes production of itself and of the inhibitor Y,
while the inhibitor restricts activator production (arrow: activation, bar-headed
line: inhibition). (b) Examples of two-dimensional Turing patterns generated

using the activator-inhibitor network shown in (a) with the equations %—’t‘ =

DxVX + <m’§—’xz +Xo> / Y —pyX and % =DyV?Y + X2 —p,Y (based on
Meinhardt, 2012), where Dx = 0.2 and Dy = 10 are the diffusivities of X and Y,
Xo = 0.1 is the basal production rate of X, and py = py =5 are the decay rate
constants. The saturation constants are Kx = 0 for the spot pattern on the left

and Kx = 0.25 for the stripe pattern on the right.

Turing had already laid the foundation for such a two-component system
with linear reaction terms (Turing, 1952), but Meinhardt and Gierer
proposed a model with biochemically more realistic nonlinear reaction
terms (Gierer and Meinhardt, 1972; Meinhardt, 2012; Turing, 1952). As
shown in Fig. 1a, in this model the activator X with diffusivity Dx pro-
motes its own synthesis and that of the inhibitor Y with diffusivity Dy,
which in turn inhibits the activator and itself. Interestingly, this system
can self-organize from an initially uniform distribution to give rise to
stationary periodic patterns of activator and inhibitor concentrations
(Murray, 2013; Turing, 1952). Such patterns with a characteristic peri-
odicity or wave-length are termed Turing patterns (Fig. 1b, Box 1).

For the network in Fig. 1a, the well-established condition for Turing
pattern formation is that the inhibitor must have a much larger diffusivity
than the activator (Dy > Dx) (Murray, 2013; Turing, 1952). This dif-
ferential diffusivity requirement led to the proposal of the famous local
self-activation and lateral inhibition model by Meinhardt and Gierer (Gierer
and Meinhardt, 1972; Meinhardt and Gierer, 2000). According to this
model, the local auto-activation by the activator and the lateral inhibition
of its activity by the antagonist is crucial for self-organized pattern for-
mation. The model postulates that the activator amplifies small random
fluctuations to form a local concentration maximum, which subsequently
leads to the activation of the inhibitor. Next, the inhibitor dampens the
concentration increase in the vicinity of the activator peak. The higher
diffusivity of the inhibitor also allows the incipient activator peaks to
grow by ‘siphoning out’ inhibitor molecules from the peak region.
Outside the range of lateral inhibition, another activator peak can then
arise leading to the sequential emergence of a stationary periodic pattern.
Intuitively, it appears that this simple principle could also be extended to
more complex multi-component RD systems by considering two groups
of interacting substances: the slow diffusers and the fast diffusers. The
slow diffusers would have a shorter range and taken together should form
an auto-activating module, whereas the latter with a larger range should
form an inhibitory module (Meinhardt and Gierer, 2000). However, in
reality this intuitive approach is not applicable to more complex systems
(Marcon et al., 2016). In the following, we describe recent studies of
multi-component RD systems that have provided evidence against the
generality of the local self-activation and lateral inhibition proposal by
showing that the differential diffusivity condition can be partially or even
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completely relaxed. These recent studies place the emphasis on feedback
loops rather than individual activator and inhibitor molecules and pro-
vide a new way to understand RD systems.

3. Insights into RD systems beyond two-component Turing
systems

Owing to advances in technology, recent computational analyses of
multi-component RD systems have revealed novel insights into pattern
formation mechanisms. The apparently simple local self-activation and
lateral inhibition concept and the conditions underlying two-component
systems get increasingly complex with the number of network compo-
nents. A graph-theoretical approach can help to dissect these complex
networks into functional modules (Diego et al., 2018; Marcon et al.,
2016), and we introduce the relevant terminology in Box 2 to illustrate
the key concepts of this approach.

3.1. Relaxation of diffusivity constraints

To describe the rules to relax the differential diffusivity constraints,
we consider three-component systems with two diffusible nodes and one
non-diffusible node (Fig. 2), where a node represents an interacting
molecular species within the network. In contrast to classical two-
component models with exclusively diffusible molecules (Fig. 1a), such
an extended network more realistically reflects biological systems, in
which signal transduction components such as membrane-bound re-
ceptors and nuclearly localized transcription factors are cell-autonomous
and therefore non-diffusible with respect to all other cells within the
tissue. Consistent with the central tenets derived from the analysis of
two-component systems, the network topology shown in Fig. 2a requires
differential diffusivity for Turing pattern formation (Marcon et al., 2016).
This means that the two molecules must diffuse at very different rates, a
condition that is difficult to implement in biological systems (Miiller
et al., 2013; Rogers and Miiller, 2019). The need for differential diffu-
sivity stems from the trade-off between the stability and the instability
conditions (Box 1), i.e. the system must be stable without diffusion but
become destabilized in the presence of diffusion. Using linear stability
analysis and graph theory (Box 1 and Box 2), it was shown that if all
nodes complementary to the stabilizing linear subgraphs (I-subgraphs) of
the same size as the destabilizing module are diffusible, then differential
diffusivity is required to produce a diffusion-driven instability (Diego
et al., 2018). For the network in Fig. 2a, the subgraph containing nodes 2
and 3 is destabilizing and has a size of 2. The only stabilizing subgraph with
a size of 2 is the cycle containing nodes 1 and 2. The complementary node
to this stabilizing subgraph is node 3, which is diffusible. Thus, this
network requires differential diffusivity (D; >D3) for Turing pattern
formation. It naturally follows that systems with only diffusible nodes
always require components with different diffusivities. Systems that
require differential diffusivity for self-organized pattern formation are
termed Type I networks (Marcon et al., 2016).

Recent studies of multi-component RD systems have shown the
presence of additional network types. Already more than two decades
ago, it had been speculated that the differential diffusivity requirement
might be relaxed in multi-component RD systems (White and Gilligan,
1998), and it was subsequently demonstrated that the addition of a
non-diffusible node in a three-node RD system can indeed allow
self-organized pattern formation with equal diffusivities (Klika et al.,
2012). More recently, a systematic analysis of realistic multi-component
systems revealed numerous three- and four-node RD networks, in which
differential diffusivity is no longer required for pattern formation (Mar-
con et al., 2016). For example, the network topology shown in Fig. 2b can
generate Turing patterns even with equal diffusion coefficients of the
diffusible nodes (D; > D3). This network type is called a Type II system.
Furthermore, Type III networks (e.g. Fig. 2c) can lead to pattern forma-
tion without any diffusivity constraints (D; > D3 or D; < D3) (Marcon
et al., 2016).
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Box 1
| Conceptual basis for pattern formation in self-organizing RD systems.

The RD mechanism amplifies local fluctuations in the concentration of initially nearly homogenously distributed molecules by a diffusion-driven
instability. For the formation of Turing patterns, two key conditions must be satisfied: First, the stability condition requires that the system reaches a
stable and spatially homogeneous steady state in the absence of diffusion. In other words, when the diffusivities of activator and inhibitor are set
to zero, the activator and inhibitor should maintain uniform and constant concentrations. Second, the instability condition dictates that in the
presence of diffusion, the steady state must become destabilized by a so-called diffusion-driven instability, leading to the amplification of small
random concentration fluctuations to yield a unique and time-invariant Turing pattern (Murray, 2013; Turing, 1952).

The figure below (Box 1) depicts this mechanism in a one-dimensional spatial domain. Initially, the concentration of a diffusible component
exhibits minor fluctuations around a homogeneous steady state over this one-dimensional domain. The fluctuations can be interpreted as being
composed of waves of different wavelengths (g). For instance, the spatial wave in panel (a) below is composed of six distinct waves. Under the
stability and instability conditions given by reaction and diffusion parameters, the system can undergo a diffusion-driven instability, which
amplifies these fluctuations. Importantly, different fluctuations are amplified at different growth rates. Over time, the fluctuation with the highest
growth rate dominates and gets fixed, such as the wave with wavelength g5 shown in panel (b) below.

Based on a mathematical technique termed linear stability analysis, the stability and instability conditions for Turing pattern formation are
expressed in terms of eigenvalues of the linearized equations, which provide the growth rates of intrinsic spatial fluctuations. Mathematically, the
eigenvalues can be plotted as a function of each wave mode (fluctuation) to obtain the dispersion relation, whose shape determines the nature of the
diffusion-driven instability (Cross and Hohenberg, 1993). According to the stability condition, all eigenvalues should be negative in the absence of
diffusion, i.e. when all species are assumed to be non-diffusible; therefore, no fluctuation can grow without diffusion. Furthermore, the instability
condition requires that in the presence of diffusion at least one eigenvalue is positive. Typically, the spatial mode with the maximum real part of
the eigenvalue will be the one that grows fastest — leading to the growth of a fluctuation and a diffusion-driven instability.

In the classical activator-inhibitor RD network (Fig. 1), if the inhibitor has a sufficiently higher diffusivity than the activator, the system can cause
a diffusion-driven instability leading to spatial pattern formation. Note that the same fluctuation is amplified simultaneously for both the activator
and the inhibitor, and the resulting pattern has a single wavelength. In two-dimensional spatial domains, complex patterns with periodic stripes,
spots, etc. can emerge (panel (c) below), and the periodicity is determined by the underlying wavelength of the pattern. In three dimensional
geometries, RD systems can create tubules and laminar sheets (Bansagi et al., 2011).

Schematic depiction of the self-organizing RD mechanism. (a) Initial random perturbations in the concentration of a molecular species consist
of numerous different waves, where g; indicates the wavelength. (b) A Turing pattern is established by selective amplification of a specific wave
form. Here, the wave with wavelength gs is amplified. (c) Periodic Turing patterns in one dimension (a wave) and in two dimensions (stripes and
spots).
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A comprehensive graph-theoretical analysis (Box 2) has provided an
explanation for these surprising findings (Diego et al., 2018). The posi-
tion of non-diffusible nodes in a network transforms the instability con-
dition (Box 1) and thus determines whether a system requires differential
diffusivity for pattern formation. Specifically, to implement a Type II
system — which allows for equal diffusivities of the diffusible network
components (Fig. 2b) — at least one stabilizing I-subgraph of the same size
as the destabilizing module needs to have a complementary
non-diffusible node (Box 2). In Fig. 2b, the stabilizing I-subgraph is the
cycle between nodes 1 and 3, and its complementary node (node 2) is
non-diffusible. To implement a Type III system — which has no re-
strictions on the diffusivities of the diffusible network components
(Fig. 2c) — the destabilizing module needs to be the I-subgraph of the
smallest size that has only diffusible complementary nodes (Diego et al.,
2018). In Fig. 2¢, the cycle between nodes 2 and 3 is the destabilizing
[-subgraph of the smallest size (size 2) with a diffusible complementary
node (node 1). Here, the Type III system (Fig. 2c) can be distinguished
from the Type II system (Fig. 2b) by noting that the non-diffusible node
(node 2) in the Type III system lacks the auto-regulatory feedback that is
present in the Type II system. In short, placing non-diffusible nodes

complementary to stabilizing modules and forming part of the destabi-
lizing modules yields network topologies with relaxed diffusivity con-
straints. Thus, the Type I, Type II and Type III networks, which may
superficially appear to be very similar (Fig. 2a—c), can require diverse
biophysical properties based on variations in network topology.

It has been postulated that the interactions between diffusible and
non-diffusible nodes lower the effective diffusion coefficient of the
diffusible activator, thus indirectly relaxing the diffusivity constraint
(Zheng et al., 2016). However, this proposed mechanism fails to explain
pattern formation at equal diffusivities. It rather seems that
non-diffusible nodes act as capacitors that integrate the input from
diffusible nodes (Marcon et al., 2016). In classical two-component net-
works, differential diffusivity drives the system away from a homoge-
neous and stable equilibrium to generate patterns. In multi-component
Type Il and Type III networks, this is achieved by the non-diffusible nodes
that can quickly amplify small perturbations since they are not subject to
the equilibrating effect of diffusion (Marcon et al., 2016). The existence
of these newly discovered network topologies strongly argues against the
previous local self-activation and lateral inhibition hypothesis, which
stated that differential diffusivity is a conditio sine qua non for
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Box 2
| Graph-theoretical framework for the analysis of multi-component RD systems.

Mincheva and Roussel pioneered a graph-theoretical approach to analyze Turing instabilities in multi-component RD systems (Mincheva and
Roussel, 2006), which inspired a new framework to identify self-organizing systems and to group the network components into functional
modules (Diego et al., 2018; Marcon et al., 2016). Here, we only introduce the most basic concepts needed for our discussion, and further details
can be found in Marcon et al. (2016) and Diego et al. (2018).

The figure below (Box 2) shows a four-node interaction graph. The nodes represent diffusible or non-diffusible molecules, and their interactions
are depicted by the edges connecting these nodes (arrow: activation, bar-headed line: inhibition). An activating edge has a positive weight,
whereas an inhibitory edge has a negative weight (denoted by the constants k;;, which give the activation (+) or inhibition (—) rates of the node j
by the node i). For the graph-theoretical analysis, the interaction graph is simplified by defining linear subgraphs (I-subgraph). An l-subgraph is a
set of one or more disjoint cycles of the interaction graph, where a cycle is a closed path spanning one or more nodes. The nodes that are excluded
from a subgraph are complementary nodes with respect to the subgraph. The size of an [-subgraph is the total number of nodes it comprises. In the
figure, I-subgraphs 1, 2, and 3 are composed of one cycle each and have sizes 1, 2, and 3, respectively. The l-subgraph 4 is composed of two cycles
and has a size of 4. The weight of a cycle is the product of the weights of all of its edges. The weight of an I-subgraph is the product of the weights of
its cycles multiplied by -1 if the number of cycles in the subgraph is an odd number. The I-subgraphs with positive weights are stabilizing, and
those with negative weights are destabilizing. In brief, subgraphs with overall inhibitory effect are stabilizing, whereas subgraphs with overall
activating effect are destabilizing.

Interestingly, the stabilizing and destabilizing subgraphs directly determine the stability and instability conditions (Box 1). The pattern formation
conditions are satisfied when i) the stabilizing interactions dominate in the absence of diffusion, and ii) destabilizing interactions dominate when
certain nodes are diffusible. Importantly, it is not the whole graph structure that matters, but only linear subgraphs — which drastically simplifies
the analysis of complex networks. Thus, the graph-theoretical framework provides a basis for deriving the pattern formation conditions of RD
systems.

Graph-theoretical framework for RD networks. An interaction graph is a graph-theoretical representation of the network topology and consists
of nodes and the interactions among them. A four-node interaction graph and its linear subgraphs are shown. Notations are the same as in Fig. 2.
A 4-node interaction graph
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Fig. 2. Relaxation of diffusivity constraints. (a-c) Examples of Turing network types based on diffusivity constraints along with representative 1D patterns for each
network generated using RDNets (Marcon et al., 2016). Circle: diffusible node, square: non-diffusible node, D;: diffusion coefficient, arrow: activation, bar-headed

line: inhibition.

self-organized biological pattern formation.

Surprisingly, Type II and Type III networks constitute the majority —
about two thirds — of minimal three-node and four-node RD networks
(Marcon et al., 2016). These discoveries therefore open new possibilities
for RD networks to be considered as working hypotheses in experimental
and computational modeling studies of biological patterning systems.
Moreover, the multi-component network topologies also offer enticing
models for synthetic biological patterning systems (see below).

3.2. Discovery and design of robust Turing networks

It has been thought that Turing networks require intricate fine-tuning
of the reaction and diffusion parameters to yield stable patterns (Butler
and Goldenfeld, 2011; Diego et al., 2018). This idea, known as the
robustness problem, was mainly based on the analysis of a limited number
of RD systems such as the activator-inhibitor system, which necessitated
large differences in diffusivities of the involved components (Gierer and
Meinhardt, 1972; Turing, 1952). However, as discussed above, recent
insights obtained from the analysis of realistic multi-component RD
systems enable the design and discovery of robust Turing networks with
smaller differences or even equal diffusivities of the involved signaling
molecules. Here, we discuss general principles that can aid in the dis-
covery and the design of robust RD networks. For the sake of clarity and
simplicity, we define robust systems as networks that give rise to
self-organizing Turing patterns for a wide range of reaction-diffusion
parameters. According to this definition, robust RD networks have a
large Turing space (Fig. 3).

Recent studies have shown that robust network topologies tend to
possess common elements (Diego et al., 2018; Marcon et al., 2016;
Scholes et al., 2019; Zheng et al., 2016). Although these studies used
different mathematical formulations, they suggest very similar rules for
the design of robust Turing networks. While some studies used Hill-type
reaction terms (Scholes et al., 2019; Zheng et al., 2016), others incor-
porated linear reaction terms with cubic saturation kinetics (Diego et al.,
2018; Marcon et al., 2016). It has been suggested that in order to build
robust multi-component Turing networks, one should 1) use as many
classical two-component activator-inhibitor modules (Fig. 1a) as possible

in the network, and 2) add additional regulations that complement the
existing core topology (Zheng et al., 2016). Consistent with this view, it
was demonstrated by numerical screening that the presence of core
network topologies similar to the activator-inhibitor module could confer
robustness to the RD system (Scholes et al., 2019). Moreover, networks
with competitive Hill-type reaction kinetics are on average more robust,
albeit less common, than networks with non-competitive Hill-type ki-
netics (Scholes et al., 2019). However, the generality of these insights
may be limited by the numerical screening approach with specific
choices of kinetic functions (Scholes et al., 2019; Zheng et al., 2016),
where only partial parameter spaces of small networks can be explored

Turing spaces
M Type |
M Type I
Type Il

Stability P2

Fig. 3. Simplified schematic of the relationship between network robust-
ness and network types. The parameter space comprises all possible parameter
combinations. The stability space comprises only those parameter combinations
that fulfill the stability condition. All networks within the same topological
family have the same stability space, but their Turing space varies according to
their network type. In this simplified schematic, the multi-dimensional param-
eter space only encompasses three parameters for ease of visualization, but the
exact sizes and shapes of the spaces are more intricate for most systems.
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due to computational constraints. In contrast, any network regardless of
the choice of kinetic functions or number of links can be studied with a
graph-theoretical approach (Diego et al., 2018; Marcon et al., 2016). This
has shown that the network type based on diffusivity constraints (Type I,
II or III) is a key determinant of the Turing space (Fig. 3) (Diego et al.,
2018). Minimal Turing networks can be grouped into topological fam-
ilies, where a topological family refers to a group of networks with the
same distribution of edges among the nodes (e.g. 7 topological families
for three-node networks with 6 positive or negative interactions) (Diego
et al., 2018; Marcon et al., 2016). All networks within a topological
family have the same stability space, i.e. the steady state of all of these
networks is stable for the same parameter space (Fig. 3). The Turing
space occupies a portion of the stability space, and this portion increases
from Type I to Type II networks and from Type II to Type III networks.
Thus, topological family and network type govern the robustness of a
given Turing network. Type II and Type III networks are more robust than
Type I networks because the diffusivity constraint largely constricts the
Turing space in Type I systems. This implies that Type II and III networks
are more suitable for the design of robust synthetic RD systems.
Furthermore, the large degree of robustness of Type II and Type III net-
works also suggests that that they are more likely to be adapted for
pattern formation processes during evolution (Marcon et al., 2016).
Importantly, even larger systems that have more than the minimal
number of links can be analyzed within the framework of measuring the
stability and instability volume. However, since this approach is based on
linear reaction terms, the accuracy of the robustness prediction for a
particular system will depend on how well the linear approximation
holds far from equilibrium.

3.3. Rules to determine the phase relationships in spatial patterns

Another important aspect of RD networks is their ability to generate
spatially overlapping (in-phase) or mutually exclusive (out-of-phase)
patterns (Fig. 4a and b), similar to the observed patterns of biological
regulators (Marcon et al., 2016). These spatial expression patterns can act
as critical cues to relay positional information for the determination of
cell fates during development as well as for the maintenance of differ-
entiated cell populations (Green and Sharpe, 2015).

Interestingly, the pattern phases are governed solely by the nature of
regulatory interactions among the components, and it is possible to
predict the overlap between species from the network topology without
the need for numerical simulations (Diego et al., 2018). Fig. 4a and b
depict the classical activator-inhibitor and substrate-depletion RD
models, respectively (Murray, 2013). In the activator-inhibitor model the
activator induces itself and the inhibitor, whereas in the
substrate-depletion model the activator (node 1 in Fig. 4b) consumes the
substrate (node 2 in Fig. 4b) for its own activation, leading to the
depletion of the substrate by fueling the activator. The in-phase pattern
produced by the activator-inhibitor network (Fig. 4a) can be altered to an
out-of-phase pattern (Fig. 4b) by simply changing the signs of all edges
emerging from and coming to any chosen node. For example, in Fig. 4a
inverting the edges emerging from node 1 (a to -a, and c to -c) followed by
an inversion of the edges coming to the same node (-b to b, and -c to c),
converts the initial activator-inhibitor network to the substrate-depletion
network, thereby altering the pattern phasing. Note that the
self-regulatory loops (auto-activation or auto-inhibition) remain un-
changed as they undergo a double inversion (c to —c, and -c to ¢). This
principle can be extended to multi-component RD systems. For an N-node
RD network, there are 2V-1 possible phase relationships, which can be
comprehensively analyzed by systematically altering the network to-
pologies (Diego et al., 2018). For three-node networks, for example, there
are 2%1 =4 possible phase relationships (Fig. 4c). Thus, the network
topology is the key determinant of pattern phases. In the future, these
insights could be used to design synthetic self-organizing tissues with any
combination of spatially overlapping or separated gene expression pat-
terns (see below).
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4. Novel theoretical frameworks for RD systems
4.1. Moving local equilibria

The classical approach of analyzing Turing instabilities solely based
on the shape of dispersion relations (Cross and Hohenberg, 1993), which
describe the growth rates of different spatial perturbations around a
homogeneous steady state (Box 1), has major limitations: The dispersion
relation approach is applicable only in special cases where the growth of
small spatial perturbations around a steady state is driven by nearly
linear interactions (Halatek and Frey, 2018; Smith and Dalchau, 2018a).
However, in real biological scenarios, patterning information can be
generated before reaching a stable steady state (Bergmann et al., 2007),
and it has been proposed that the stability of the homogeneous steady
state is not a necessary condition for Turing pattern emergence (Smith
and Dalchau, 2018a). To address these limitations associated with the
analysis of linearized RD systems, Halatek and Frey proposed a mathe-
matical framework, which can predict the behavior of nonlinear
dynamical systems that are far from the steady state (Halatek and Frey,
2018). It is based on the idea that the dynamics of a mass-conserving
system — a system where the molecules do not exit the system but are
interconverted — can be studied by partitioning it into local spatial
compartments and analyzing the stability of the local equilibrium or
steady state of each compartment. In the absence of diffusion-driven
mass redistribution, the compartments are not coupled leading to sta-
ble local equilibria. However, in the presence of diffusion the diffusive
coupling of the compartments leads to lateral mass redistribution,
thereby causing the displacement of local equilibria. These moving local
equilibria have been postulated to guide the emergence of self-organized
patterns and to scaffold their final shape (Halatek and Frey, 2018). This
framework has been successfully applied to the MinD-MinE patterning
system, which controls the positioning of the division plane in bacteria,
and in the future it will be interesting to explore the generality of the key
role of lateral mass redistribution in the emergence of spatial order for
multi-component RD networks.

4.2. Wave-pinning for self-organizing scale-invariant patterns

Another prime example of a mass conserving system is the network
that controls eukaryotic cell polarization in response to external stimuli
(Mori et al., 2008). A simplified two-component model of this system
considers two forms of a cell-polarity regulator: i) a highly diffusible
cytosolic inactive form, and ii) a membrane-localized active form with
100-fold lower diffusivity. Mass conservation in this system arises from
the interconversion of active and inactive forms, which are restricted
within a cell. At a given concentration of the inactive form, the active
form concentration has the bistable steady states S- and S, (Fig. 5). A
transient polarizing signal of sufficient amplitude can bias the initially
homogeneous distribution of the active form to drive the emergence and
propagation of a wave due to the bistable reaction kinetics (Fig. 5). The
propagation of the wave is halted, i.e. the wave is pinned, when the
interconversion rates of the two forms are balanced and the final polar
pattern is established (Fig. 5) (Mori et al., 2008). The wave-pinning
framework for single cells has recently been extended to models for the
patterning of whole tissues, e.g. for the Nodal/Lefty system that regulates
early Xenopus embryogenesis (Middleton et al., 2013), and the theory
might also be relevant for pattern formation in organoids (Ishihara and
Tanaka, 2018).

It is currently unclear whether wave-pinning and classical diffusion-
driven instabilities represent different mechanisms (Brena-Medina and
Champneys, 2014; Halatek and Frey, 2018; Trong et al., 2014; Ver-
schueren and Champneys, 2017). Given the common ingredients of re-
action and diffusion, the mechanisms are certainly related, but most
importantly they can be clearly distinguished based on their different
patterning behaviors: While classical Turing patterns have a fixed
wavelength leading to different numbers of peaks in differently sized



A.N. Landge et al.

a
-d
VAN
|7
-b
In-phase
c
L
j
T
(]
(%)
c
o
(8]
Space
(o]

Inverting node 3
edges

06

3

G

—©
NV A/

Developmental Biology 460 (2020) 2-11

ﬁ“@ . I@ﬁd

Out-of-phase

Concentration

3

G

Inverting node 3
edges

§\

\ \ j

3

G

Fig. 4. Rules to determine pattern phases. (a) The activator-inhibitor network topology produces in-phase Turing patterns. (b) The substrate-depletion network
topology produces out-of-phase Turing patterns. (c¢) An example showing the generation of all possible phase relationships for three-node networks. Nodes with the

same color indicate that they are in-phase. Notations are the same as in Fig. 2.

domains, the dimensions of wave-pinning-induced patterns proportion-
ately scale with the domain size (Diego, 2013; Ishihara and Tanaka,
2018; Mori et al., 2008) as experimentally observed in many biological
patterning systems (reviewed in Capek and Miiller, 2019; Ishihara and
Tanaka, 2018; Umulis and Othmer, 2013). Importantly, it has also been
shown that is possible to systematically design an RD system that can
only exhibit the behavior characteristic of wave-pinning — but not of
Turing patterns — by analyzing the graph structure of the underlying
network (Diego, 2013).

4.3. Incorporating tissue mechanics and fluid flows

A long-standing limitation of RD models is that they typically do not

account for potential effects of tissue mechanics and extracellular fluid
flows on pattern formation. A new model has recently addressed this
limitation and provides a glimpse into a general framework of pattern
formation based on the theory of biological mixtures (Ateshian, 2007).
The new model incorporates the effects of two distinct phases within
multicellular tissues: the poroelastic network of cells, and the extracel-
lular fluid phase (Recho et al., 2018). In this biphasic model, the tissue
architecture was assumed to be dependent on the concentration of
signaling molecules: Activating signals would increase the local cell
volume fraction relative to the extracellular phase, whereas inhibitory
signals would decrease it (Recho et al., 2018). Thus, extracellular fluid
movements could be guided by tissue mechanics depending on local
changes in the cell volume fraction. The biphasic model predicted several
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Fig. 5. Emergence of a wave-pinning pattern in a bistable reaction-
diffusion system. A schematic wave-pinning pattern across the length of a
cell or a tissue is shown. The active form distribution is polarized by a transient
stimulus at the front of the domain. Consequently, the wave front of active form
concentration propagates across the domain before it eventually arrests and
‘pins’. The maxima and minima of the wave correspond to the top and bottom
steady states (S, and S-), respectively, of the bistable system (Mori et al., 2008),
and it was recently shown that wave propagation is driven by shifts in local
equilibria (Halatek and Frey, 2018).

new types of instabilities that can lead to pattern formation, including
self-organizing patterns driven by the active transport of signaling mol-
ecules along the extracellular fluid as well as the large-scale flow of cells
themselves. Interestingly, patterning could even be achieved with a
single signaling molecule, and the resulting patterns exhibited robust
scaling properties to regulate tissue proportions in differently sized fields
(Recho et al., 2018), similar to the properties of the wave-pinning model
discussed above. The ability to achieve Turing instabilities with virtually
any two-component reaction scheme (e.g. inhibitor-inhibitor in-
teractions) is another fascinating property of this model, which could
explain pattern formation in the absence of classical activator-inhibitor
dynamics (Madzvamuse et al., 2015; Recho et al., 2018). Although
many assumptions and predictions of this mathematical framework await
experimental validation, the emerging ideas will likely inspire new ad-
vances in the field.

4.4. Model reduction approaches for RD systems

One of the major problems with the application of RD systems to
model patterning is the complexity of biological networks. Biological
networks usually possess a large number of interacting components.
However, beyond four-node RD networks the computational power
required for numerical analysis is enormous, and analytical solutions can
be practically impossible for many research groups. In the following, we
discuss how model reduction strategies have been employed to tackle
these challenges.

Smith and Dalchau recently formulated a model reduction approach
resembling a quasi-steady-state approximation (QSSA) (Smith and Dal-
chau, 2018a). QSSA assumes that in a system of chemical reactions the
concentrations of chosen intermediate species remain constant. This can
enable reduction of complex differential equations to much simpler
algebraic equations. Using this approach, it is possible to eliminate all
non-diffusible nodes from an N-node RD system with M diffusible nodes
(2<M<N). In simple terms, this is achieved by assuming that the
non-diffusible species have equilibrium concentrations at all times, thus
enabling their elimination from the system. Consequently, this approach
preserves the characteristics of the parameter space to a large extent, i.e.
the reduced system has the same stability space and Turing space as the
original system. Furthermore, the pattern wavelength is unaffected by
model reduction (Smith and Dalchau, 2018a). However, there are ca-
veats to this approach. First, a reduced system that contains only
diffusible nodes cannot form Turing patterns with equal diffusivities even
if the original system can do so. Second, the system dynamics are not
preserved upon model reduction, and the reduced model exhibits faster
patterning dynamics due to the underlying mathematical assumptions.
Third, this approach cannot be applied to RD systems in which all species
are diffusible. Even with these limitations, the model reduction approach
can be very useful when the main objective is to find pattern-forming
parameters. Generally, very few species are cell non-autonomous and
diffusible even in large biological networks, and this model reduction
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approach can allow the extraction of the Turing space with considerably
less computational power in a short amount of time.

Another important concept that simplifies the application of Turing-
like systems to biological patterning is the kernel-based Turing (KT)
model (Kondo, 2017), which depends on the shape of an
activation-inhibition kernel rather than on partial differential equations
such as those shown in the legend for Fig. 1a. The KT model assumes that
the local concentration of a patterning molecule in a tissue depends on
net activating and inhibitory signals received from nearby cells. This
approach reduces model complexity since it does not assume any mo-
lecular mechanism of activation or inhibition. In this model, the kernel
function is a sum of two Gaussian functions, which defines the extent of
activating and inhibitory signals received from a cell at a distance
(Fig. 6a). The total signal received from the surrounding cells is obtained
by mathematical integration of the kernel, which determines the syn-
thesis rate of a patterning molecule that is degraded at a constant rate.
Interestingly, these basic assumptions can lead to the spatial patterning of
this molecule (Fig. 6b and c), thereby giving rise to spatial information
and influencing the cellular state. The nature of the signal, its means of
propagation, and the cellular state governed by the signal are not
explicitly defined in the kernel function and must be determined based
on the biological system of interest. For example, in the case of the
striped patterns on adult zebrafish, the projections of the pigment cells
(yellow xanthophores and black melanophores) might constitute the
signal carriers that determine the cellular state of pigmentation (Kondo,
2017; Nakamasu et al., 2009), but the KT model can also incorporate
potential contributions of diffusion since it is agnostic to molecular de-
tails. The activation-inhibition kernel can be informed experimentally by
analyzing the dynamics in wildtype and activation (Aramaki and Kondo,
2018) or inhibition (Nakamasu et al.,, 2009) conditions, and the KT
model is particularly useful as a guiding framework when the detailed
molecular mechanisms underlying pattern formation are unknown.

5. Significance for developmental and synthetic biology

As described above, the network topology is crucial to understand the
pattern formation conditions of RD systems. While the complete set of
interactions and thus the network topology of real biological patterning
systems under investigation is rarely known, frameworks like the KT
model may provide a useful starting point. Additional factors that can
influence pattern formation include intrinsic noise, delays in signal
transduction, transcription and translation as well as the geometry of the
system (Gaffney and Monk, 2006; Umulis and Othmer, 2012). Further-
more, developmental patterning systems are often strongly influenced by
pre-patterns resulting from a biased distribution of maternal factors
(reviewed in Rogers and Miiller, 2019); as opposed to purely
self-organizing systems with homogeneous initial conditions, self--
regulating systems with interacting diffusible and non-diffusible factors
and initial pre-patterns therefore often better describe developmental
patterning (Rogers and Miiller, 2019). In spite of these challenges,
experiment-guided computational modeling of RD systems can not only
provide crucial insights into mechanisms of biological patterning but also
aid in building synthetic patterning systems as outlined below (for an
excellent review with more biological examples, see Schweisguth and
Corson, 2019).

Vertebrate digit patterning depends on the signaling molecules BMP
and Wnt as well as the cell-autonomous transcription factor Sox9
(Badugu et al., 2012; Raspopovic et al., 2014). In the mouse limb bud, the
expression of Sox9 and the distribution of the BMP signal transducer
pSmad overlap, whereas both Wnt signaling and BMP expression are
out-of-phase with respect to Sox9 expression (Fig. 7a). Based on these
observations and the known interactions between BMP, Wnt and Sox9, a
three-node Turing network was proposed to underlie digit patterning, in
which BMP and Wnt are diffusible nodes and Sox9 is a non-diffusible
node (Raspopovic et al., 2014) (Fig. 7b). Computer simulations of this
three-node model recapitulated the observed expression patterns, except
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Fig. 6. Schematic depiction of pattern
formation using kernel functions. (a)
Summation of an activating spatial kernel A
and an inhibitory spatial kernel I gives the
spatial kernel function K. The amplitude (h),

Kernel function

K width (w), and distance (d) of the activating
and inhibitory kernels are the defining
characteristics of the kernel function. (b,c)
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Fig. 7. Turing networks for vertebrate digit patterning. (a) A schematic representation of the in-phase and out-of-phase gene expression patterns in a developing
vertebrate limb (pSmad and pSm indicate pSmad1/5/8). (b) Turing network employed in Raspopovic et al. (2014) to explain digit pattern formation. (c) Extension of

the Turing network used in Marcon et al. (2016).

for the out-of-phase relationship between BMP expression and BMP
signaling as measured by the distribution of the signal transducer pSmad.
The three-node Turing network was subsequently extended to a
five-node network (Fig. 5c) using the software RDNets (Marcon et al.,
2016). The five-node network incorporated the BMP signal transducer
pSmad and the Wnt signal transducer f-catenin as two additional
non-diffusible nodes. In this updated model, indirect repression of Sox9
by B-catenin was able to explain all of the experimentally observed phase
relationships, including the out-of-phase relation between BMP expres-
sion and BMP signaling. Additional negative feedbacks between Sox9,
BMP and Wnt signaling were postulated (Marcon et al., 2016), but these
interactions remain to be tested experimentally.

Attempts to construct synthetic RD systems capable of biological
pattern formation have also been recently made in bacteria and
mammalian cells (Davies, 2017; Karig et al., 2018; Luo et al., 2019;
Santos-Moreno and Schaerli, 2018; Sekine et al., 2018). A synthetic
activator-inhibitor genetic circuit was employed in bacteria to create
stochastic patterns of fluorescent protein expression (Karig et al., 2018).
These patterns were driven by a stochastic RD system and do not require
classical Turing instabilities, thereby opening new opportunities for
synthetic biological pattern formation. In another study, a synthetic
mammalian pattern formation system was constructed (Sekine et al.,
2018), based on the known differential diffusivity of the signaling mol-
ecules Nodal and Lefty (Miiller et al., 2012; Rogers and Miiller, 2019).
However, this synthetic activator-inhibitor system could only generate
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irregular patterns of Nodal-positive cells surrounded by Nodal-negative
cells (Sekine et al., 2018). Many mechanistic details of pattern forma-
tion in the bacterial and mammalian systems remain unknown, and
Santos-Moreno and Schaerli therefore recently stated that “[...] the en-
gineering of a genuine Turing system remains yet to be achieved” (Santos--
Moreno and Schaerli, 2018). Previous studies were conceptually limited
to two-component synthetic networks and differential diffusivity, but it
will also be interesting to explore synthetic biological pattern formation
using multi-component RD systems with relaxed diffusivity constraints
(Diego et al., 2018; Marcon et al., 2016; Smith and Dalchau, 2018b).

6. Summary

In the past decade, the theory of RD-mediated pattern formation has
witnessed exciting new developments and novel theoretical insights. The
discovery of multi-component Turing networks that do not require dif-
ferential diffusivity has challenged the classical view of local self-
activation and lateral inhibition. A new understanding of the differen-
tial diffusivity criterion and patterning robustness from the analysis of
multi-component RD systems has opened unprecedented opportunities
for the discovery of biological patterning systems and the design of
robust synthetic self-organizing systems (Marcon et al., 2016; Smith and
Dalchau, 2018b; Zheng et al., 2016). It is therefore possible that these
recent insights may enable novel therapeutic advances for future tissue
engineering approaches. However, many challenges in mathematically
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modeling complex biological signaling networks remain: More realistic
models will require the incorporation of important effects such as tissue
mechanics and compartmentalization as well as the integration of large
signal transduction cascades and their interactions. At the same time, our
understanding of the mechanisms underlying pattern formation is
dependent on simplified abstract models. Striking the proper balance
between realistic physical models and mathematical abstraction will
likely inspire new studies of self-organization to derive meaningful bio-
logical insights in the future.

Definitions

Parameter space - The multi-dimensional space comprising all possible
parameter combinations (Fig. 3).

Stability space - The fraction of the parameter space that satisfies the
stability condition, i.e. the system is stable at the homogeneous steady
state under these parameters in the absence of diffusion (Box 1, Fig. 3).

Turing space - The fraction of the stability space that results in time-
invariant Turing patterns (Fig. 3).

Robustness - The probability of randomly picking pattern-forming
parameter combinations from the parameter space. The pattern-
forming parameter combinations essentially constitute the Turing
space. Hence, a larger Turing space yields a more robust RD network.
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