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1 Preliminaries
The objective of this practical is to introduce numerical methods to solve systems of
reaction-diffusion equations in 1D and 2D spatial domains,

∂u

∂t
= f(t, u) +D∆u. (1)

The language we use is Matlab because implementation of numerical schemes is
straightforward.

On the Moodle page for the course, wou will find a short tutorial on Matlab to get
you started.

Solving partial differential equations numerically requires discretizing the problem.
Here we will convert the PDE into a large system of ODE by discretizing the Laplacian
term in the equation. The Laplacian term represents the diffusion. For a function
u : I×Ω → Rn, where I is a time interval, and the spatial domain Ω ⊂ Rd is an open
connected region with a smooth boundary, the Laplacian is Laplacian

∆u =
d∑

i=1

∂2u

∂x2i
, x ∈ Ω.

Example 1 In 1D, the domain Ω can be an open interval (a, b). The Laplacian is not
evaluated at the boundary points a and b; this is the matter of boundary conditions.
In theory, the interval can be infinite: (a,+∞), (−∞, b), or (−∞,+∞).

Example 2 Alternatively, the domain Ω can be a one-dimensional torus. For an
interval [a, b), we can identify the points a and b

Example 3 In 2D, the domain can bemore varied. The simplest domain is a rectangle
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Figure 1: 1D spatial domain: the interval.

Ω
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Figure 2: 1D spatial domain: the torus.

Ω1 = [x0, x1]× [y0, y1]. Other finite domains can be included in a rectangle

For vector u, the derivatives are taken component by component. For example, for
a domain Ω ⊂ R2, and a function u with three components u(t, x, y) ∈ R3, the
Laplacian is

∆u = ∆

u1

u2

u3


=

∂2u

∂x2
+

∂2u

∂y2

=


∂2u1
∂x2

∂2u2
∂x2

∂2u3
∂x2

+


∂2u1
∂y2

∂2u2
∂y2

∂2u3
∂y2

 .

The finite difference method consists in approximating the Laplacian by a finite-
dimension matrix L. When substituted for the Laplacian, equation 1 becomes a
system of ODE

∂u

∂t
= f(t, u) +D(Lu).

By doing that, u is not a function of space anymore, but a (large) vector (or set of
vectors) that approximate the solution at different points in space.

Ω1

δΩ1

Ω2

δΩ2

Figure 3: 2D spatial domains.
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The practical will proceed as follows.

• Explicit finite difference in 1D spatial domains
• Implicit finite difference (Crank-Nicolson) in 1D spatial domains
• Explicit finite difference in 2D spatial domains
• Implicit finite difference (Crank-Nicolson) in 2D spatial domains
• Implicit finite difference (Crank-Nicolson) with alternating direction (ADI) in

2D spatial domains

For each case, a basic Matlab code is provided. All codes are functional, and the
exercises require to run and modify those codes. You can refer to the material pre-
sented at the end of this document for more theoretical perspectives. The goal of this
practical is for you to be able to adapt codes to solve new reaction-diffusion systems,
in one or two dimensional domains, using explicit or implicit methods.

1.1 List of codes
• fitzhughnagumo_diffusion.m link.
• FKPP_2D_fd_explicite.m link.
• FKPP_2D_fd_implicite.m link.
• FKPP_2D_fd_implicite_ADI.m link.
• FKPP_2D_fd_implicite_ADI.m link.
• turing_patterns_2D.m link.

2 Exercises
First create a code folder where you will store the codes for this practical. Launch
Matlab. You should have a graphical interface with many windows. Then, cd to
your code folder, either by navigating the Current Folder, or by typing
cd path/to/your/codefolder/ in the Command Window.

Exercice 1 Explicit method in 1D – Travelling waves in the FitzHugh-Nagumo
equations with diffusion

In this exercise, we will explore the explicit finite difference scheme in 1D. As an explicit
finite dif-
ference
scheme in
1D

test case, we will use the FitzHugh-Nagumo equations with diffusion, with parame-
ters set to have a travelling wave solution.
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The FitzHugh-Nagumo equations with diffusion are

dv

dt
= v − v3/3− w + I +D∆v;

dw

dt
= ε(v + b− cw);

This system of reaction-diffusion equations has been used to model the propagation
of an action potential along an axon, or to model the propagation of action potential
in the heart muscle. The model describes the evolution of the voltage created by
concentration difference in ions as they cross a cellular membrane. The variable v is
the difference of potential (the voltage) across the cellular membrane. The variable
w is a recovery variable that lumps together several mechanisms for ion balance At
rest, the voltage is negative (more negative inside the cell). When a current I is
applied to the cell, ion channels open up an let positive ions enter the cell, and the
voltage rapidly becomes positive, at which point the channels close down and the cell
starts pumping ions out to go back to the resting potential. The action potential is
the event of voltage spiking. The action potential is followed by a refractory period,
where no new action potential can occur. The parameter ε controls the length of the
refractory period.

The spatial domain is the interval (x0, x1), x0 < x1.

(a) Download the script file fitzhughnagumo_diffusion.m at
https://gist.github.com/samubernard/0b2c18001bbbd2d712ea533359c9b496.
Save the file in your code folder. This code implement the FitzHugh-Nagumo equa-
tions on a 1D interval with either Neumann boundary conditions, periodic boundary
conditions, or Dirichlet boundary conditions.

Run the code fitzhughnagumo_diffusion by typing

>> fitzhughnagumo_diffusion

in the Command Window followed by Enter 1. The command will execute the script
contained in the file. All defined variables will appear in the Workspace. You can
list defined variables with the command whos . A figure window will also appear in
a new Figures window. You should see the evolution of spatial profiles v(t, x) and
w(t, x) for advancing values of time t.

1The >> is the Matlab prompt, it is not part of the command. Matlab can auto-complete by pressing
the Tab key after entering the first few characters of the name of a script file in you current folder.
This is useful to check that fitzhughnagumo_diffusion.m is actually in your folder. The current
folder is indicated in the address bar on top of the Matlab window, or with the command cd . The
Command Window works much like a unix shell, and a few commands are the same: cd, ls, mkdir. You
can issue a shell command by preceding it with !. For example, to get the date, type >> ! date.
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(b) Check the structure of the discretized Laplacian Lwith the command spy .

(c) Increase the time step and rerun the script until solutions start doing strange
stuff. At what values does the numerical scheme lose stability? Does it satisfy the
condition k < h2/(2D)?

Exercice 2 Explicit method in 1D – Turing Patterns

Save the file fitzhughnagumo_diffusion.m under the name gierermeinhardt.m.
Change the equations on (v, w) by the Gierer-Meinhardt model

∂a

∂t
= ρ

a2

h
− µaa+Da

∂2a

∂x2
,

∂h

∂t
= ρa2 − µhh+Dh

∂2h

∂x2
.

Take Da ≪ Dh, µh > µa. You might need to change the notation to avoid clashing
with existing variables. Use periodic boundary conditions, and random initial con-
ditions generated with rand(J,1) for instance. A parameter set that shows Turing
patterns is Da = 0.01, Dh = 0.2, ρ = 0.5,muh = 0.5,mua = 0.45.

Exercice 3 Implicit Crank-Nicolson method in 1D – FPKK equation

In this exercise, we numerically solve the Fisher-KPP equation

∂u

∂t
= ru(1− u) +D∆u

on an interval Ω = (a, b) with Neumann no flux boundary conditions.

(a) Download the code at
https://gist.github.com/samubernard/c080bca02ec7ba55594b9eb3e77187b1.
Save it in your code folder. Run the script FKPP_1D_fd_implicite . You should see
a travelling wave moving right.

(b) We have seen in class that the wave speed c ≥ c0 = 2
√
rD. Compute c0 and

compare with the speed you see in the numerical solution.

Exercice 4 Explicit method in 2D – FKPP equation

(a) Download the code at
https://gist.github.com/samubernard/f989ebc8fde012f53897e6dfe998aace.
Save it in your code folder. Run the script FKPP_2D_fd_explicite . You should
see... not much. The code is slow. Stop the code by pressing Ctrl-C when the
Command Window is in focus.

(b) Decrease spatial resolution by increasing the value of h by a factor 10. Now you
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should see a 2D travelling wave front progressing in the South-East direction.

(c) Reset h = 0.025 and increase set the timestep to k = 0.01. Run the code again.
What do you see?

Exercice 5 Implicit Crank-Nicolson method in 2D – FKPP equation

(a) Download the code at
https://gist.github.com/samubernard/7a9ccd1fc76e268b44ed4d3ba737ac15.
Save it in your code folder. Run the script FKPP_2D_fd_implicite . You should
see... a travelling wave.

(b) How much can you increase the time step ?

Exercice 6 Implicit Crank-Nicolson ADI method in 2D – FKPP equation

(a) Download the code at
https://gist.github.com/samubernard/2eadf8d4d494cb334656a5340207a746.
Save it in your code folder. Run the script FKPP_2D_fd_implicite_ADI .

(b) Compare computational times with the non-ADI code.

Exercice 7 Turing patterns in 2D

(a) Download the code at
https://gist.github.com/samubernard/02451fc8a4789ca08819cbd541626065.
Save it in your code folder. Run the script turing_patterns_2D . Use the command
view(2) and view(3) to switch between 2D and 3D view of the solution.

(b) Try to find nice pattern by changing model parameters, in particularDv andDw.
Once you are satisfied, you can try to increase the size of the domain (see Figure
4).

3 Finite-difference in 1D

Rx0 x1 x2 x3 x4 x5 x6

0h 1h 2h 3h 4h 5h 6h
xixi − h xi + h

ha b
Ω

We discretize the domain Ω = (a, b) into J distinct points xi, i = 0, ..., J − 1, equally
spaced with step h = b−a

J−1 . These points include the boundary x0 = a and b = xJ−1.
We will look for a discretized solution uti at point xi: uti ≈ u(t, xi). The finite-
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Figure 4: My best shot for Turing patterns in 2D.

difference scheme consists in approximating the derivative of a function by

∂u

∂x
≈ u(x+ h)− u(x)

h
,

∂2u

∂x2
≈ ∂

∂x

u(x+ h)− u(x)

h
,

≈ (u(x+ h)− u(x))− (u(x)− u(x− h))

h2
,

≈ u(x+ h)− 2u(x) + u(x− h)

h2
.

If the finite-difference scheme is applied at the discretized values of the domain Ω,
we obtain

∆u(t, xi) ≈
u(t, xi + h)− 2u(t, xi) + u(t, xi − h)

h2
,

≈ u(t, xi+1)− 2u(t, xi) + u(t, xi−1)

h2
,

≈
uti+1 − 2uti + uti−1

h2
.

Subsituting the discretized solution and Laplacian in the original PDE 1, we obtain
a large system of ordinary differential equations

dui
dt

= f(t, ui) +D
ui+1 − 2ui + ui−1

h2
. (2)

You will notice that the finite-difference scheme only works for i = 1, ..., J − 2, i.e.
for points inside the domain Ω, but the scheme depends on points on the boundary
(when i = 1 or J − 2). This means that we need to provide separate rules for ut0
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and utJ−1. These rules are called boundary conditions. The need for boundary con- boundary
conditionsditions comes from the PDE problem itself, it is not an artifact of the discretization.

The discretization merely makes the boundary condition problem transparent. This
means that the boundary condition can be expressed in term of the original variable
u. We will consider two types of boundary conditions: Neumann and Dirchlet. The
Dirichlet boundary condition sets the values of u on the boundary

u(t, x) = c(t, x), x ∈ δΩ,

for a known function b. For the heat equation, the Dirichlet boundary condition Dirichlet
boundary
condition

means setting a fixed temperature at the boundary. The Neumann boundary con-
dition sets the values of the outward normal derivatives of u on the boundary. The

Neumann
boundary
condition

normal derivative can be interpreted as a flux.

∂u

∂n⃗
= ϕ(t, x), x ∈ δΩ,

For the heat equations, this means either heating the material if the derivative is pos-
itive, or that the material is dissipating heat if the derivative is negative. A important
particular case of the Neumann boundary condition is setting the derivatives to zero.
This case is called no flux. For the heat equations, this mean that the domain is fully no flux
insulated: there is no heat loss or gain. In 1D, the normal vector at the boundary
n⃗ is 1 on the right bound, and −1 on left bound. Therefore, the normal derivative
is

∂u

∂n⃗
=

−∂u
∂x x is on left side,

+∂u
∂x x is on right side.

In the no flux conditions, the derivative ∂u/∂x = 0 on at both ends of the do-
main.

How do these conditions look on the discretized PDE? For the Dirichlet conditions
one needs to specify u0 = c(t, a) and uJ−1 = c(t, b). With these specifications the
discretized system is well defined, and can be solved numerically using time-stepping
solvers. For the Neumann condition, the derivative needs to be discretized, using
finite-difference

∂u

∂n⃗
≈

−u1−u0
h left side,

uJ−1−uJ−2

h right side.

On the left end, the condition becomes u0−u1 = hϕ(t, a), or u0 = u1+hϕ(t, x0). To
check consistency, if the flux iϕ is negative, then u0 < u1, solution loses at the border.
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Figure 5: Structure of the discretized Laplacian L, for interval 1D domains.

On the right end, the condition becomes uJ−1 − uJ−2 = hϕ(t, b), or uJ−1 = uJ−2 +

hϕ(t, b). Consistency check: if ϕ < 0, uJ−1 < uJ−2, and again the solution loses at
the border. For the no flux condition, we have u0 = u1 and uJ−1 = uJ−2.

So far we have considered 1D spatial domains as intervals, but it is also possible to
consider a one-dimensional torus instead. The torus can be expressed as an interval
with periodic boundary, where a = b. Therefore, we do not have to compute the
solution at point b, it is the same as in a, this gives us a point for free. This affect the
discretization, as we do not want to include b. As before, xi = a+ih, but now the last
point is xJ−1 = b− h. This leads to xJ−1 = a+ (J − 1)h = b− h, or h = b−a

J .

3.1 Explicite finite-difference scheme in 1D
The discretization scheme can be expressed inmatrix-vector form. Takeu = (u0, u1, ..., uJ−1)

t ∈
RJ , then the discretized system can be expresssed as

d

dt
u = f(t,u) +

D

h2
Lu. (3)

The Laplacian has been replaced by a J × J matrix L. The structure of L is simple:
for each row i = 1, 2, ..., J − 2 corresponding to a point xi inside the domain, there
are coefficients (1,−2, 1) at columns i− 1, i, i+ 1. This forms a tri-diagonal matrix:
−2 on the main diagonal, and 1 on the off-diagonals.

For periodic boundaries, when the domain is a torus, the matrix L has a regular
structure System (3) is solved using a time-stepping scheme. The simplest one is the
Forward Euler (FE) scheme, a first-order explicit scheme of the Runge-Kutta family.
The solution u is discretized at times t0, t0 + k, ..., so that the solution un ≈ u(tn),
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Figure 6: Structure of the discretized Laplacian L, for periodic 1D domains.

with tn = t0 + nk. One time-step of the Forward Euler scheme is

un+1 = un + kf(un) + k
D

h2
DLun.

We are ready to implement the scheme

% Pseudo-code, Matlab style
% du/dt = f(u) + D d^2u/dx^2
% define the discretized domain (a,b)
set the number of points J;
if periodic_boundary

h = (b-a)/J;
else

h = (b-a)/(J-1);
end
for i = 1 to J

x(i) = h*(i-1); % Matlab index starts a 1, not 0!
end
L = sparse(J,J); % initialize at sparse JxJ matrix
L(diag) = -2; % set diagonal to -2
L(off_diagonals) = 1; % set off-diagonals to +1
if periodic_boundary

L(1,J) = 1;
L(J,1) = 1;

else
L(1,:) = 0; % set boundary rows to 0
L(J,:) = 0; % set boundary rows to 0

end
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u = initial_condition(x); % initialize solution vector at t = 0
t = 0; % initialize time
set tfinal > 0;
set time step k;

while t < tfinal
u = u + k*( f(u) + D/h^2*L*u ); % Forward-Euler update
u(1) = u(2); % No flux boundary condition
u(J) = u(J-1); % No flux boundary condition
t = t + k;

end

One last detail. The Forward-Euler scheme is not stable for any value of k. The
time step must be small: k < h2/(2D). Given that h is presumably already small,
this scheme can be very slow. Moreover, the reaction term can limit the timestep to
lower values. Implicit schemes are much better.

3.2 Implicite finite-difference scheme in 1D – Crank-Nicolson
The Crank-Nicolson scheme in 1D is a simple change of when the discretized Lapla-
cian is evaluated. In the explicit scheme, the diffusion term is Lut. In the Crank-
Nicolson scheme, it is (Lut + Lut+k

)
/2. This lead to an updating scheme

ut+k = ut + kf(ut) +
D

2h2
(Lut + Lut+k).

Given that the unknown is the solution at the next step ut+k, this can be solved
as

(I − k
D

2h2
L)ut+k = ut + kf(ut) + k

D

2h2
Lut.

This is just a plain linear system. Call A = (I − k D
2h2L), the solution for ut+K

writes

ut+k = A−1
(
ut + kf(ut) + k

D

2h2
Lut

)
.

With such an implicit scheme, there is not condition on k anymore, it becomes in-
dependent from the space step h. Of course, the linear system needs to be solved at
each time step, which is slow. Fortunately the matrix A is tri-diagonal and there are
very efficient algorthims to solve these tri-diagonal linear systems. This makes the
implicit Crank-Nicolson scheme quite efficient.
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4 Finite-difference in 2D
For a rectangular domain, the normal derivative is easy to compute

∂u

∂n⃗
=



−∂u
∂x x is on left side,

+∂u
∂x x is on right side,

−∂u
∂y x is on bottom side,

+∂u
∂y x is on top side.

Ω1

δΩ1

n⃗ = (1, 0)

n⃗ = (0, 1)

n⃗ = (−1, 0)

n⃗ = (0,−1)

5 Solutions to the exercises
Solution to exercise 1

Solution to exercise 2 (c) Numerical artefact–the code is unstable

Solution to exercise 3 (b) Approximately k < 2.0

Solution to exercise 4 (b) I get 4.5s for ADI, and 26s for the non-ADI code.
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