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We introduce and study a new model for the progression
of Alzheimer’s disease (AD) incorporating the interactions
of Aβ-monomers, oligomers, microglial cells and interleukins
with neurons through different mechanisms such as protein
polymerization, inflammation processes and neural stress
reactions. To understand the complete interactions between
these elements, we study a spatially homogeneous simplified
model that allows us to determine the effect of key parameters
such as degradation rates in the asymptotic behaviour of
the system and the stability of equilibrium. We observe that
inflammation appears to be a crucial factor in the initiation
and progression of AD through a phenomenon of hysteresis
with respect to the oligomer degradation rate d. This means
that depending on the advanced state of the disease (given
by the value of the Aβ-monomer degradation rate d: large
value for an early stage and low value for an advanced
stage) there exists a critical threshold of initial concentration
of interleukins that determines if the disease persists or
not in the long term. These results give perspectives on
possible anti-inflammatory treatments that could be applied
to mitigate the progression of AD. We also present numerical
simulations that allow us to observe the effect of initial
inflammation and monomer concentration in our model.

1. Introduction
Understanding the origin and development of Alzheimer’s
disease (AD) has been a challenging problem for biologists
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during the past few decades. As in many neurodegenerative diseases, AD is known to be associated
with the misconformation, aggregation and propagation of different proteins in the nervous system
[1–5]. They form stable oligomers that eventually accumulate in the so-called amyloid plaques and this
phenomenon is believed to lead to a progressive irreversible neuronal damage. One of these proteins
that appears to be relevant in the early stages of the development of AD are the Aβ-monomers, whose
precise mechanisms of aggregation and diffusion are yet to be discovered.

In this context, mathematical models arise as a useful approach to understand the different
processes underlying AD. Several types of models have been considered, including from simple
systems of ordinary differential equations to more complex partial differential equations, such as
transport equations [6], reaction–diffusion models [7–10] and stochastic control models [11].

The goal of this article is to understand the complete interactions between Aβ-monomers, oligom-
ers, microglial cells and interleukins through a new system of partial differential equations, involving
the development of AD in the brain. Neurons produce Aβ-monomers that almost instantaneously
start to polymerize into proto-oligomers. In this aggregation process, proto-oligomers are able to
polymerize or depolymerize and once they reach a critical size they become stable under the form of
Aβ-oligomers. These latter are assumed to be totally stable in the sense that neither polymerization nor
depolymerization is possible for Aβ-oligomer equilibrium [12,13]. This mechanism on Aβ-oligomers is
known as the amyloid cascade hypothesis and there is a general consensus that it is a key factor in the
progression of AD [1,5].

Besides the mechanism of polymerization, oligomers interact with microglial cells, considered as
auxiliary cells in the nervous systems regulating brain development. They induce an inflammation
reaction through a chemical cascade in microglial cells, releasing interleukins [14,15]. These interleu-
kins then activate an increase of Aβ-monomer production from the neurons. However, if the concentra-
tion of Aβ-oligomers is high enough, then a reaction of stress called unfolded protein response (UPR)
[4] is triggered which leads to a decrease of Aβ-monomer production, while the rest of oligomers
diffuse in the neuronal environment. In this context, two opposed mechanisms of stimulation and
inhibition will determine the persistence of AD or not.
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Figure 1. Schematic representation of Aβ-monomers and inflammation cycle. Neurons produce Aβ-monomers (1) that polymerize
into proto-oligomers (2). These proto-oligomers eventually reach a critical size to become stable oligomers (3). They activate
microglial cells triggering an inflammatory reaction (4) by producing interleukins. The interleukins stimulate neurons (5) to increase
Aβ-monomer production, closing the positive feedback cycle. Moreover, when oligomer concentration is high, neurons are stressed (6)
and decrease the Aβ-monomer production, while oligomers are displaced by microglial cells towards the amyloid plaques (7).
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Moreover, oligomers are brought and displaced by microglia to the amyloid plaques, that is,
an aggregate of Aβ-oligomers that becomes an inert element (no diffusion, no polymerization, no
depolymerization). Each element of the system (monomers, proto-oligomers, and oligomers except
those in the amyloid plaques) diffuses, with a size-dependent rate. Microglial cells can also have
random motility, but they displace free Aβ-oligomers to the amyloid plaques through a chemotactic
process and amyloid plaques will more likely develop where the concentration of microglial cells is
high. These cells are known indeed to be very reactive to neuronal insults [16–19].
Inflammation processes seem to be crucial to control the disease progression [15] and to find

possible therapeutic strategies to mitigate the negative effects of AD. For example, it is suggested
by Rivers-Auty et al. [20] that diclofenac-based drugs might be associated with slower cognitive
decline with possible perspectives on AD progression. However, despite epidemiological evidence,
robust clinical trials have not been successful in providing efficacy evidence of such anti-inflammatory
treatments [21–23]. On the other hand, in Ali et al. and Imbimbo et al. [24,25], it is suggested that
anti-inflammatory treatments might be effective if they are applied years before the development of
clinical symptoms. Furthermore, in Imbimbo et al. [25], it is mentioned that some anti-inflammatory
treatments decrease the levels of Aβ by allosterically inhibiting the γ-secretase complex, which could
give interesting perspectives in finding efficient cures. Other treatment suggestions include actions
on multiple targets besides neuroinflammatory and neuroprotective effects such as anti-amyloid and
anti-tau effects [26,27].

Bertsch et al. and Andrade-Restrepo et al. [9,10], using reaction–diffusion type equations, describe
the initiation and progression of AD under the hypothesis of amyloid cascade where the Aβ in its
oligomeric form is toxic for neurons. In our paper, in addition to the amyloid cascade hypothesis,
we take into account the effect of inflammation on the progression of the disease. This inflammation
appears through the process of recruitment of microglial cells and then the activation of interleukins
(IL-1). As a general goal, we aim to understand the progression of AD through an analysis-compatible
simplified version of this base model.

The article is organized as follows. In §2, we introduce the main system of partial differential
equations and we describe the reactions involving monomers, (proto-)oligomers, microglial cells and
interleukins, which are summarized in figure 1. Then, in §3, we deal with a spatially homogeneous
version of the main model, where polymerization and depolymerization processes are simplified. For
this simplified model, we analyse the existence of steady states depending on the parameters. Finally,
in §4, we present numerical simulations of the simplified model in order to observe the different
possible dynamics of solutions and the stability of the steady states.

2. Mathematical model
Let us detail each equation of the system. In this model, we consider that dynamics occur in a part of
the brain considered as an open bounded domain Ω ⊂ ℝd (with d ∈ {2, 3}) and the main variables of the
system are given in table 1.

Table 1. Variables of the mathematical model.

variable definition

ui(t,x) concentration of Aβ-proto-oligomers of size iu(t,x) concentration of Aβ-oligomersup(t,x) concentration of oligomers in the amyloid plaquesm(t,x) concentration of Aβ-monomersM(t,x) concentration of microglial cellsI(t,x) concentration of interleukins
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2.1. Proto-oligomers
Aβ-proto-oligomers have a size ranging from i = 2 to i = i0 − 1 and become oligomers when they reach
the size i = i0 (see point (2) in figure 1). Equations for proto-oligomers with size i = [2,⋯, i0 − 1] are given
by

∂ui
∂t (t,x) = ri − 1ui − 1(t,x)m(t,x) + biui + 1(t,x) − riui(t,x)m(t,x) − bui(t,x) + νiΔui(t,x),

where r1 is the bi-monomeric nucleation rate (with the notation u1 = m(t,x) the monomer concentra-
tion), bi is the rate of monomer loss from proto-oligomers and ri is the rate of monomer gain.
The couple (ri, bi), i ∈ [2,⋯, i0 − 1] is called kinetic coefficients with the notation bi = b if i ≤ i0 − 2 andbi0 − 1 = 0.

The first term of the right-hand side stands on the one hand for the bi-monomeric nucleation
when i = 2 and on the other hand for the polymerization with rate ri − 1 (i ≥ 3) of a proto-oligomer
of size i − 1 with the contact of a monomer, giving then a proto-oligomer of size i. The second term
describes the depolymerization with rate bi of a proto-oligomer of size i + 1 to a proto-oligomer of
size i. The third and fourth terms are related to the symmetric process respectively of polymerization
and depolymerization of a proto-oligomer of size i. Finally, each proto-oligomer can diffuse with a
size-dependent coefficient (the smaller the size, the faster the diffusion).

2.2. Free oligomers
The variation of the Aβ-oligomer population is described as follows (see point (3) in figure 1):

∂u
∂t (t,x) = ri0 − 1ui0 − 1(t,x)m(t,x) − γ(M(t,x))u(t,x) − τ0u(t,x) + νi0Δu(t,x),

where the first term of the right-hand side stands for the polymerization with rate ri0 − 1 of a proto-
oligomer of size i0 − 1 with the contact of a monomer giving then an oligomer of size i0. The second
term describes the recruitment of oligomers to the amyloid plaques by microglial cells M with a rate γ
given by

γ(M) = γ0 + γ1M
1 + γ2M ,

depending on M through a Michaelis–Menten function with parameters γi (i ∈ {0, 1, 2}) and the third
term corresponds to the degradation of oligomers with rate τ0. Finally, each oligomer diffuses with
rate νi0. It is important to remember here that oligomers neither polymerize nor depolymerize, unlike
proto-oligomers.

2.3. Oligomers in the amyloid plaques
The variation of the Aβ-oligomer population stuck in the amyloid plaques is described as follows (see
point (7) in figure 1):

∂up
∂t (t,x) = γ(M(t,x))u(t,x) − τpup(x, t),

where the first term of the right-hand side stands for the recruitment of free oligomers to the amyloid
plaques by microglial cells M with a rate γ and the second term represents the corresponding loss with
rate τp. We remind here that oligomers in the amyloid plaques neither polymerize, depolymerize nor
diffuse.

2.4. Monomers
The variation of the Aβ-monomer population is described as follows (see point (1) in figure 1):
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∂m
∂t (t,x) = −r1m2 − ∑i = 2

i0 − 1riui(t,x)m(t,x) + b ∑i = 2

i0 − 1ui(t,x)

+S(u(t,x), I(t,x)) − dm(t,x) + ν1Δm(t,x),

where I(t,x) is the concentration of interleukins and the function S is given by

(2.1)S(u, I) = τS
1 + Cun I, n ≥ 1.

The term S(u, I) is called the stress function. According to the form of this function, under a high
concentration of oligomers u surrounding the neuron, this latter will be stressed and stop the produc-
tion of Aβ-monomers, which means that S(u, I) is close to 0 (see point (6) in figure 1).

We remark that the neuron can be torn between the decision of producing Aβ-monomers due
to the inflammation (caused by the interleukins) and the stress caused by the amount of oligomers
surrounding the neurons causing the UPR process that stops this Aβ production. Note that this object
is one of the major key properties in our model. For simplicity, we do not take into account the fact that
microglia produce Aβ-monomers and this will be considered in a future work with a more complex
model.

The first and second terms of the right-hand side stand, respectively, for the bi-monomeric
nucleation and the polymerization of proto-oligomers of all sizes, while the third term describes the
corresponding processes of depolymerization of proto-oligomers. The fourth term is the source term
depending on the inflammation reaction caused by the interaction of Aβ-oligomers with microglial
cells. The fifth term describes the degradation of the monomers with a rate d. This rate d may depend
on oligomer concentration and behave as a Hill function, but for simplicity, we consider in the sequel
that d is a given positive constant. Finally, the last term stands for the monomer diffusion ability with
rate ν1.

2.5. Microglial cells
The evolution of the microglial cell population is described as follows (see point (4) in figure 1):

∂M
∂t (t,x) = D1ΔM(t,x) − α∇ ⋅ (M(t,x)∇u(t,x))

+λM +
α1u(t,x)

1 + α2u(t,x) M̂ −M(t,x) M(t,x) − σM(t,x),

where the first term of the right-hand side stands for the diffusion of microglial cells with rate D1.
The second term represents the chemotaxis of microglial cells in response to the increase of oligomer
population. This chemotactic effect results in an activation of microglial cells due to the presence of
oligomers which causes an inflammatory reaction with the production of interleukins (IL-1). The third

term describes the proliferation of microglial cells at a constant rate λM. In the fourth term, M̂ is the
maximum capacity of microglial cells in the neuron environment and the last term characterizes the
loss of microglial cells with rate σ.

2.6. Interleukins
The equation for the evolution of interleukins is (see point (5) in figure 1)

∂I
∂t (t,x) = DIΔI(t,x) +

τ1u(t,x)
1 + τ2u(t,x)M(t,x) − τ3I(t,x),

where the first term of the right-hand side is the diffusion of the interleukins, and the second term
represents the proliferation which depends on the concentration of oligomers through a Michae-
lis–Menten function with parameters τ1, τ2 and the microglial cells. The third term represents the loss of
interleukins with rate τ3.

We note that all equations are complemented with Neumann boundary conditions with zero flux
through ∂Ω and the parameters of the system are non-negative real numbers. The main interactions of
this system are summarized in figure 1.
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3. A bi-monomeric simplified model
In order to proceed to a full mathematical analysis, and understand the qualitative dynamics of the
actors of this problem, we consider a simplified model version of the full system of partial differential
equations. We assume a bi-monomeric nucleation, that is, two monomers can merge to form a free
oligomer (m + m → u) and the intermediate proto-oligomer phase is absent. For this case, we assume
that when a monomer attaches to a free oligomer, the latter does not change and the monomer is
consumed (u + m → u). The equations of the simplified PDE system are the following:

(3.1)

∂u
∂t = ν2Δu + r1m2 − γ(M)u − τ0u,

∂up
∂t = γ(M)u − τpup,

∂m
∂t = ν1Δm + τS

1 + Cun I − dm − r2um − r1m2,

∂M
∂t = D1ΔM − α∇ ⋅ (M∇u) + α1u

1 + α2u (M̂ −M)M − σM + λM,

∂I
∂t = DIΔI + τ1u

1 + τ2uM − τ3I .

We also assume that when a monomer binds to an oligomer, then the monomer is consumed with
rate r2 and the number of oligomer molecules does not change. Under these assumptions, we notice
that there is no term involving the rate r2 in the equation of oligomers.

We could recall here that it is essential to consider all intermediate stages of oligomer formation, as
they are important and could potentially play a significant role in the disease dynamics. However, we
chose to study a simplified problem initially to conduct a thorough analysis of stability and highlight
the phenomenon of hysteresis (see §4.1). This decision could, however, be biologically explained by
the fact that the polymerization and depolymerization process is much faster compared with the
degradation process, as was considered in previous works [10,11] with the choice of parameter values.
Therefore, we consider the intermediate stages at equilibrium. This is obviously a significant simplifi-
cation, and in our future work, we will incorporate all stages into a more comprehensive study.

3.1. Spatially homogeneous model
In addition to the previous subsection, and to simplify the analysis in this work, we focus on spatially
homogeneous solutions of the bi-monomeric model equation (3.1). We recall that this present work has
two main objectives: (i) to introduce the most comprehensive possible model, which, in our view, is the
most biologically realistic; and (ii) to propose an initial simplification to provide clear insights into a
novel dynamics of this process. Of course, this simplification comes at the expense of tissue realism,
especially spatial heterogeneity. The biological interpretation of the choice of homogeneity here is
to localize the disease in a specific tissue (a region of the brain), where anti-inflammatory signals
would have a notable effect. Naturally, in our future works, we will explore much more heterogeneous
regions with potentially richer dynamics, but much more challenging to obtain and interpret.

For simplicity, we assume that the rate of recruitment of oligomers to the amyloid plaques γ(M) is
constant, which corresponds essentially to considering an average rate of oligomers being recruited
and we consider that oligomers have a highly stable structure and their degradation is negligible,
which means τ0 = 0. However, the results of the qualitative analysis of the system do not change if we
consider the degradation of oligomers. Under this setting, the model is reduced to the following system
of ordinary differential equations:
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(3.2)

dudt = r1m2 − γ0u,dupdt = γ0u − τpup,

dmdt = τS
1 + Cun I − dm − r2um − r1m2,

dMdt = α1u
1 + α2u (M̂ −M)M − σM + λM,

dIdt = τ1u
1 + τ2uM − τ3I .

Because of this simplification, we obtain the following result.
Proposition 3.1. For any non-negative initial condition (u0,up0,m0,M0, I0), the system has a unique global

solution which is bounded.
Proof. Existence and uniqueness of a local solution are straightforward from the Cauchy–Lipschitz

theorem for ordinary differential equations. For the positivity of solutions, consider the vector fieldF = (f1, …,f5) for y = (y1, …, y5) ∈ ℝ5 given by

f1(y) = r1y3
2 − γ0y1,f2(y) = γ0y1 − τpy2,

f3(y) = τS
1 + Cy1

n I − dy3 − r2y1y3 − r1y3
2,

f4(y) =
α1y1

1 + α2y2
(M̂ − y4)y4 − σy4 + λM,

f5(y) =
τ1y1

1 + τ2y2
y3 − τ3y5,

and observe that F satisfies the quasi-positivity property, that is, for all indices i ∈ {1, …, 5} we have

∀(yj)j ≠ i ∈ (ℝ+)4, fi(y1, …, yi − 1, 0, yi + 1, …, y5) ≥ 0.

Thus, from proposition 2.1 in Haraux [28], we conclude that the solution remains non-negative because
of this property.

We now assert that the solution remains bounded. Indeed, from the fourth equation of system
(3.2), we conclude that if M is large enough then dM /dt < 0 and, therefore, M(t) remains bounded. By
reapplying the same argument, we subsequently conclude the same result for the rest of the variables
of the system. Since the solutions of system (3.2) are bounded, they are defined for all t > 0. ∎
3.2. Steady states
The stationary points of system (3.2) correspond to solutions of the following system:

(3.3)

r1m2 − γ0u = 0,
 γ0u − τpup = 0,τS

1 + Cun I − dm − r2um − r1m2 = 0,

α1u
1 + α2u (M̂ −M)M − σM + λM = 0,

τ1u
1 + τ2uM − τ3I = 0.

One of the solutions of this system is the disease-free equilibrium, given by 0, 0, 0, λMσ , 0 . Besides this

equilibrium, there may be other steady states depending on the parameter values of our system, whose
existence will be studied in this section. Concerning the disease-free equilibrium, we get the following
result.

Proposition 3.2. For the system (3.2), the disease-free equilibrium 0, 0, 0, λMσ , 0  is locally asymptotically

stable for every choice of positive parameters.
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Proof. The Jacobian matrix around the vector 0, 0, 0, λMσ , 0  is given by

J =

−γ0 0 0 0 0γ0 −τp 0 0 0
0 0 −d 0 τSα1 M̂ − λMσ λMσ 0 0 −σ 0

τ1
λMσ 0 0 0 −τ3

,

whose set of eigenvalues is given by { − γ0, − τp, − d, − σ, − τ3}. Since they are all negative, then the
disease-free equilibrium is locally asymptotically stable. ∎

An interesting question is to determine under which parameter values the existence of non-trivial
steady states (i.e. AD persists) holds. In this regard, we have the following result.

Theorem 3.3. Assume that the parameters satisfy the condition

(3.4)σγ0τ3 < τ1τSλM .

Then for d > 0 small enough, there exist at least two positive steady states of system (3.3). If d > 0 is large
enough, then there are no positive solutions of system (3.3), regardless of condition (3.4).

Proof. From system (3.3), we solve for u and up in terms of m and we get the following relation:

u = ρm2,  up = r1τpm2 with ρ = r1γ0
.

From the equation of microglial cells, we solve the quadratic equation of M in terms of u and by taking
the positive root we get the following equality:

(3.5)M =
Δ(u) − σ − (σα2 − M̂α1)u

2α1u ,

with Δ(u) = (σ + (σα2 − M̂α1)u)2 + 4λMα1u(1 + α2u). For the interleukins we get the relation

I = τ1τ3

ρm2

1 + τ2ρm2M .

Substituting these expressions into the equation of m in equation (3.3), we obtain the equation with
respect to m:

(3.6)m(P(m) + d) = mF(m),

where the functions P and F are given by

(3.7)

P(m) = r2ρm2 + r1m,

F(m) = 2τ1τSλMτ3

ρm(1 + α2ρm2)

[ Δ(ρm2) + σ + (σα2 − M̂α1)ρm2](1 + τ2ρm2)(1 + Cρnm2n) .

The disease-free equilibrium corresponds to the case when m = 0 in equation (3.6) . In order to get a
positive steady state of system (3.2), we must determine the values where P(m) + d = F(m).

From the definition of Δ(u), we remark that the denominator is strictly positive in the function F. We
observe that F(0) = 0, F(m) > 0 for m > 0 and F(m) → 0 as m → ∞, since the numerator is of order O(m3)
and the denominator is of order O(m2n + 4).

Moreover F′(0) is given by

F′(0) = r1τ1τSλMσγ0τ3
> 0.

From condition (3.4), we observe that P′(0) < F′(0),

hence there exists m~ > 0 such that

(3.8)P(m) < F(m) for all m ∈ (0,m~) .
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Let us denote m0 = sup {m~ > 0: property holds} > 0 in equation (3.8). Since P(m) → ∞ as m → ∞, we
conclude that m0 < ∞ and from continuity, we get

(3.9)P(m) < F(m) for all m ∈ (0,m0), P(m0) = F(m0) .

Let us now denote

d~ = maxy ∈ [0,m0]
(F(y) − P(y)),

which is strictly positive by condition (3.9). Let y0 ∈ (0,m0) such that F(y0) − P(y0) = d~. We now take an

arbitrary d such that 0 < d < d~. And the following inequalities hold:P(0) + d > F(0), P(y0) + d < F(y0), P(m0) + d > F(m0) .

Therefore, there exists a positive solution of equation (3.6) in (0, y0) and another positive solution in
(y0,m0). This proves the existence result.

For the non-existence result, observe that F reaches a maximum, since F(0) = 0 and F(m) → 0 asm → ∞, and this maximum is independent of d. Hence, for d large enough, we have thatP(m) + d > maxy > 0
F(y) ≥ F(m) for allm ≥ 0,

and we conclude that there is no solution in that case. ∎
From the previous result, we assert that when the rest of the parameters are fixed, there exists a

critical value of degradation rate of monomers d = dc, such that for d > dc the system (3.2) has only the
disease-free equilibrium and for d < dc there are at least two positive solutions. From a biological point
of view, this means that a high degradation of monomers can avoid the persistence of AD, while a
lower degradation of monomers is not sufficient to stop the pathogenic cycle of monomers, oligomers
and interleukins.

Table 2. Parameter values for the numerical simulations of equation (3.2).

parameter value units description

r1 10−1 l (mol)−1 (months)−1 bi-monomeric polymerization rate

r2 10−1 l (mol)−1 (months)−1
polymerization rate of monomers attaching to

oligomersd variable (months)−1 degradation rate of monomersγ0 5 × 10−2 (months)−1 recruitment rate of oligomers to the amyloid plaquesτ1 1 l (mol)−1 (months)−1 growth coefficient of interleukinsτ2 1 l (mol)−1 growth coefficient of interleukinsτ3 1 (months)−1 degradation rate of interleukinsτp 3 × 10−2 (months)−1 degradation rate of oligomers in the amyloid plaquesτS 1 (months)−1 coefficient of neural stressC 1 ln (mol)−n coefficient of stress functionn 2 — power coefficient of stress functionα1 1 l2 (mol)−2 (months)−1 growth coefficient of microglial cellsα2 1 l (mol)−1 growth coefficient of microglial cellsλM 10−3 mol l−1 (months)−1 rate of proliferation of microglial cellsM̂ 1 capacity of microglial cellsσ 10−3 (months)−1 degradation rate of microglial cells
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4. Numerical simulations
The main goal of this section is to present a qualitative analysis of the possible asymptotic behaviours
and the stability of steady states of system (3.2) through a bifurcation diagram with respect to the
degradation rate of monomers and the concentration of interleukins at equilibrium. From the previous
analysis of §3, the key parameters for the existence of positive steady states where the disease persists
are the degradation rates. For these simulations, we rely on the parameter values given in table 2.

The values are chosen with the order of magnitude between 10−3 and 1, in the typical range of a
biological process. The values can be re-scaled if needed, but the qualitative behaviour is similar. In
particular, we assumed that the polymerisation process of monomers is faster than the corresponding
degradation of monomers and oligomers.

To the  best  of  our  understanding,  there  is  limited knowledge available  regarding the  values
of  the  parameters  associated with  this  model.  Indeed,  each experiment  pertaining to  a  spe-
cific  aspect  of  our  study has  been conducted under  varying conditions,  rendering the  precise
determination of  data  values  seemingly  meaningless.  Notably,  even defining a  biological  range
proves  challenging.  Nevertheless,  through in-depth discussions  with  collaborators  in  the  field
of  biology,  it  becomes apparent  that  the  paramount  consideration lies  in  the  ratio  between
each key parameter.  For  example,  regardless  of  polymer  size,  polymerization rates  should be
approximately  the  same.  Similarly,  the  degradation rate  for  oligomers  in  plaques  is  significantly
smaller  than any other  degradation rate.  Since  we are  interested in  the  qualitative  behaviour
of  system (3.2),  modifying the  values  in  table  2  leads  essentially  to  the  same type of  results,
and the  parameters  can be  re-scaled and re-normalized as  was  presented in  the  numerical
simulations  in  Andrade-Restrepo et  al.  [10]  for  the  polymerization process.
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Figure 2. Bifurcation diagram of the steady states for the concentration of interleukins I∗ in terms of the degradation rate of
monomers d with the parameters of table 2. The disease-free equilibrium exists for all values of d > 0 and it is stable. For d < dc, we
have two other non-trivial equilibria, where the maximal one is stable and the other one is unstable. For d > dc, we get no positive
steady states.

Table 3. Initial data for the numerical simulations of equation (3.2).

parameter value units description

u0 10−4 mol l−1 concentration of free oligomersup0 0 mol l−1 concentration of oligomers in the amyloid plaquesm0 10−3 mol l−1 concentration of monomersM0 1 mol l−1 concentration of microglial cellsI0 variable mol l−1 concentration of interleukins
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Figure 3. Asymptotic behaviour of solutions in terms of degradation rate of monomers d and the initial inflammation I0. For
the parameter values from table 2 and initial data from table 3, we get the critical threshold of inflammation Ic and the critical
degradation rate dc. For d < dc, we get that AD persists for I0 > Ic and does not persist if I0 < Ic. If d > dc the disease does not persist.
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Figure 4. Example 1. (Left) Numerical solution of system (3.2) with d = 0.15 (months)−1 and I0 = 0.15 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 3. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial inflammation I0. The value of I0 is indicated with an arrow and d by a vertical line.
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Figure 5. Example 2. (Left) Numerical solution of system (3.2) with d = 0.15 (months)−1 and I0 = 0.4 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 3. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial inflammation I0. The value of I0 is indicated with an arrow and d by a vertical line.
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Figure 6. Example 3. (Left) Numerical solution of system (3.2) with d = 0.35 (months)−1 and I0 = 0.8 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 3. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial inflammation I0. The value of I0 is indicated with an arrow and d by a vertical line.
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Figure 7. Example 4. (Left) Numerical solution of system (3.2) with d = 0.35 (months)−1 and I0 = 1.2 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 3. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial inflammation I0. The value of I0 is indicated with an arrow and d by a vertical line.
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inflammation I0. The value of I0 is indicated with an arrow and d by a vertical line.
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4.1. Effect of inflammation
The results of theorem 3.3 motivate the analysis of the steady states as a function of the degradation
rate of monomers d. In particular, we are interested in the inflammation processes that lead to
the persistence of AD. In this context, we analyse the bifurcation diagram for the concentration of
interleukins at equilibrium I∗ depending on the degradation rate of monomers d as the bifurcation
parameter. The rest of the components of a steady state of equation (3.2) are calculated according to the
system (3.3).

We observe in figure 2 that for all d > 0 the disease-free equilibrium is asymptotically stable.
Moreover, there exists a critical degradation rate of monomers dc ≈ 0.4779 (months)−1, which we call
the critical degradation rate of persistence, such that for d < dc there exists two positive steady states
where the maximal one is asymptotically stable and the other one is linearly unstable. If d > dc then the
disease-free steady state is the only equilibrium of the system.

From the bifurcation diagram of figure 2, we observe the importance of the degradation rate of
monomers, which determines the existence of steady states where AD persists. We also observe that for
a small degradation rate d, the concentration of interleukins at equilibrium I∗ is large.

The bifurcation analysis is quite challenging even for the simplified version of the model. Thus,
we proceed to numerical simulations in the next section in order to show the asymptotic behaviour
of solutions of system (3.2) under different degradation rates of monomers d and initial data. In
particular, we choose the initial values given in table 3.

This means that we study system (3.2) under a small initial concentration of monomers and free
oligomers. We also consider that oligomers in the amyloid plaques are initially absent, while microglial
cells are already developed. We vary the initial concentration of interleukins I0 and the degradation
rate of monomers d to study the asymptotic behaviour of equation (3.2).

In figure 3, we present the possible asymptotic behaviours of system (3.2) in terms of the degrada-
tion rate of monomers d and the initial inflammation I0 with the parameters in table 2 and initial data
in table 3.

In particular, we observe a phenomenon of hysteresis for d < dc, where dc is the critical degradation
rate in figure 2, which implies the existence of a critical threshold value for the inflammation Ic > 0
(depending on the rest of the parameters and the initial data) that determines if AD persists or not. We
observe in figure 3 that for degradation rates of monomers satisfying d < dc, solutions of equation (3.2)
converge to the disease-free equilibrium when I0 < Ic and converge to the positive stable equilibrium
when I0 > Ic.

Moreover, for small values of d, a small initial concentration of interleukins I0 suffices for the
persistence of AD, while for values close to the critical degradation rate of persistence dc, a higher
initial concentration of I0 is needed. Furthermore, for d < dc most solutions converge either to the
disease-free equilibrium or to the stable positive equilibrium. This global stability result is to be proven
in future work. When d > dc, in the absence of positive steady states, we conjecture that all the solutions
of system (3.2) converge to the disease-free equilibrium.

Next, we show some numerical simulations of solutions of the simplified system (3.2) in order to
illustrate the effects of hysteresis and inflammation processes in the convergence to a steady state.

For a small degradation rate, d = 0.15 (months)−1, we observe from figure 2 that we have three
steady states, and by choosing I0 = 0.15 mol l−1, we observe in figure 4 that the solution converges to
the disease-free equilibrium. In this example, the concentration of interleukins is decreasing and the
threshold of inflammation is not reached. Moreover, the concentrations of monomers increase until
reaching the maximum value and eventually decrease and the concentrations of free oligomers and
oligomers in the amyloid plaques remain relatively low.

If we increase the value of initial inflammation to I0 = 0.4 mol l−1 in figure 5, the solution converges
to the stable positive steady state, since the critical threshold value Ic is less than I0. In this example,
the concentrations of free oligomers and oligomers in the amyloid plaques are increasing towards the
corresponding values of equilibrium. Inflammation is initially decreasing until it reaches the minimum
value and eventually increases towards the equilibrium value, while the concentration of monomers
has increasing and decreasing phases due to the effect of stress mechanisms, nucleation and degrada-
tion.
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In a similar way for a larger degradation rate d = 0.35 (months)−1, we have also three steady states
according to figure 2. For I0 = 0.8 mol l−1, we observe in figure 6 that the solution converges to the
disease-free equilibrium. In this example, the concentration of interleukins is eventually decreasing,
since the threshold of inflammation is not reached. Moreover, the concentrations of monomers,
free oligomers and oligomers in the amyloid plaques increase until they reach their corresponding
maximum values and eventually decrease. In particular, the maxima are higher compared with those
observed in figure 4.

For I0 = 1.2 mol l−1, the solution converges to the positive stable steady state in figure 7, leading
to the persistence of AD since the critical threshold value Ic is less than I0. Similar to figure 5, the
concentrations of free oligomers and oligomers in the amyloid plaques are increasing towards the
corresponding values of equilibrium. Inflammation is initially decreasing until it reaches the minimum
value and eventually increases towards the equilibrium value, while the concentration of monomers
has increasing and decreasing phases due to the effect of stress mechanisms, nucleation and degrada-
tion. Moreover, we observe that equilibrium values are lower than those observed in figure 5 since the
degradation rate of monomers is higher.

Finally, for d = 0.55 (months)−1, we get only the trivial steady state according to figure 2, so that forI0 = 2 mol l−1, the solution converges to the disease-free equilibrium as we see in figure 8. The behaviour
of concentrations is similar to that in figure 6.

In this bi-stable case, the solutions of system (3.2) converge to the positive stationary equilibrium
if the initial concentrations of interleukins, monomers or free oligomers are sufficiently large. The
phenomenon of hysteresis could indicate that AD can be initiated by the inflammation.

4.2. Effect of monomer concentration
Similarly to the analysis of inflammation in the persistence of AD, we study the effect of the initial
concentration of monomers. In this context, we present some numerical simulations to illustrate the
same hysteresis phenomenon with respect to the initial concentration of monomers. We choose the
initial values given in table 4.

This means that we study system (3.2) under a given concentration of oligomers while free
oligomer, oligomers in the plaques and interleukins are initially absent. As in the previous analysis
of §4.1, we assume that microglial cells are already developed. We vary the initial concentration of
interleukins m0 and the rate of monomers d to show the asymptotic behaviour of equation (3.2). We
remark that similar results are obtained if we take a positive initial concentration of free oligomers and
monomers are initially absent.

In figure 9, we present the possible asymptotic behaviours of system (3.2) in terms of the degrada-
tion rate of monomers d and the initial concentration of monomers m0, with the parameters of table 2
and initial data of table 4, following the same analysis presented in figure 3.

Similarly to §4.1, we observe the same phenomenon of hysteresis for d < dc, where dc is the critical
degradation rate in figure 2, which implies the existence of the respective critical threshold value for
the initial concentration of monomers mc > 0 (depending on the rest of parameters and the initial data),
that determine if AD persists or not. We observe in figure 9 that for degradation rates of monomers
satisfying d < dc, solutions of equation (3.2) converge to the disease-free equilibrium when m0 < mc and
converge to the positive stable equilibrium when m0 > mc.

Table 4. Initial data for the numerical simulations of equation (3.2).

parameter value units description

u0 0 mol l−1 concentration of free oligomersup0 0 mol l−1 concentration of oligomers in the plaquesm0 variable mol l−1 concentration of monomersM0 1 mol l−1 concentration of microglial cellsI0 0 mol l−1 concentration of interleukins
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For d = 0.35 (months)−1 and m0 = 0.7 mol l−1, we observe in figure 10 that the solution converges to
the disease-free equilibrium. In this example, the concentration of monomers is decreasing (contrary
to the case of the interleukins in §4.1), due to its intrinsic degradation rate and the formation of
free oligomers. Moreover, the concentrations of free oligomers, oligomers in the amyloid plaques and
interleukins increase until they reach their corresponding maximum values and eventually decrease in
the same way as in the previous examples.

For the same value of the degradation rate d and I0 = 1 mol l−1, we observe in figure 11 that the
solution converges to the positive stable steady state, since the critical threshold value mc is less
than m0. In this example, the concentrations of free oligomers, oligomers in the amyloid plaques and
interleukins are increasing towards the corresponding values of equilibrium. The monomer concen-
tration initially decreases until it reaches the minimum value and eventually increases towards the
equilibrium value.

From figures 10 and 11, we observe essentially the same phenomenon of hysteresis and asymptotic
behaviour as for the simulations in §4.1.

5. Discussion and perspectives
From the previous numerical simulations of the bi-monomeric model equation (3.2) in §4, and even if
it corresponds to a simplified version of the original model, we already get a first qualitative approach
in understanding the influence of inflammation and the degradation rates in the persistence of AD
through a phenomenon of hysteresis, which determines the asymptotic behaviour of solutions of
system (3.2) through a critical threshold for the inflammation in terms of the parameters and the initial
data. This qualitative analysis suggests that AD may be triggered by an initial high concentration
of interleukins and its progression could be mitigated if an efficacious anti-inflammatory treatment
were to be applied in an early stage of disease, as suggested in Imbimbo et al. [25]. Furthermore, an
interesting approach might be the study the effective times of applying anti-inflammatory doses in
order to complement the stress mechanism given by the UPR in lowering the production of Aβ-mono-
mers and not interfering with microglia activation cycles that counteract the excess of toxic amyloid.

In this context, a possible extension of this study relies on the modelling of such treatments via
an impulsive differential equation for the concentration of interleukins I (see [29,30] for a reference
on this type of differential equation). This could lead to interesting optimal control problems in order
to optimize both time and quantity of dose provided to mitigate AD, inspired by the work of Hu
et al. [11]. Moreover, another important extension to the presented model is the incorporation of cell
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destruction due to the accumulation of oligomers in the amyloid plaques. In particular, the stress
function equation (2.1) will also depend on the neural population.

One example of a possible anti-inflammatory treatment is docosahexaenoic acid (DHA). It has been
demonstrated that the onset of brain diseases is linked to a deficiency in DHA, the primary omega-3
fatty acid in the brain. DHA is an essential polyunsaturated fatty acid crucial for the proper functioning
of our metabolism; since it is synthesized in insufficient quantities de novo, it needs to be included
in our diet (found in fatty fish or nuts). DHA is a bioactive nutrient crucial for brain development
and reduces the progression of cognitive decline [31]. It also enhances synaptosomal membrane
fluidity, and reduces the accumulation of Aβ peptides, fibril formation and the pro-apoptotic effects
of oligomers. Note that even if diet high in omega-3 does not necessarily reflect the level of omega-3
crossing the blood–brain barrier, some studies have highlighted a more significant passage of esterified
DHA in phospholipids through a specific transporter, especially in the form of structured phospholi-
pids [32]. This form has demonstrated pro-neurogenic and anti-oxidant effects [33]. Furthermore, DHA
possesses anti-inflammatory properties, which could appear as a good therapeutical hope for future
research.

Concerning the dynamics of the full model incorporating the spatial dependence, the chemotaxis
of microglial cells and the whole polymerization process of proto-oligomers are far from being fully
understood. For the whole and complete model, we expect a similar phenomenon of hysteresis to the
one observed in the spatial-homogeneous simplified model, though the analysis to prove the existence
of steady states becomes way more challenging.
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Figure 10. Example 6. (Left) Numerical solution of system (3.2) with d = 0.35 (months)−1 and m0 = 0.7 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 4. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial concentration of monomers m0. The value of m0 is indicated with an arrow and d by a vertical line.

Degradation d (1/months)

Persistence

Disease-free

M
o

n
o

m
er

 c
o

n
ce

n
tr

at
io

n
 m

 (
m

o
l/

l)

2

C
o

n
ce

n
tr

at
io

n
 (

m
o

l/
l)

1.2

1

0.8

0.6

0.4

0.2

0
0 50 100 150

Time (months)

200 300250

1.8

1.6

1.4

u

m
M
I

up

1.2

1

0.4

0.2

0.8

0.6

0

0
0.

350.
3

0.
2

0.
1

0.
4 dc 0.

6
0.

7
0.

8

Critical mc

Figure 11. Example 7. (Left) Numerical solution of system (3.2) with d = 0.35 (months)−1 and m0 = 1 mol l−1. The parameters
correspond to those in table 2 and the initial data in table 4. (Right) Asymptotic behaviour in terms of degradation rate of monomers d
and the initial concentration of monomers m0. The value of m0 is indicated with an arrow and d by a vertical line.
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