
SIAM J. APPLIED DYNAMICAL SYSTEMS © 2022 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 2487--2517

Neuron Scale Modeling of Prion Production with the Unfolded Protein
Response\ast 
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Abstract. We develop a mathematical model that describes concentration dynamics of PrPC (Prion Protein
Cellular) and PrPSc (Prion Protein Scrapie) prion proteins at the neuron scale and includes the effect
of the unfolded protein response (UPR). We first introduce a single neuron model taking the UPR
mechanism into account. We investigate it and propose a stability study among which a bifurcation
analysis with respect to three of its parameters. Then, we generalize it to two neurons showing
PrPSc proteins interaction. Stability results are given when neurons exhibit identical parameters
but interact differently (strong, weak, or no interaction).
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1. Introduction. Prions are proteins capable of existing in multiple shapes (or confor-
mations). The normal form, denoted PrPc (for prion protein cellular), is a cell surface
protein mainly expressed by neurons [32]. However, PrPc can change its conformation to
become a misfolded PrPSc (for prion proteins scrapie) pathological element for mammals.
They are responsible for the so-called prion diseases, also known as transmissible spongiform
encephalopathies, among which one can include the Creutzfeldt--Jakob disease in humans or
the bovine spongiform encephalopathy in cattle [29, 32]. In prion diseases, an initial seed of
PrPSc, either inherited, infectious (acquired) or sporadic (spontaneous) [28], converts PrPC

and produces de novo PrPSc that aggregate extracellularly and spread the process. In fact,
PrPSc become templating interfaces, inducing the misfolding of PrPc. This mechanism is
known as propagated protein misfolding [44]. It is thought to be at stake in the pathogenesis
of prion diseases but also of a larger group of neurodegenerative disorders commonly labeled
as protein misfolding disorders (PMDs) including Parkinson's or Alzheimer's diseases [18, 16].

Actually PMDs share a common hallmark: some specific proteins1 misfold, aggregate,
replicate, and propagate in a prion-like mechanism [18, 40, 41]. In this paradigm, pathogenic
proteins, generally assembled in oligomers or aggregates, act as corruptive templates that
trigger the misfolding of otherwise normally folded proteins [28, 41, 44].
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The unfolded protein response (UPR) is another biological phenomenon that seems to be
involved in PMDs [18, 20, 21, 16, 39]. UPR is a cellular mechanism that aims to recover
protein homeostasis in a reaction to endoplasmic reticulum (ER) stress [39, 20]. The link
between misfolded proteins involved in PMDs, ER stress, and UPR is still not clear: underlying
mechanisms and consequences are the subject of current research (for review see, e.g., [18, 39,
20, 21]). Nonetheless, studies seem to agree on the fact that the accumulation2 of abnormally
folded proteins triggers ER stress that subsequently activates the UPR [27, 39, 20, 38, 33].

In the context of prion diseases, knowledge becomes clearer as some studies performed
on mice highlight links between PrPSc aggregates, ER stress, and the UPR mechanism [19,
45, 27, 26, 43, 38, 33]. For instance, some works seem to indicate that UPR downregulates
PrPSc through secreted chaperones acting over the extracellular proteostasis [15, 16]. Other
studies, investigating the role of UPR upon neurodegeneration in prion diseases, indicate that
a high concentration of PrPSc triggers ER stress. This activates the UPR and results in a
transient global shutdown of protein synthesis [27, 26, 43, 38, 33]. The latter studies, which
will constitute the basis of our biological assumptions, lead us to suggest that UPR indirectly
downregulates PrPSc: by preventing global protein translation, UPR activation shuts down
the production of PrPc which ultimately hampers the production of PrPSc.

It appears that, as the influence and effects of UPR on prion diseases are still unclear,
mathematical models may provide valuable insights. Actually, they have already been used
to investigate different issues in prion diseases and PMDs (for reviews see [36, 10]). They
focus on some aspects of the disease such as the propagated misfolding mechanism and the
aggregate size distribution [24, 31, 17, 13, 30, 9, 8, 11], the spatio-temporal progression of
misfolded proteins (see, e.g., [1, 6, 7, 48, 4, 3] in Alzheimer's disease or [42, 25] in prion
diseases), or the strain diversity of prions [23]. However, to the best of our knowledge, there
is no existing model describing PrPSc production in the framework of neuronal UPR.

The few existing mathematical approaches of UPR lie in the framework of gene regulatory
networks and focus neither on neurons nor on prion proteins. They deal with the concen-
tration dynamics of unfolded and/or misfolded proteins through different biological pathways
of UPR [34, 12, 49, 46, 47]. Closer to our work here, Trusina, Papa, and Tang [46, 47] de-
veloped a model describing regulation of unfolded proteins inside the cell when submitted to
a manageable3 ER stress. They incorporated the main UPR-pathways acting over unfolded
proteins concentrations among which we find translation attenuation, a mechanism analogous
to the translation shutdown we wish to take into account. In order to proceed to mathematical
analysis and qualitative investigations, we only focus, in our study, on the latter mechanism
and integrate it into a simple model of prion production.

Here, we propose a mathematical modeling that describes PrPc and PrPSc concentra-
tions at the neuron scale and incorporates the role of UPR through an induced shutdown of
global protein synthesis. Based on recent studies [27, 26, 43, 38, 33], we model the effect
UPR with a negative feedback mechanism reflecting a global translation attenuation. To do
so, we suppose that a high concentration of misfolded PrPSc around neurons triggers ER
stress and UPR activation. This shuts down global protein translation thus reducing cellu-
lar PrPc synthesis, as well as PrPSc production. For simplicity, we neglect the influence of

2Intra- or extracellularly depending on the disease.
3I.e., that does not induce the apoptosis of the cell.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



NEURON SCALE MODELING OF PRION PRODUCTION 2489

UPR-induced secreted chaperones over aggregation and templating (whose effect is likely to
be less important compared to global translation shutdown) and thus do not take into account
the PrPSc downregulation through secreted chaperones.

Our mathematical approach is based on previous studies dedicated to delay differential
equations and bifurcation analysis [22, 5, 2, 14]. In section 2 we introduce our new model. We
give some of its properties and study the asymptotic stability of its steady states. In section
3, we extend our system to two neurons whose associated scrapie prion concentrations can
interact. We finally discuss and conclude this work in section 4.

2. Model of prion production at the neuron scale. Before studying a complete model
with several billions of neurons, let\shortmid s start by investigating the process in the environment of
a single cell. This section is then dedicated to the UPR acting on one neuron only.

2.1. The model. Our model, illustrated in Figure 1, consists in describing the concen-
tration dynamics of PrPc and PrPSc proteins produced by a single neuron. We note x and
y as the concentrations of PrPc and PrPSc, respectively. They are ruled, for t > 0, by the
following system:

dx

dt
(t) = KA(t) - \mu x(t) - dx(t)y(t),

dy

dt
(t) = dx(t)y(t) - \alpha y(t),

where K > 0 represents the PrPc production rate of the neuron and d > 0 characterizes
the strength of the interaction between PrPc and PrPSc. The term dx(t)y(t) stands for the
concentration of newly produced PrPSc. Parameter \mu > 0 describes the metabolic loss rate of
PrPc and \alpha > 0 the rate at which PrPSc proteins are lost metabolically or through diffusion.
Finally, A(t) models the protein synthesis activity of the neuron at time t and is given by

A(t) = u(t, T ),

cell surface extra-cellularneuron

Figure 1. Neuron scale prion production model with the UPR mechanism. A first compartment, structured
by the biological processing time a \in [0, T ], describes the evolution of the neuron activity denoted by u. After
a fixed time T , u(t, T ) mediates the PrPc production rate K. Concentration of PrPc proteins x(t) decreases
metabolically at a rate \mu . PrPc proteins are also converted into PrPSc at a rate d. PrPSc proteins are mainly
lost through diffusion represented by the rate \alpha . The feedback loop, standing for the UPR, is represented by
a dashed line and depends on the PrPSc concentration y(t) through a Hill function \beta n(\cdot ). This is a negative
feedback loop regulating the input of the neuron biological activity variable u.
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where T > 0 is the biological processes duration. It represents the time taken by all biological
processes linked with UPR to induce the global translation shutdown. We assume that u(t, a)
describes the biological activity of the neuron at time t and after a biological processing time
a \in [0, T ]. It is ruled by the following equation:

\partial u

\partial t
(t, a) +

\partial u

\partial a
(t, a) = 0, t > 0, 0 < a < T.(2.1)

Since PrPSc around the neuron downregulate PrPc production, we model this negative
feedback through a decreasing Hill function. The influence of PrPSc concentration over the
neuron activity is then given by the input boundary condition of u as

u(t, 0) =
1

1 + (y(t)/yc)
n := \beta n (y(t)) for all t \geq 0,

where n > 0 is the UPR sensitivity to an overload of PrPSc. Parameter yc > 0 is the
threshold density of PrPSc over which the neuron (and its surrounding astrocytes) turns off
global translation and thus PrPc production.

In this framework, we use the method of characteristics to obtain the system of equations
ruling our model:

dx

dt
= K\beta n(y(t - T )) - \mu x(t) - dx(t)y(t),

dy

dt
= dx(t)y(t) - \alpha y(t)

for t > 0.(2.2)

System (2.2) may be interpreted as follows: a high concentration of PrPSc proteins results, a
biological time T later, in a decrease of PrPc (termK\beta (y(t - T ))) that consequently reduces the
PrPSc production (term dx(t)y(t)). The amount of PrPSc surrounding the neuron decreases
and misfolded protein homeostasis around the neuron is restored. Note that, in this paradigm,
we omit the notion of neuronal death and assume that the UPR is able to cope with the
overload of PrPSc proteins.

The initial condition u(0, \cdot ) of the biological activity variable has been chosen in order to
guarantee the well-posedness of system (2.2) (provided that initial conditions (x0, y0(\cdot )) are
defined on \BbbR \times C ([ - T, 0],\BbbR )). More precisely, we chose u(0, a) = \beta n (y0( - a)) for all a \in [0, T ].

2.2. Model properties, steady states, and characteristic equation. We state and prove
some properties ensuring the well-posedness of our model, as well as a result about existence
of steady states.

Lemma 2.1. For every non negative initial conditions (x0, y0(\cdot )) \in \BbbR \times C ([ - T, 0],\BbbR ),
system (2.2) admits a unique nonnegative solution (x, y) \in C([0,+\infty ) ,\BbbR 2) such that

x(t) \leq max

\biggl\{ 
x(0),

K

\mu 

\biggr\} 
and x(t) + y(t) \leq max

\biggl\{ 
x(0) + y(0),

K

min(\mu , \alpha )

\biggr\} 
for all t \geq 0.(2.3)

Moreover, either there exists \=t \geq 0 such that x(\=t) \leq K/\mu and then x(t) \leq K/\mu for all t \geq \=t,
or limt\rightarrow +\infty x(t) = K/\mu .
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Proof. Existence, uniqueness, and positiveness of solutions can be proved by standard
methods (e.g., see Theorems 3.1 and 3.4 of [37]), the rest of the proof consisting in a simple
application of [2] (proof of Proposition 3.1) and the fact that x(t) satisfies the differential
inequality x\prime (t) \leq K  - \mu x(t).

Remark 2.2. Positive invariance and attractivity of [0 , K/\mu ]\times \BbbR + results from (2.3).

Now, we focus on steady states (x\ast , y\ast ) of system (2.2) characterized by the following
proposition.

Proposition 2.3. The system (2.2) always admits a trivial equilibrium (K/\mu , 0). There
exists a unique endemic steady state (\alpha /d, \=y) with \=y satisfying (2.5) if and only if

R0 :=
Kd

\mu \alpha 
> 1.(2.4)

If condition (2.4) holds, \=y is a continuously differentiable function of each model parameters.
In particular, \=y is decreasing with respect to \mu > 0 and \alpha > 0 and increasing with respect to
yc and verifies

0 < \=y <
\mu 

d
(R0  - 1) , with lim

\alpha \rightarrow dK/\mu 
\=y = 0 and lim

\alpha \rightarrow 0
\=y = +\infty .

Furthermore, if \alpha = 0, then any solution (x, y) has the limit limt\rightarrow +\infty (x(t), y(t)) = (0,+\infty ).

Proof. A steady state (x\ast , y\ast ) of system (2.2) satisfies

K\beta n(y
\ast ) = \mu x\ast + dx\ast y\ast ,

(dx\ast  - \alpha )y\ast = 0.

We easily see that a trivial steady state (x\ast , y\ast ) = (K/\mu , 0) always exists. An endemic steady
state (x\ast , y\ast ) = (\=x, \=y) with \=x, \=y > 0 would verify \=x = \alpha /d and

F (\=y) :=
dK

\mu \alpha 
\beta n(\=y) = 1 +

d

\mu 
\=y.(2.5)

Noticing that F is decreasing, that F (0) = dK/\mu \alpha = R0, and that limy\rightarrow +\infty F (y) = 0; we
obtain that the endemic steady state (\=x, \=y) exists if and only if condition (2.4) holds. Moreover,
if R0 > 1, we have

d\=y

d\mu 
=

1
K
\alpha \beta n

\prime (\=y) - 1
,

d\=y

d\alpha 
=

K
\alpha 2\beta n(\=y)

K
\alpha \beta n

\prime (\=y) - 1

and

d\=y

dyc
=
nK

yc\alpha 

\biggl( 
\=y

yc

\biggr) n
\beta n(\=y)

2

\Biggl( 
1 +

nK

yc\alpha 

\biggl( 
\=y

yc

\biggr) n - 1

\beta n(\=y)
2

\Biggr)  - 1

,

with

\beta n
\prime (y) =  - n

yc

\biggl( 
y

yc

\biggr) n - 1

\beta n(y)
2 for all y \in \BbbR +.
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From these formulas and the implicit function theorem, we establish that \=y is a continuously
differentiable function of each model parameters. Especially, it is decreasing with respect to
\mu > 0, \alpha > 0, and an increasing function of yc.

Finally, assume that \alpha = 0. The system (2.2) implies that y\prime (t) = dx(t)y(t) \geq 0 from which
we know that y is nondecreasing. By contradiction, assume that y is bounded and admits a
positive limit. Then limt\rightarrow +\infty y

\prime (t) = 0. So it implies that limt\rightarrow +\infty x(t) = 0. As t \mapsto \rightarrow x\prime (t) is
uniformly continuous on (t0,+\infty ), t0 > 0, large enough, we obtain that limt\rightarrow +\infty x

\prime (t) = 0.
Taking the limit as t goes to infinity in the first equation of (2.2) leads to a contradiction.
We thus obtained that limt\rightarrow +\infty y(t) = +\infty . Now, we associate this result, the continuity and
boundedness of x, and the first equation of (2.2) to claim that there exists \~t \geq 0 such that x
is nonincreasing on [\~t,+\infty ). We conclude that x goes to 0 as t goes to infinity. The result is
thus proven when \alpha = 0.

2.3. Asymptotic stability of steady states. We linearize system (2.2) about any steady
state (x\ast , y\ast ) and obtain

du

dt
=  - (\mu + dy\ast )u(t) - dx\ast v(t) +K\beta \prime n(y

\ast )v(t - T ),

dv

dt
= dy\ast u(t) - (\alpha  - dx\ast )v(t),

from which we deduce the associated characteristic equation\bigm| \bigm| \bigm| \bigm| \lambda + \mu + dy\ast dx\ast  - K\beta \prime n(y
\ast )e - \lambda T

 - dy\ast \lambda + \alpha  - dx\ast 

\bigm| \bigm| \bigm| \bigm| = 0.(2.6)

In the next section, we focus on the roots of this equation to determine the local asymptotic
stability of the steady state (x\ast , y\ast ) under consideration.

2.3.1. Disease free equilibrium. Let us start with the disease free equilibrium. The
endemic one follows in the next subsection.

Proposition 2.4. The trivial steady state (disease free equilibrium) is locally asymptotically
stable if and only if R0 \leq 1. It is then destabilized through a transcritical bifurcation when
R0 = 1 (i.e., dK = \mu \alpha ) and unstable otherwise.

Proof. For the trivial steady state, the characteristic equation (2.6) reads

(\lambda + \mu )

\biggl( 
\lambda + \alpha  - dK

\mu 

\biggr) 
= 0, \lambda \in \BbbC .

Thus, we have two eigenvalues  - \mu < 0 and
dK

\mu 
 - \alpha = \alpha (R0  - 1), from which we can easily

conclude local asymptotic stability when R0 < 1 and instability when R0 > 1. Now consider
the case R0 = 1. If we suppose that, for all t \geq 0 x(t) \geq K/\mu , then from system (2.2) we have
x\prime (t) \leq 0 and y\prime (t) \geq 0 for all t \geq 0. Since y is bounded and its only possible limit is 0, we get
a contradiction. We conclude from Lemma 2.1 the existence of \=t \geq 0 such that x(t) < K/\mu 
for all t \geq \=t. The second equation of system (2.2) implies that y\prime (t) \leq (dK/\mu  - \alpha )y(t) = 0.
We deduce that y is nonincreasing with limt\rightarrow +\infty y(t) = 0, and then the function z : t \mapsto \rightarrow 
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K\beta n(y(t - T ))/(\mu + dy(t)) is nondecreasing the limit when t \rightarrow +\infty is given by K/\mu . Using
the first equation of (2.2) and the fact that z is nondecreasing, we observe that the function
x can only change monotonicity when it intersects the curve of z coming from its left and by
being nonincreasing before this intersection and nondecreasing after. We conclude that there
exists \~t \geq \=t such that, for all t \geq \~t, x(t) \leq z(t). Otherwise, x(t) > z(t) for all t \geq \=t. This
means that the function x is nonincreasing on [\=t,+\infty ), which is absurd. Then, we have x
nondecreasing on [\~t,+\infty ). We deduce that limt\rightarrow +\infty x(t) = K/\mu . We proved that, if R0 = 1,
the trivial steady state is globally asymptotically stable.

Remark 2.5. The biological interpretation of Proposition 2.4 is that, if the production
term dK is smaller than the product of degradation term of the two prion species \mu \alpha , as one
would expect, the trivial steady state is locally asymptotically stable; otherwise it is unstable.

Proposition 2.6. If R0 \leq 1, then the trivial steady state (
K

\mu 
, 0) is globally asymptotically

stable.

Proof. The global asymptotic stability in the case R0 = 1 has already been proved above.
For the case R0 < 1, we adapt the method used in [2, Theorem 5.1].

Define the set G as

G =

\biggl[ 
0,
K

\mu 

\biggr] 
\times \BbbR +.

For (x, y) \in G, we define the Lyapunov candidate V such that

V (x, y) =
1

2
y2.

Note that V does not depend on x.
Let us denote \.V : G \rightarrow \BbbR +, the Lie derivative of V along solutions of system (2.2). It

follows that for all (x, y) \in G

\.V (x, y) = y.
dy

dt
= dxy2  - \alpha y2 =

\biggl( 
d

\alpha 
x - 1

\biggr) 
\alpha y2.

But given that (x, y) \in G, we have x \leq K/\mu and consequently

\.V \leq 
\biggl( 
dK

\mu \alpha 
 - 1

\biggr) 
\alpha y2(t) = (R0  - 1)\alpha y2(t),

hence \.V (x, y) \leq 0, if R0 < 1. Moreover, let us define the set S = \{ (x, y) \in G| \.V (x, y) = 0.\} .
Let (x, y) \in S; then we have

(dx - \alpha ) y2 = 0,

but 0 \leq x \leq K/\mu and given that R0 < 1 we also know that K/\mu < \alpha /d. Consequently it is
necessary that y(\cdot ) = 0. Hence S = [0,K/\mu ] \times \{ 0\} . From LaSalle's invariance theorem, we
conclude that the set S is attractive in G.
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Furthermore, for every solution t \mapsto \rightarrow (x(t), y(t)) of (2.2) lying in S, it follows that x is
governed by \mathrm{d}x

\mathrm{d}t (t) = K  - \mu x(t) for all t \geq 0. Hence

x(t) = x(0)e - \mu t +
K

\mu 

\bigl( 
1 - e - \mu t

\bigr) 
for all t \geq 0.

All in all, we obtain that every solution t \mapsto \rightarrow (x(t), y(t)) of (2.2) lying in S is such that

(x(t), y(t))  - \rightarrow 
t\rightarrow +\infty 

\biggl( 
K

\mu 
, 0

\biggr) 
.

We conclude that every solution (x, y) of (2.2) reaching G (i.e., x(t) \leq K/\mu ) for t large enough
(such solution remains in G from (2.3)) converges to (K/\mu , 0). Now, let (x, y) be a solution of
(2.2) such that x(t) > K/\mu for all t \geq 0. Then from (2.3) we know that x converges to K/\mu 
as t goes to infinity. Thus, we need to check that y goes to 0 at infinity in order to conclude
about the global stability. In this situation, x is a strictly decreasing and continuous function
such that x(t) - \rightarrow t\rightarrow +\infty K/\mu . Hence, limt\rightarrow \infty x

\prime (t) = 0, and taking the limit as t\rightarrow +\infty in the
first equation of system (2.2) we obtain :

1 +
d

\mu 
lim
t\rightarrow \infty 

y(t) = lim
t\rightarrow \infty 

\beta n(y(t - T )),

from which we obtain that y(t) goes to 0 as t\rightarrow +\infty .
In conclusion, all solutions of system (2.2) tend to (K/\mu , 0) if R0 \leq 1 and we obtained the

global stability of (K/\mu , 0).

2.3.2. Endemic steady state. The characteristic equation of system (2.2) linearized about
its endemic steady state (\=x, \=y) = (\alpha /d, \=y) reads

\lambda 2 + a\lambda + b+ ce - T\lambda = 0, \lambda \in \BbbC ,(2.7)

with

a =
dK

\alpha 
\beta n(\=y) = \mu + d\=y,

b = \alpha 

\biggl( 
dK

\alpha 
\beta n(\=y) - \mu 

\biggr) 
= \alpha (a - \mu ),

c =  - K\beta \prime n(\=y)

\biggl( 
dK

\alpha 
\beta n(\=y) - \mu 

\biggr) 
=  - K\beta \prime n(\=y)(a - \mu ).

The parameters a, b, and c do not depend on the delay T . The characteristic equation (2.7) has
been studied in details [22, 5, 14]. In this paper, we use their methods and results to establish
a stability result about the endemic steady state and to perform a bifurcation analysis with
respect to three parameters.

First, we notice that 0 is not a root of the characteristic equation (2.7), given that a > 0,
b > 0, and c > 0. Then we state the following proposition about absolute stability that is
stability independent of the delay [37] of the endemic steady steady state.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



NEURON SCALE MODELING OF PRION PRODUCTION 2495

Proposition 2.7. If

b > c and a2  - 2b >  - 2
\sqrt{} 
b2  - c2,(2.8)

then the endemic steady state (\alpha /d, \=y) is locally asymptotically stable for all T \geq 0, that is,
Re(\lambda ) < 0 for every root \lambda \in \BbbC of (2.7) and all T \geq 0.

Proof. We apply directly Proposition 4.9 of [37] and Chapter 3.3 of [22].

Now, we state and prove a lemma about the local asymptotic stability of the co-existence
equilibrium that legitimates the subsequent bifurcation analysis.

Lemma 2.8. If

T = 0 or yc \rightarrow +\infty ,

then the co-existence steady state (\alpha /d, \=y) is locally asymptotically stable.

Proof. The local asymptotic stability when T = 0 simply results from the fact that
a, b, c > 0.

Then, consider \=y, a, b, and c as functions of yc > 0. We remind the reader that we
necessarily have R0 = dK/\alpha \mu > 1 for the existence of the co-existence steady state. Given
that \=y is bounded, we have limyc\rightarrow +\infty 

\=y
yc

= 0 from which follows that limyc\rightarrow +\infty \beta n(\=y) = 1 and
limyc\rightarrow +\infty a = \mu R0 > 0, limyc\rightarrow +\infty b = \alpha \mu (R0  - 1) > 0, limyc\rightarrow +\infty c = 0. So, when yc \rightarrow +\infty ,
the characteristic equation would thus read

\lambda 2 + \mu R0\lambda + \alpha \mu (R0  - 1) = 0, \lambda \in \BbbC .

If this equation admits some roots, given that R0 > 1, they would always have negative real
parts. All in all, the proposition is proven.

Remark 2.9. Given that \alpha \mapsto \rightarrow (\=x, \=y) is continuous and tends to (0,+\infty ) as \alpha \rightarrow 0 and
that limt\rightarrow +\infty (x(t), y(t)) = (0,+\infty ) for \alpha = 0, we claim that the steady state (\=x, \=y) is locally
asymptotically stable for \alpha > 0 small enough. This was also confirmed by the numerical
simulations.

Let \psi \in \scrP be a varying parameter; the other parameters are assumed to be fixed. The
set \scrP gathers all possible values for the chosen parameter \psi .

If \psi is varied continuously, the only way for roots of (2.7) with positive real parts to
appear is through the imaginary axis. We easily verify that roots with positive real parts
cannot appear in the right half complex plane. Starting from parameters verifying Lemma
2.8, we vary \psi and see if a Hopf bifurcation occurs using the methods in [5, 14]. Given that
\lambda = 0 is not a root of (2.7), we look for purely imaginary solutions \lambda = i\omega (\psi ), with \omega (\psi ) > 0.
We assume, implicitely, that \omega is a continuously differentiable function of \psi . This property
has to be verified a posteriori. Hence \omega := \omega (\psi ) verifies

cos(T\omega ) =
\omega 2  - 2b

c
,

sin(T\omega ) =
a\omega 

c
.

(2.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



2496 M. ADIMY, L. BABIN, AND L. PUJO-MENJOUET

Summing the square of the right-hand sides, we obtain

\omega 4  - (2b - a2)\omega 2 + b2  - c2 = 0,(2.10)

which also reads Q(\omega 2) = 0, with the polynomial Q defined by

Q(X) = X2  - SX + P,(2.11)

with

S =  - (a2  - 2b) = 2b - a2 and P = b2  - c2,

the sum and the product of its roots. The discriminant of Q is

\Delta = (a2  - 2b)2  - 4(b2  - c2) = a4  - 4ba2 + 4c2.

Let us define the sets

I1 =
\bigl\{ 
\psi 
\bigm| \bigm| b(\psi ) < c(\psi ) or

\bigl[ 
2b(\psi ) > a(\psi )2 and b(\psi ) = c(\psi )

\bigr] \bigr\} 
and

I2 =
\Bigl\{ 
\psi 
\bigm| \bigm| \bigm| b(\psi ) > c(\psi ) and a(\psi )2  - 2b(\psi ) \leq  - 2

\sqrt{} 
b(\psi )2  - c(\psi )2

\Bigr\} 
,

and remind that \Delta (\psi ) = a(\psi )4  - 4b(\psi )a(\psi )2 + 4c(\psi )2 > 0 for \psi \in I1 \cup I2. We emphasize
that I1 and I2 may possibly consist in multiple subintervals of different lengths. The previous
study of the polynomial Q enables us to state the following proposition (adapted from Lemma
1 of [14] and part 3.3 of [22]).

Proposition 2.10. (i) If \psi \in I1, i.e.,

b(\psi ) < c(\psi ) or
\bigl[ 
2b(\psi ) > a(\psi )2 and b(\psi ) = c(\psi )

\bigr] 
,(2.12)

then (2.10) has a single positive real root \omega +(\psi ) such that

\omega +(\psi )
2 =

1

2

\Bigl[ 
2b(\psi ) - a(\psi )2 +

\sqrt{} 
\Delta (\psi )

\Bigr] 
.(2.13)

(ii) If \psi \in I2, i.e.,

b(\psi ) > c(\psi ) and a(\psi )2  - 2b(\psi ) \leq  - 2
\sqrt{} 
b(\psi )2  - c(\psi )2,(2.14)

then (2.10) has, on top of \omega +(\psi ), a second positive real root \omega  - (\psi ) such that

\omega  - (\psi )
2 =

1

2

\Bigl[ 
2b(\psi ) - a(\psi )2  - 

\sqrt{} 
\Delta (\psi )

\Bigr] 
.(2.15)

(iii) Otherwise, if \psi /\in I1 and \psi /\in I2, then there are no positive real roots of (2.10). Hence it
follows that, if I1 = \emptyset and I2 = \emptyset , then there are no positive real roots of (2.10), and no Hopf
bifurcation can occur.
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Thanks to the latter proposition, we know that the set

I = I1 \cup I2

actually gathers the values of \psi for which (2.10) has at least one positive real root and for
which Hopf bifurcation might occur.

It is thus valuable to find sufficient conditions (in terms of model parameters) under which
the set I exists. This will enable us to clarify the conditions under which stability switches are
likely to happen. Hence, we first make a remark that renders aforementioned conditions over
a, b, and c clearer. Then we look for conditions in terms of model parameters under which
(2.12) or (2.14) hold.

Remark 2.11. Condition b < c is equivalent to

Kd2

\alpha 
< (\mu + d\=y)2

n

yc

\biggl( 
\=y

yc

\biggr) n - 1

.(2.16)

Proposition 2.12.If parameters verify

\mu + dyc <
Kd

2\alpha 
< 2n\mu ,(2.17)

then I1 \not = \emptyset and I2 = \emptyset .
Proof. From simple arguments, the first condition dK/2\alpha < 2n\mu implies that

0 <
\Bigl( \mu 
d

\Bigr) 2
+

\biggl( 
2\mu 

d
 - K

n\alpha 

\biggr) 
yc + y2c ,

from which it follows that

Kd2

\alpha 
< (\mu + dyc)

2 n

yc
.

Moreover, the second condition \mu + dyc < dK/2\alpha added to simple considerations about (2.5)
ensures that \=y > yc. All in all, if condition (2.17) holds, we have

Kd2

\alpha 
< (\mu + dyc)

2 n

yc
< (\mu + d\=y)2

n

yc

\biggl( 
\=y

yc

\biggr) n - 1

.

From Remark 2.11, we thus know that b < c, and we have I1 \not = \emptyset and I2 = \emptyset .
Reformulations of condition (2.17) lead to the following corollary.

Corollary 2.13.

(i) Let the varying parameter be \alpha = \psi . If parameters (different from \alpha ) verify

\mu + dyc < 2n\mu ,

then I \not = \emptyset and \biggl[ 
Kd

4n\mu 
;

Kd

2(\mu + dyc)

\biggr] 
\subset I1 \subset I.
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(ii) If yc = \psi and parameters (different from yc) verify

\mu <
Kd

2\alpha 
< 2n\mu ,

then I \not = \emptyset and \biggl[ 
0 ;

K

2\alpha 
 - \mu 

d

\biggr] 
\subset I1 \subset I.

(iii) If T = \psi , and parameters verify condition (2.17), then I = \BbbR \ast 
+ with I2 = \emptyset and I1 = I.

Proof. Simple but long computations lead to these results. We only underline that (iii)
is easily obtained by noticing that a, b, and c are independent from T . In fact, variations of
\psi = T do not modify the values of \=y, a, b, and c.

Remark 2.14. Corollary 2.13 does not give precise information on the changes in stability
but still provides with sufficient conditions ensuring the existence of an interval I in which
these stability switches could occur. In fact, Corollary 2.13 should not be considered in the
context of the previously established stability of the endemic steady state when \alpha \rightarrow 0 or
yc \rightarrow +\infty . They should rather be considered as preliminary results for the existence of an
interval on which a Hopf bifurcation with respect to the three parameters is possible.

In the following, we assume that I \not = \emptyset and vary \psi first starting from a value (possibly
outside the interval I) where the endemic steady state is locally asymptotically stable and
then through I where stability switches could occur.

We continue our bifurcation analysis and introduce, for all \psi \in I, the variable \Theta \pm (\psi ) \in 
[0, 2\pi ] such that

cos(\Theta \pm (\psi )) =
\omega \pm (\psi )

2  - b

c
,

sin(\Theta \pm (\psi )) =
a\omega \pm (\psi )

c
,

(2.18)

where the signs have to be adapted according to where \omega + or \omega  - are defined. Given that
\omega \pm \geq 0, we always have sin(\Theta \pm (\psi )) \geq 0. Consequently, \Theta \pm (\psi ) \in [0, \pi ] for all \psi \in I. Hence,
we obtain, for all \psi \in I ,

\Theta +(\psi ) = arccos

\biggl( 
\omega +(\psi )

2  - b

c

\biggr) 
,(2.19)

and, for \psi \in I2,

\Theta  - (\psi ) = arccos

\biggl( 
\omega  - (\psi )

2  - b

c

\biggr) 
.(2.20)

Then, we define the functions z\pm such that for all \psi \in I and k \in \BbbN 

z\pm (\psi , k) = T  - \Theta \pm (\psi ) + 2k\pi 

\omega \pm (\psi )
,

where the sign has to be adapted accordingly.
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Remark 2.15. One could have thought to follow the work of [5] and use arctan functions
to define \Theta + and \Theta  - . However, the signs involved in system (2.18) led us to use the arccos
function instead.

We get the following theorem, adapted from Theorems 2.1 and 3.1 of [5].

Theorem 2.16. Assume that the parameters (different from \psi ) are fixed such that I \not = \emptyset .
The characteristic equation (2.7) admits a pair of simple conjugate purely imaginary roots
\pm i\omega +(\psi 

\ast 
+) in \psi \ast 

+ \in I, with

\omega +(\psi 
\ast ) =

\sqrt{} 
1

2

\Bigl[ 
2b(\psi \ast 

+) - a(\psi \ast 
+)

2 +
\sqrt{} 

\Delta (\psi \ast 
+)
\Bigr] 
,(2.21)

if and only if there exists k \in \BbbN such that z+(\psi 
\ast 
+, k) = 0 with

z+(\psi , k) = T  - 1

\omega +(\psi )

\biggl[ 
arccos

\biggl( 
\omega +(\psi )

2  - b

c

\biggr) 
+ 2k\pi 

\biggr] 
for all (\psi , k) \in I \times \BbbN .(2.22)

Moreover, if I2 \not = \emptyset , then the characteristic equation (2.7) admits a second pair of simple
conjugate purely imaginary roots \pm i\omega  - (\psi 

\ast 
 - ) in \psi \ast 

 - \in I2, with

\omega  - (\psi 
\ast 
 - ) =

\sqrt{} 
1

2

\Bigl[ 
2b(\psi \ast 

 - ) - a(\psi \ast 
 - )

2  - 
\sqrt{} 

\Delta (\psi \ast 
 - )
\Bigr] 
,(2.23)

if and only if there exists k \in \BbbN such that z - (\psi 
\ast 
 - , k) = 0 with

z - (\psi , k) = T  - 1

\omega  - (\psi )

\biggl[ 
arccos

\biggl( 
\omega  - (\psi )

2  - b

c

\biggr) 
+ 2k\pi 

\biggr] 
for all (\psi , k) \in I2 \times \BbbN .(2.24)

Furthermore, when a boundary value \psi \ast \in I exists and is reached due to a variation of \psi , its
associated pair of simple conjugate purely imaginary roots cross the imaginary axis---possibly
inducing a stability switch---from left to right if \delta (\psi \ast ) > 0 and from right to left if \delta (\psi \ast ) < 0,
where

\delta (\psi \ast ) = sign

\biggl\{ 
d(Re\lambda )

d\psi 
(\psi \ast )

\biggr\} 
.

Remark 2.17. For given parameter values under which I \not = \emptyset , a stability switch is possible
only if there exists k \in \BbbN such that z+(\cdot , k) or z - (\cdot , k) vanishes at least one time.

Remark 2.18. When the parameter \psi varies from a value \psi 0 such that (\alpha /d, \=y) is stable,
a Hopf bifurcation must occur at the first boundary value \psi \ast 

h such that

\psi \ast 
h = min \{ \psi \ast | there exists k \in \BbbN such that z+(\psi 

\ast , k) = 0 or z - (\psi 
\ast , k) = 0\} 

if the transversality condition \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )
\mathrm{d}\psi (\psi \ast 

h) \not = 0 holds.

Explicit form of \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )
\mathrm{d}\psi is obtained by differentiating the characteristic equation (2.7)

following the branch of roots \lambda (\psi ) defined such that \lambda (\psi \ast ) = i\omega \ast with \omega \ast = \omega +(\psi 
\ast ) or
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\omega \ast = \omega  - (\psi 
\ast ) depending on the situation under consideration. After some computations,

when \psi \ast = T \ast , one gets

d(Re\lambda )

dT
(T \ast ) =

(a2  - 2b)\omega \ast 2 + 2\omega \ast 4\bigl( 
 - T \ast \omega \ast 2 + a+ b

\bigr) 2
+ (2 + aT \ast )2 \omega \ast 2

.

Inserting the expression of \omega \pm (T
\ast ) into this expression always gives \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )

\mathrm{d}T (T \ast ) > 0 when

\omega \ast = \omega +(T
\ast ) and \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )

\mathrm{d}T (T \ast ) < 0 when \omega \ast = \omega  - (T
\ast ) (as noticed in [22]). It ensures us that if

a purely imaginary root \lambda (T \ast ) (= i\omega +(T
\ast ) or i\omega  - (T

\ast )) exists, it is necessarily simple.
If \psi \ast \not = T \ast (e.g., \psi \ast = \alpha \ast or \psi \ast = yc

\ast ), we have

d(Re\lambda )

d\psi 
(\psi \ast ) =

\Bigl( 
 - \omega \ast 2

c
\mathrm{d}c
\mathrm{d}\psi (\psi 

\ast ) + b
c
\mathrm{d}c
\mathrm{d}\psi (\psi 

\ast ) - \mathrm{d}b
\mathrm{d}\psi (\psi 

\ast )
\Bigr) \bigl( 

 - T\omega \ast 2 + a+ Tb
\bigr) 

\bigl( 
 - T\omega \ast 2 + a+ Tb

\bigr) 2
+ (2 + Ta)2 \omega \ast 2

+
\omega \ast 2(2 + Ta)

\Bigl( 
a
c
\mathrm{d}c
\mathrm{d}\psi (\psi 

\ast ) - \mathrm{d}a
\mathrm{d}\psi (\psi 

\ast )
\Bigr) 

\bigl( 
 - T\omega \ast 2 + a+ Tb

\bigr) 2
+ (2 + Ta)2 \omega \ast 2

.

When \psi = T , we use Theorem 2.16 and the previous remarks to obtain a more precise and
concise result.

Proposition 2.19. Assume that model parameters different from T are fixed and such that
I \not = \emptyset . If T is increased starting from 0, then the system undergoes a Hopf bifurcation at
T = T \ast 

h with

T \ast 
h =

1

\omega +
arccos

\biggl( 
\omega 2
+  - b

c

\biggr) 
,(2.25)

where \omega + =
\sqrt{} 

1
2 [2b - a2 +

\surd 
a4  - 4ba2 + 4c2].

Proof. First, due to Lemma 2.8, we know that the co-existence steady state is locally
asymptotically stable when T = 0. Then, if I \not = \emptyset , then I = \BbbR + (since a, b, and c are
independent from T ). If they are defined, both z+(\cdot , k) and z - (\cdot , k) cross the horizontal
axis (as increasing functions of T ), and thus stability switches must occur at these crossings
labeled T \ast . Moreover, a Hopf bifurcation could happen at the smallest value T \ast 

h of these
delays. This smallest delay corresponds to either (as z+ and z - are decreasing functions of
k \in \BbbN ) a zero of z+(\cdot , 0) or z - (\cdot , 0), if defined. If I2 = \emptyset , then only z+(\cdot , 0) is well defined; thus
T \ast 
h is the zero of this function, and we consequently obtain the expression (2.25). If I2 \not = \emptyset ,

then z+(\cdot , 0) and z - (\cdot , 0) are defined; thus T \ast 
h corresponds to the smallest zero of these two

functions which is the zero of z+(\cdot , 0), as \omega + > \omega  - and \omega \mapsto \rightarrow 1
\omega arccos(\omega 

2 - b
c ) is decreasing on

its interval of definition. All in all, regardless the situation, the first, i.e., the smallest, delay
at which a stability switch occurs T \ast 

h corresponds to the zero of T \mapsto \rightarrow z+(T, 0) and is given by
(2.25). Finally, we conclude that a Hopf bifurcation occurs at T = T \ast 

h since the transversality

condition \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )
\mathrm{d}T (T \ast 

h ) \not = 0 is always verified.

In Figure 2(a), Figure 2(c), and Figure 2(d), we present stability diagrams obtained when
\psi = T , \alpha , or yc. These diagrams give us insights into the dynamics of the system in the
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Figure 2. (a), (c), (d): Stability diagrams in the (\alpha , T ) plane with T = \psi ( (a)) or \alpha = \psi ( (c)) as the
varying parameter and in the (yc, T ) plane with \psi = yc as the varying parameter ( (d)). Boundary parameters

(\psi \ast = T \ast in (a), \psi \ast = \alpha \ast in (c), and \psi \ast = yc
\ast in (d)) are specified by continuous ( \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )

\mathrm{d}\psi 
(\psi \ast ) > 0) or dashed

( \mathrm{d}(\mathrm{R}\mathrm{e}\lambda )
\mathrm{d}\psi 

(\psi \ast ) < 0) lines. For clarity, we only plotted the two first boundaries ( k = 0 and k = 1) in the (T, \alpha )
plane and the three first boundaries ( k = 1, 2, 3) in the (T, yc) plane and indicated in green the area where the
endemic equilibrium is stable. The situation in (d) being complex, we decided not to highlight the stability area
of the endemic equilibrium for clarity. The values of the parameters used to obtain these plots are specified in
Table 1; we underline that parameter values ensure that we always have R0 > 1 in each figure. (b): Illustration
through an arbitrary example of two trajectories before (T1 in red) and after (T2 in blue) the Hopf bifurcation.
For all the figures, we chose the range for \psi (i.e., T , \alpha , or yc) so that stability switches could appear with I \not = \emptyset 
(i.e., b(\psi ) < c(\psi ) when a stability switch occurs).

Table 1
Values of parameters used in Figure 2. Orders of magnitude are consistent with the values used in [17, 23].

Parameters Values Units

T variable days
\mu 5 days - 1

\alpha variable (Figure 2(a) and (c)) or 0.04 (Figure 2(b) and (d)) days - 1

K 1500 (Fibrils per volume unit).days - 1

yc 130 (Figure 2(a), (b), and (c)) or variable (Figure 2(d)) Fibrils per volume unit
d 0.1 (Fibrils per volume unit) - 1.days - 1

n 10 (Figure 2(a), (b), and (c)) or 250 (Figure 2(d)) -
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parameter space. Boundaries (indicated by continuous or dashed lines) separate the parameter
space into regions of different dynamics.

Notice that Figure 2(a) and Figure 2(c) are similar, as they both display stability bound-
aries in the (T, \alpha ) plane.

In Figure 2(b) we illustrate---through an arbitrary example of two model trajectories---the
Hopf bifurcation that occurs as \psi = T increased from 0: increasing the parameter T from a
value where the endemic steady state is stable destabilizes it through a Hopf bifurcation when
T reaches the first boundary value T \ast (\simeq 4.13 days in our example).

Figure 2(d) presents stability boundaries in the (T, yc) when \psi = yc is the varying pa-
rameter. In such situation, when T is set to a fixed value, decreasing the parameter yc from
infinity triggers a Hopf bifurcation when yc reaches the first boundary value yc

\ast .
From a biological point of view, the Hopf bifurcation study is important in the following

sense. Our goal is to understand the start and stop mechanism of UPR which may possibly
lead the neuron to show an oscillatory stress state. In other words, a neuron may leave and
enter stress conditions periodically depending on its environment. If such a phenomenon
occurs, this oscillatory behavior may propagate eventually to the other neurons, and some
synchronicity could appear from this group. This last point will be the subject of a future
work. We prove here that not only is such an oscillatory behavior possible but that we are
also able to determine which parameters need to change to get it. From the study above, we
manage to prove, for instance, that increasing the protein formation process duration T (which
could happen for weak of damaged cells) may lead to oscillations in protein productions. We
show that other parameters are involved such as the loss of diffusion term \alpha or the threshold
density yc of PrP

Sc implying its stress condition.
We used the function dde23 [35] from MATLAB for numerical simulations. We underline

that asymptotic solutions turned out to be independent from initial conditions and densi-
ties. We thus arbitrarily decided to compute each trajectories showed in Figure 2(b) with an
initial condition corresponding to 50\% of the associated steady state specified by parameter
values.

3. Model of prion production with 2 neurons. In this section we generalize the previous
modeling and describe prion production and dynamic at the scale of two neurons. We first
describe the model, then proceed to the stability analysis of the steady states.

3.1. The model. The model illustrated in Figure 3 describes the dynamics of PrPC pro-
tein concentrations associated to neuron 1 and neuron 2---x1 and x2---as well as the PrPSc

concentrations in the close vicinity of neuron 1 and neuron 2---y1 and y2. This model is
governed, for t \geq 0, by the following system:

dx1
dt

= K1\beta n(y1(t - T1)) - \mu 1x1(t) - dx1(t) (y1(t) + \kappa \alpha 2y2(t)) ,

dx2
dt

= K2\beta n(y2(t - T2)) - \mu 2x2(t) - dx2(t) (y2(t) + \kappa \alpha 1y1(t)) ,

dy1
dt

= dx1(t) (y1(t) + \kappa \alpha 2y2(t)) - \alpha 1y1(t),

dy2
dt

= dx2(t) (y2(t) + \kappa \alpha 1y1(t)) - \alpha 2y2(t).

(3.1)
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Figure 3. Two neurons' prion production model. This model generalizes the one presented in Figure 1.
Interactions between prion species are introduced through the coupling constant \kappa \in [0, 1] in the PrPSc production
terms of the neurons: dx1\kappa \alpha 2x2 and dx2\kappa \alpha 1x1.

The parameters K1,K2, \mu 1, \mu 2, \alpha 1, \alpha 2, T1, T2, d, yc, n and variables u1, u2 have the same
meanings as in section 2. Variables u1 and u2---associated to biological processes duration T1
and T2---are both ruled by an equation identical to (2.1). Parameters characterizing the UPR
mechanism---threshold concentration yc and sensivity n---are assumed to be identical for the
two neurons. The UPR feedback function \beta n is thus also identical for the two neurons.

We underline that neuron's proteins concentrations---(x1, y1) for neuron 1 and (x2, y2)
for neuron 2---are ruled by a system similar to (2.2) except that the interactions between
PrPSc concentrations of the two neurons are now taken into account. Actually, we consider
that diffusion enables the PrPSc proteins of one neuron to migrate near the other neuron
and become templates for the generation of new PrPSc proteins. We decide to include these
interactions in the PrPSc production terms: dx1\kappa \alpha 2y2 (resp., dx2\kappa \alpha 1y1) models the production
of PrPSc proteins by neuron 1 (resp., 2) generated from the interaction between PrPSc proteins
associated to neuron 2 (resp., 1) and PrPc proteins of neuron 1 (resp., 2). Moreover we wish
to grasp two properties: (i) isotropic and spatial properties of diffusion and (ii) possibly
different interactions between PrPc and PrPSc originating from different neurons compared
to the situation where PrPc and PrPSc come from the same neuron. Hence, we assume that
the quantity of PrPSc that interacts---from one neuron to the other---decays with a factor
0 < \kappa \leq 1. The parameter \kappa thus stands for a coupling constant between neurons that gathers
both migration efficiency (induced by diffusion) and the ability for proteins originating from
different neurons to interact.

The well-posedness of system (3.1) (existence, unicity, and positivity of solutions) can be
easily verified thanks to well-known theorems [37] (a result similar to (2.3) holds).
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3.2. Steady states. Let (x\ast 1, x
\ast 
2, y

\ast 
1, y

\ast 
2) \in \BbbR 4

+ be a steady state of (3.1); it verifies

0 = K1\beta n(y
\ast 
1) - \mu 1x

\ast 
1  - dx\ast 1 (y

\ast 
1 + \kappa \alpha 2y

\ast 
2) ,(3.2)

0 = K2\beta n(y
\ast 
2) - \mu 2x

\ast 
2  - dx\ast 2 (y

\ast 
2 + \kappa \alpha 1 y

\ast 
1) ,(3.3)

0 = dx\ast 1 (y
\ast 
1 + \kappa \alpha 2 y

\ast 
2) - \alpha 1 y

\ast 
1,(3.4)

0 = dx\ast 2 (y
\ast 
2 + \kappa \alpha 1 y

\ast 
1) - \alpha 2y

\ast 
2.(3.5)

Then, summing (3.2) with (3.4) and (3.3) with (3.5) we obtain

K1\beta n(y
\ast 
1) - \mu 1x

\ast 
1  - \alpha 1y

\ast 
1 = 0 and K2\beta n(y

\ast 
2) - \mu 2x

\ast 
2  - \alpha 2y

\ast 
2 = 0,

which also reads, for i, j \in \{ 1, 2\} and i \not = j,

x\ast i = Gi(y
\ast 
i ),(3.6)

with

Gi(y) =
1

\mu i
(Ki\beta n(y) - \alpha iy) for all y \geq 0.(3.7)

The function Gi is decreasing on \BbbR + and nonnegative on [0, \^yi] with

Gi(0) =
Ki

\mu 1
and Gi( \^yi) = 0.

Now, inserting expression (3.6) into (3.4) and (3.5) leads to

y\ast 1 = y\ast 2H2(y
\ast 
2),(3.8)

y\ast 2 = y\ast 1H1(y
\ast 
1),(3.9)

where the function Hi for i, j \in \{ 1, 2\} , i \not = j, is defined as

Hi(y) =
1

\kappa \alpha j

\biggl( 
\alpha i

dGi(y)
 - 1

\biggr) 
for all y \in [0, \^yi) .

Inserting expression (3.8) and (3.9) into each other leads to

y\ast 1H1(y
\ast 
1)H2 (y

\ast 
1H1(y

\ast 
1)) = y\ast 1,(3.10)

y\ast 2H2(y
\ast 
2)H1 (y

\ast 
2H2(y

\ast 
2)) = y\ast 2.(3.11)

Before going further, we underline that the functionHi (for i, j \in \{ 1, 2\} , i \not = j) is increasing
on [0, \^yi) and such that

Hi(0) :=
1

\kappa \alpha j

\bigl( 
R - 1

0i  - 1
\bigr) 
and lim

y\rightarrow \^yi
Hi(y) = +\infty ,(3.12)
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where we define for further simplicity

R01 :=
dK1

\mu 1\alpha 1
and R02 :=

dK2

\mu 2\alpha 2
.

We want to study existence and uniqueness of a possible co-existence steady state of (3.1),
(\=x1, \=x2, \=y1, \=y2) \in \BbbR \ast 

+
4, different from the trivial steady state (K1/\mu 1,K2/\mu 2, 0, 0) (which always

exists). We know that (\=x1, \=x2, \=y1, \=y2) verifies (3.11). It follows that \=y2 > 0 is solution of

H(\=y2) = 1,(3.13)

where the function H is defined as

H(y) = H2(y)H1 (yH2(y))

for all y \in (0, \^y2) in the domain of H. Depending on parameter values, \=y2---solution of
(3.13)---must lie in a given interval to ensure well-posedness of the co-existence equilibria
(\=x1, \=x2, \=y1, \=y2). The three following lemmas tackle this issue and unveil conditions about
existence and uniqueness of the co-existence steady state (\=x1, \=x2, \=y1, \=y2).

Lemma 3.1. If R01 > 1 and R02 > 1, then there exists a unique co-existence equilibrium
(\=x1, \=x2, \=y1, \=y2) \in \BbbR \ast 

+
4 verifying (3.6), (3.8), and (3.9).

Proof. By definition of H1 of H2, as H1(0), H2(0) < 0, there exist unique \u y1, \u y2 > 0 such
that H1(\u y1) = 0 and H2(\u y2) = 0. Moreover, as \=y2 > 0 and \=y1 > 0, we know from (3.8) and
(3.9) that we are looking for an equilibria \=y2, solution of (3.13) in (\u y2, \^y2). In addition, we
notice that y \mapsto \rightarrow yH2(y) is positive and increasing on (\u y2, \^y2) and such that

\u y2H2(\u y2) = 0 and lim
y\rightarrow \^y2

yH2(y) = +\infty .

Hence, there exists unique \~\~y < \~y \in (\u y2, \^y2) such that

\~\~yH2(\~\~y) = \u y1 and \~yH2(\~y) = \^y1.

Consequently, H1(yH2(y)) < 0 and thus H(y) < 0 for all y \in (\u y2, \~y). And, by product and
composition of positive increasing functions, H is positive, increasing on [\~\~y, \~y) and such that
H(\~\~y) = 0 and limy\rightarrow \~yH(y) = +\infty . All in all, if R01 > 1 and R02 > 1, then there exists a
unique solution \=y2 \in (\~\~y, \~y) of (3.13), and Lemma 3.1 is proven.

Then, we focus on the situation in which only one neuron has its R0 greater than one.

Lemma 3.2. If R0i > 1 and R0j < 1 with i, j \in \{ 1, 2\} and i \not = j, then there exists a unique
co-existence equilibrium (\=x1, \=x2, \=y1, \=y2) \in \BbbR \ast 

+
4 verifying (3.6), (3.8), and (3.9).

Proof. For simplicity and without loss of generality, we assume that i = 2 and j = 1. By
definition of H2, we know that H2(0) < 0, and from the increasing property of H2, we obtain
that there exists a unique \u y2 \in (0, \^y2) such that H2(\u y2) = 0. Moreover from (3.8) and (3.9),
since \=y1 > 0, it is necessary that \=y2 \in (\u y2, \^y2). From (3.10) and (3.11), we are consequently
looking for a solution \=y2 \in (\u y2, \^y2) of (3.13). By the increasing properties of H1 and H2 and
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by the positiveness of H1 on its domain, we know that H is positive and increasing on (\u y2, \^y2)
and such that

H(\u y2) = 0 and lim
y\rightarrow \^y2

H(y) = +\infty .

All in all, if R02 > 1 and R01 < 1, then there exists a unique solution \=y2 \in (\u y2, \^y2) to (3.13),
and Lemma 3.2 is proven.

Lemma 3.3. Assume that

R01 < 1 and R02 < 1.(3.14)

There exists another unique co-existence equilibrium (\=x1, \=x2, \=y1, \=y2) \in \BbbR \ast 
+
4 verifying (3.6),

(3.8), and (3.9) if and only if

\kappa 2 >
1

R01R02\alpha 1\alpha 2
[1 - R01] [1 - R02] .(3.15)

Proof. First we know from the definition of H2 that there exists a unique \~y \leq \^y2 such that

\~yH2(\~y) = \^y1.

Then conditions R01 < 1 and R02 < 1 imply the positiveness of H1, H2 and y \mapsto \rightarrow H1 (yH2(y))
on (0, \~y). By operations, H is thus well defined and increasing on its domain (0, \~y) and such
that

lim
y\rightarrow \~y

H(y) = +\infty and H(0) =
1

\kappa 2\alpha 1\alpha 2

\bigl[ 
R - 1

01  - 1
\bigr] \bigl[ 
R - 1

02  - 1
\bigr] 
.

All things considered, when condition (3.14) holds, the co-existence equilibrium (\=x1, \=x2, \=y1, \=y2)
with \=y2 > 0 verifiying (3.13) exists and is unique if and only if condition (3.15) holds (i.e.,
H(0) < 1). This concludes the proof.

We summarize the results in the following theorem.

Theorem 3.4. The system (3.1) always admits a trivial equilibrium (
K1

\mu 1
,
K2

\mu 2
, 0, 0). More-

over, there exists another unique co-existence equilibrium (\=x1, \=x2, \=y1, \=y2) \in \BbbR \ast 
+
4 verifying (3.6),

(3.8), and (3.9) if and only if

(i)

R01 < 1, R02 < 1 and \kappa 2 >
1

R01R02\alpha 1\alpha 2
[1 - R01] [1 - R02](3.16)

or
(ii) there exists i \in \{ 1, 2\} such that R0i > 1.

Remark 3.5. If we denote by

R00 = \kappa 2\alpha 1\alpha 2
R01R02

[1 - R01] [1 - R02]
,(3.17)
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we can see that the existence of the co-existence equilibrium is equivalent to R01 < 1, R02 < 1,
and R00 > 1, or there exists i \in \{ 1, 2\} such that R0i > 1. The main information here is that,
even if R01 and R02 of each neuron is less than 1, a large coupling constant \kappa between the two
neurons allows R00 of the coupling to be greater than 1.

Finally, we state and prove a result concerning the continuous differentiability of the co-
existence steady state with respect to the coupling parameter \kappa .

Lemma 3.6. Assume that there exists i \in \{ 1, 2\} such that R0i > 1. The co-existence steady
state (\=x1, \=x2, \=y1, \=y2) is a continuously differentiable function of \kappa on an open set U \subset \BbbR + with
0 \in U if and only if

Ki\beta n
\prime ( \=yi) - \alpha i > 0 for i \in \{ 1, 2\} such that R0i > 1.

Proof. The system composed of steady state equations (3.2), (3.3), (3.4), and (3.5) could
also be written F (\kappa , (x\ast 1, x

\ast 
2, y

\ast 
1, y

\ast 
2)) = 0, where F : \BbbR + \times \BbbR 4

+ \rightarrow \BbbR . Let JF (\kappa , (x\ast 1, x
\ast 
2, y

\ast 
1, y

\ast 
2))

be the Jacobian determinant of F with respect to its second variable in \BbbR 4
+. In this framework,

simple computations lead to

JF (\kappa , (x\ast 1, x
\ast 
2, y

\ast 
1, y

\ast 
2))

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
 - (\mu 1 + dy\ast 1 + d\kappa \alpha 2y

\ast 
2) 0 K1\beta n

\prime (y\ast 1) - dx\ast 1  - dx\ast 1\kappa \alpha 2

0  - (\mu 2 + dy\ast 2 + d\kappa \alpha 1y
\ast 
1)  - dx\ast 2\kappa \alpha 1 K2\beta n

\prime (y\ast 2) - dx\ast 2
d(y\ast 1 + \kappa \alpha 2y

\ast 
2) 0 dx\ast 1  - \alpha 1 dx\ast 1\kappa \alpha 2

0 d(y\ast 2 + \kappa \alpha 1y
\ast 
1) dx\ast 2\kappa \alpha 1 dx\ast 2  - \alpha 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .

(3.18)

For clarity, we note ( \=x1\kappa , \=x2\kappa , \=y1\kappa , \=y2\kappa ) the co-existence steady state of system (3.1) for \kappa \in 
[0, 1].

We want to apply the implicit function theorem at \kappa = 0 and thus need to evaluate JF
in the co-existence steady state obtained for the decorrelated situation (\kappa = 0). However, in
the decorrelated situation, since \kappa = 0, we notice that ( \=x1\kappa =0, \=y1\kappa =0) and ( \=x2\kappa =0, \=y2\kappa =0) are
steady states of neurons 1 and 2 independently. Consequently, depending on the values of R01

and R02 with respect to 1, two different situations must be distinguished.
First, if R01 > 1 and R02 > 1, then condition (2.4) is satisfied for each neuron. We thus

know that \=x1\kappa =0 = \alpha 1/d and \=x2\kappa =0 = \alpha 2/d and that \=y1\kappa =0 and \=y2\kappa =0 verify equations similar
to (2.5). These expressions and a Laplace expansion of (3.18) lead to

JF (0, ( \=x1\kappa =0, \=x2\kappa =0, \=y1\kappa =0, \=y2\kappa =0)) = d2 \=y1\kappa =0 \=y2\kappa =0 [K1\beta n
\prime ( \=y1\kappa =0) - \alpha 1] [K2\beta n

\prime ( \=y2\kappa =0) - \alpha 2] .

This expression and the implicit function theorem enable us to conclude for the situation in
which R01 > 1 and R02 > 1.

Then, let i, j \in \{ 1, 2\} , i \not = j, and assume that R0i > 1 and R0j < 1. Without loss of
generality and for clarity, we assume that R01 > 1 and R02 < 1. In this situation, we thus
have \=x2\kappa =0 = K2/\mu 2, \=y2\kappa =0 = 0, \=x1\kappa =0 = \alpha 1/d, and \=y1\kappa =0 verifies (2.5) (with parameters
adapted to neuron 1). Hence, from these expressions and with a Laplace expansion of (3.18)
we obtain

JF (0, ( \=x1\kappa =0, \=x2\kappa =0, \=y1\kappa =0, \=y2\kappa =0)) = d\mu 2\alpha 2 (R02  - 1) \=y1\kappa =0 [K1\beta n
\prime ( \=y1\kappa =0) - \alpha 1] .
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Using the latter expression and the implicit function theorem, if R01 > 1 and R02 < 1, we
conclude that (\=x1, \=x2, \=y1, \=y2) is continuous and differentiable with respect to \kappa in an open set
U \subset \BbbR \ast 

+
4 containing \kappa = 0 if and only if K1\beta n

\prime ( \=y1\kappa =0) - \alpha 1 \not = 0.
Proof of Lemma 3.6 is thus completed.

When \kappa = 0, each neuron is expected to evolve independently from the other and to have
its own prion dynamics. Lemma 3.6 thus guarantees the coherence with our previous modeling
of a single neuron and ensures the well-posedness of our model.

When neurons are identical (i.e., symmetrical situation), more precise theoretical results
become simpler. Theorem 3.4 leads to the following corollary.

Corollary 3.7. If neurons are identical with K := K1 = K2, \mu := \mu 1 = \mu 2, and \alpha := \alpha 1 =
\alpha 2, then system (3.1) admits a unique co-existence steady state (\=x1, \=x2, \=y1, \=y2) if and only if

\kappa >
1 - R0

\alpha R0
with R0 := R01 = R02 =

dK

\mu \alpha 
.(3.19)

If (3.19) holds, we have

\=x := \=x1 = \=x2 =
\alpha 

d(1 + \kappa \alpha )

and \=y := \=y1 = \=y2 \in (0, \^y) solution of

R0\beta n(\=y) =
d

\mu 
\=y +

1

1 + \kappa \alpha 
, \=y \in (0, \^y) .(3.20)

Proof. If neurons are identical, the condition \kappa > (1  - R0)/\alpha R0 is in fact equivalent to
R00 := [\kappa \alpha R0/(1 - R0)]

2 > 1. By symmetry we have x\ast 1 = x\ast 2 := x\ast and y\ast 1 = y\ast 2 := y\ast . Hence,
inserting the latter equality in (3.8) and (3.9) leads to

y\ast = y\ast h(y\ast ),

where h := H1 = H2 in the symmetrical situation under consideration here. As x\ast > 0 and
y\ast > 0, it is necessary that y\ast < K/\alpha . Hence, existence and uniqueness of a co-existence
steady state y\ast \in [0, \^y) rely on the solution of

1 = h(y) =
1

\kappa \alpha 

\biggl( 
\alpha \mu 

d(K\beta n(y) - \alpha y)
 - 1

\biggr) 
, y \in [0, \^y) ,

which corresponds to (3.20). Function h being increasing on [0, \^y) and such that limy\rightarrow \^yh(y) =
+\infty , we consequently obtain existence and uniqueness of the co-existence steady state
(x\ast , x\ast , y\ast , y\ast ) if and only if h(0) < 1. This condition is also equivalent to (3.19). Finally, a
trivial solving of (3.6) leads to an explicit expression of x\ast .

3.3. Linearized system, characteristic equation, and asymptotic stability. System (3.1)
linearized with the perturbations u1, u2, u3, and u4 about any steady state (x\ast 1, x

\ast 
2, y

\ast 
1, y

\ast 
2),

reads
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du1
dt

= K1\beta 
\prime 
n(y

\ast 
1)u3(t - T1) - (\mu 1 + dy\ast 1 + d\kappa \alpha 2y

\ast 
2)u1(t) - dx\ast 1u3(t) - d\kappa \alpha 2x

\ast 
1u4(t),

du2
dt

= K2\beta 
\prime 
n(y

\ast 
2)u4(t - T2) - (\mu 2 + dy\ast 2 + d\kappa \alpha 1y

\ast 
1)u2(t) - d\kappa \alpha 1x

\ast 
2u3(t) - dx\ast 2u4(t),

du3
dt

= (dy\ast 1 + d\kappa \alpha 2y
\ast 
2)u1(t) + (dx\ast 1  - \alpha 1)u3(t) + d\kappa \alpha 2x

\ast 
1u4(t),

du4
dt

= (dy\ast 2 + d\kappa \alpha 1y
\ast 
1)u2(t) + d\kappa \alpha 1x

\ast 
2u3(t) + (dx\ast 2  - \alpha 2)u4(t),

from which we deduce the associated characteristic equation for \lambda \in \BbbC :

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
W1(\lambda ) 0 dx\ast 1  - K1\beta n

\prime (y\ast 1)e
 - \lambda T1 d\kappa \alpha 2x

\ast 
1

0 W2(\lambda ) d\kappa \alpha 1x
\ast 
2 dx\ast 2  - K2\beta n

\prime (y\ast 2)e
 - \lambda T2

 - (dy\ast 1 + d\kappa \alpha 2y
\ast 
2) 0 \lambda + \alpha 1  - dx\ast 1  - d\kappa \alpha 2x

\ast 
1

0  - (dy\ast 2 + d\kappa \alpha 1y
\ast 
1)  - d\kappa \alpha 1x

\ast 
2 \lambda + \alpha 2  - dx\ast 2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| = 0,

(3.21)

where we defined, for i, j \in \{ 1, 2\} , i \not = j,

Wi(\lambda ) = \lambda + \mu i + dy\ast i + d\kappa \alpha jy
\ast 
j .

Proposition 3.8. The trivial steady state is the only steady state and locally asymptotically
stable if and only if

R01 < 1, R02 < 1, and 0 \leq \kappa 2 <
1

R01R02\alpha 1\alpha 2
[1 - R01] [1 - R02] .(3.22)

Otherwise, the trivial steady is unstable.

Proof. Using the notation (3.17), we can see that the condition (3.22) is equivalent to
R0i < 1 for all i \in \{ 0, 1, 2\} . For the trivial steady state, the characteristic equation (3.21)
reads

(\lambda + \mu 1)(\lambda + \mu 2)

\biggl[ \biggl( 
\lambda + \alpha 1  - 

dK1

\mu 1

\biggr) \biggl( 
\lambda + \alpha 2  - 

dK2

\mu 2

\biggr) 
 - d2\kappa 2K1K2\alpha 1

\mu 1\mu 2

\biggr] 
= 0, \lambda \in \BbbC .

Thus, we have at least two eigenvalues  - \mu 1 < 0 and  - \mu 2 < 0. Other possible eigenvalues
verify

\lambda 2 +

\biggl( 
\alpha 1 + \alpha 2  - d

\biggl( 
K1

\mu 1
+
K2

\mu 2

\biggr) \biggr) 
\lambda 

+

\biggl( 
\alpha 1  - 

dK1

\mu 1

\biggr) \biggl( 
\alpha 2  - 

dK2

\mu 2

\biggr) 
 - d2\kappa 2K1K2\alpha 1\alpha 2

\mu 1\mu 2
= 0, \lambda \in \BbbC .

From the Routh--Hurwitz criterion, it follows that this equation has roots with negative real
parts if and only if

\alpha 1 (1 - R01) + \alpha 2 (1 - R02) > 0 and

\biggl( 
\alpha 1  - 

dK1

\mu 1

\biggr) \biggl( 
\alpha 2  - 

dK2

\mu 2

\biggr) 
 - d2\kappa 2K1K2\alpha 1\alpha 2

\mu 1\mu 2
> 0,
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which is also equivalent to

\alpha 1 (1 - R01) + \alpha 2 (1 - R02) > 0 and
1

R01R02\alpha 1\alpha 2
[1 - R01] [1 - R02] > \kappa 2.

As \kappa 2 \geq 0, the latter conditions is finally equivalent to condition (3.22).

Interchanging lines and columns and using 2\times 2 block matrices, the characteristic equation
(3.21) reads \bigm| \bigm| \bigm| \bigm| A1(\lambda ) B1

B2 A2(\lambda )

\bigm| \bigm| \bigm| \bigm| = 0, \lambda \in \BbbC ,(3.23)

with, for i, j \in \{ 1, 2\} , i \not = j,

Ai(\lambda ) =

\biggl( 
Wi(\lambda ) dx\ast i  - Ki\beta n

\prime (y\ast i )e
 - \lambda Ti

 - dy\ast i  - d\kappa \alpha jy
\ast 
j \lambda + \alpha i  - dx\ast i

\biggr) 
and Bi = d\kappa \alpha jx

\ast 
i

\biggl( 
0 1
0  - 1

\biggr) 
.

In order to obtain theoretical result, we decide to consider the symmetrical situation in which
neurons are identical with T := T1 = T2. In such situation, for any steady state (x\ast , x\ast , y\ast , y\ast ),
the characteristic equation (3.23) reads\bigm| \bigm| \bigm| \bigm| A(\lambda ) B

B A(\lambda )

\bigm| \bigm| \bigm| \bigm| = 0, \lambda \in \BbbC ,

where

A(\lambda ) := A1(\lambda ) = A2(\lambda ) and B := B1 = B2.

Hence, in the symmetrical situation, the characteristic equation for the co-existence steady
state (\=x, \=x, \=y, \=y) \in \BbbR \ast 

+
4 is a product of two second order polynomials:

det (A(\lambda ) +B) det (A(\lambda ) - B) = 0, \lambda \in \BbbC ,(3.24)

where, after simple computations using results of Corollary 3.7, we have

det (A(\lambda ) +B) = \lambda 2 + [\mu R0(1 + \kappa \alpha )\beta n(\=y)]\lambda  - \alpha \mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)]

+K\beta n
\prime (\=y)\mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)] e

 - \lambda T(3.25)

and

det (A(\lambda ) - B) = \lambda 2 +

\biggl[ 
\mu R0(1 + \kappa \alpha )\beta n(\=y) +

2\kappa \alpha 2

1 + \kappa \alpha 

\biggr] 
\lambda 

+ 2
\kappa \alpha 2

1 + \kappa \alpha 
\mu R0(1 + \kappa \alpha )\beta n(\=y) - 

\alpha (1 - \kappa \alpha )

1 + \kappa \alpha 
\mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)]

+K\beta n
\prime (\=y)\mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)] e

 - \lambda T .

(3.26)

Now, we state and prove some results about the local asymptotic stability of the co-existence
steady state in the situation of identical neurons (i.e., symmetrical situation).
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Proposition 3.9. If

(i) neurons are identical with K := K1 = K2, \alpha := \alpha 1 = \alpha 2, and \mu := \mu 1 = \mu 2,

(ii) \kappa >
1 - R0

\alpha R0
(condition equivalent to R00 > 1),

(iii) T1 = T2 = 0,
then the co-existence steady state (\=x, \=x, \=y, \=y) \in \BbbR \ast 

+
4 is locally asymptotically stable.

Proof. If T1 = T2 = 0, then the two terms (3.25) and (3.26) of the characteristic equation
(3.24) read (computations are not shown for clarity) for \lambda \in \BbbC 

det (A(\lambda ) +B) = \lambda 2 + [\mu R0(1 + \kappa \alpha )\beta n(\=y)]\lambda  - (\alpha  - K\beta n
\prime (\=y))\mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)]

and

det (A(\lambda ) - B) = \lambda 2 +

\biggl[ 
\mu R0(1 + \kappa \alpha )\beta n(\=y) + 2

\kappa \alpha 2

1 + \kappa \alpha 

\biggr] 
\lambda 

+
\kappa \alpha 2

1 + \kappa \alpha 
[\mu R0(1 + \kappa \alpha )\beta n(\=y) + \mu ]

 - 
\biggl( 

\alpha 

1 + \kappa \alpha 
 - K\beta n

\prime (\=y)

\biggr) 
\mu [1 - R0(1 + \kappa \alpha )\beta n(\=y)] .

From the results obtained in Corollary 3.7, from the positiveness of \=y and from the decreasing
shape of \beta n, we verify that 1 - R0(1 + \kappa \alpha )\beta n(\=y) < 0 and thus obtain that each factors of the
two latter polynomials are positive. Hence, we conclude using the Routh--Hurwitz criterion
applied to the two latter polynomials.

From Proposition 3.9, we use a continuity argument to obtain the following corollary.

Corollary 3.10. If conditions (i) and (ii) of Proposition 3.9 hold and T := T1 = T2, then

there exists a unique T \ast \in (0,+\infty ) such that the co-existence steady state (\=x, \=x, \=y, \=y) \in \BbbR \ast 
+
4

is locally asymptotically stable for all T < T \ast and unstable for T \geq T \ast at the neighborhood
of T \ast .

If T is increased from 0 to +\infty with fixed values of other model parameters, the system
of two identical neurons can undergo a stability switch through a Hopf bifurcation when T
reaches T \ast .

Similarly to what has been done for a single neuron, we used the method detailed in [14]
to determine theoretical conditions and expressions of the boundary delays at which stability
switches could occur. For different values of \kappa \in [0, 1], we thus numerically obtained the
corresponding values of T \ast at which a Hopf bifurcation could occur.

In Figure 4, we present stability diagrams (Figure 4(a) and Figure 4(c)) and illustrate
the stability switch that could occur when R0 > 1 and R0 < 1 through two different plots
(Figure 4(b) and Figure 4(d)). These figures highlight the influence of the coupling between
the two neurons over the stability of the co-existence steady state. The more important
is the coupling; the smaller is the boundary value of T at which a stability switch occurs.
As observed in stability diagrams, neuron coupling (\kappa > 0) actually promotes instability by
lowering the value of the biological processes duration T \ast at which a stability switch occurs
compared to the situation without coupling (\kappa = 0, single neuron).
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(a) (b)

(c) (d)

Figure 4. (a), (c): Stability diagrams in the (\kappa , T ) plane when neurons are strictly identical with R0 > 1 (a)
or R0 < 1 (c). Full lines locate T \ast : the first crossing of the imaginary axis by the characteristic roots associated
to the co-existence steady state. It corresponds to the first value of T (when increased from 0) that induces
a stability switch through a Hopf bifurcation. Colored areas indicate stability regions for the trivial (blue) or
co-existence (red) steady states. In (a), that is, R0 > 1, we also highlight by a dashed line the value of T \ast 

obtained for the model of a single neuron (presented in section 2). We verify the coherence between the two
models as \kappa \rightarrow 0 and observe the effect of neuron coupling: the boundary value T \ast decreases with \kappa . Neuron
coupling thus promotes instability. In (c), that is, R0 < 1, if \kappa is small enough, the disease free equilibrium
is the only steady state but also asymptotically stable. However, when coupling parameter \kappa is large enough,
the disease steady state eventually appears and becomes also stable. This means that, even with R0 < 1, the
coupling allows the disease to play a major role. (b): Example trajectories when R0 > 1 illustrating the Hopf
bifurcation that occurs when T crosses the boundary. Trajectories are colored according to their parameter
values and correspond to the colored crosses of Figure 4(a). (d): Evolution of normalized PrPSc steady state
values y\ast /yc with respect to the coupling constant \kappa when R0 < 1. For a given value of \kappa , then there is one or
two steady states which can be stable (full line) or unstable (dashed line). When there are two unstable steady
states, the solution is periodic, and we indicate its maximum and minimum with red and blue lines, respectively.
Values of other model parameters (specified in Table 2) are set to relevant orders of magnitudes.

Remark 3.11. Because of the lack of referenced biological values we chose model parame-
ters values according to relevant order magnitudes following previous modeling works [17, 23].
Yet, the threshold concentration yc was chosen arbitrarily. The value of the sensitivity coeffi-
cient n significantly influences the time complexity of simulations. Thus, we chose the value
n = 10 as a compromise between a reasonable computational time complexity and reasonable
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Table 2
Values of parameters used in Figure 4. Orders of magnitude are consistent with the values used in [17, 23].

Parameters Values Units

T variable (Figure 4(a) and (c)) or 0.15
(Figure 4(d))

days

\mu 1 = \mu 2 = \mu 20 days - 1

K1 = K2 = K 1500 (Fibrils per volume unit).days - 1

\alpha 1 = \alpha 2 = \alpha 2.0833 (Figure 4(a) and (b)) or 4.6875
(Figure 4(c) and (d))

days - 1

\kappa variable (Figure 4(a), (c), and (d)) or 0.2
(Figure 4(b))

-

yc 130 Fibrils per volume unit
d 0.05 (Fibrils per volume unit) - 1.days - 1

n 10 -

sharpness of the UPR feedback function \beta n. Finally, the value of R0 (either greater or lower
than 1) was set by adjusting the value of \alpha .

4. Discussion and conclusion. The formalism we used to depict prion dynamics with two
neurons can be easily generalized to describe prion dynamics in a system of N neurons. Doing
so, we obtain a model similar to the one developed by Stumpf and Krakauer [42], except our
approach incorporates the UPR feedback and does not assume preferential diffusion along
axons.

In this paradigm, each neuron i \in [[1, N ]] is modeled with its associated PrPc and PrPSc

concentrations xi and yi ruled by

dxi
dt

= Ki\beta n(yi(t - T1)) - \mu ixi(t) - dxi

\left(  yi(t) +\sum 
j \not =i

\kappa i,j\alpha j\rightarrow iyj(t)

\right)  ,

dyi
dt

= dxi(t)

\left(  yi(t) +\sum 
j \not =i

\kappa i,j\alpha j\rightarrow iyj(t)

\right)   - 

\left(  \sum 
j \not =i

\alpha i\rightarrow j

\right)  y2(t).

Parameters d,Ki, and \mu i have the same meaning as before concerning neuron i \in [[1, N ]]. The
parameter \alpha i\rightarrow j transcribes the diffusive property of PrPSc to the neuron j \not = i. We still
assume that interactions between PrPSc from neuron i to PrPC of an other neuron j \not = i
are modeled with a coupling factor 0 \leq \kappa i,j < 1. We remind the reader that these coupling
constants should be viewed as damping coefficients characterizing both diffusion properties
and the difference of origin between prion species.

In conclusion, we developed a modeling approach of prion production at the scale of
one (section 2) or two (section 3) neurons. Our approach incorporates the effect of the UPR
through a negative feedback describing the global translation shutdown induced by an overload
of PrPSc around a neuron.

We investigated existence, uniqueness, and (local) stability of steady states associated to
each of the two models presented in this paper. In these models, a bifurcation analysis with
respect to the variation of three parameters (for the single neuron's prion model) or a conti-
nuity argument (for the two neuron's model) led to the condition for autonomous oscillations
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of PrPSc to appear. Stability diagrams and numerical simulations gave us insight into the
stability of steady states, as well as into the dynamics of solutions. In the case of two neu-
rons, we established---both theoretically and numerically---an interesting result. Interactions
between PrPSc and PrPc originating from different neurons enable---if the coupling constant
\kappa is greater than a minimum value---existence and uniqueness of a co-existence steady state
(and possibly PrPSc oscillations to appear) even when the R0 associated to each single neu-
ron4 is lower than one. Theoretical results and numerical simulations concerning the case of
two identical neurons indicate that the value of \kappa dictates prion dynamics at the scale of two
neurons and show that the co-existence steady state could be destabilized---inducing PrPSc

oscillations---when the biological processes duration T excesses a boundary value T \ast .
Even if our models aim at describing PrPc and PrPSc concentrations around neurons,

future research may extend and/or modify our modeling approach to describe concentrations
of different misfolded proteins involved in other PMDs, such as A\beta proteins in the context of
Alzheimer's disease.

Moreover, by considering the effect of a global translation shutdown at the neuron scale
(through protein synthesis activity and biological activity variables), our model paves the way
for future investigations into the effect of neuron synchronization in prion diseases. Actually,
this work constitutes the building block of a future wider modeling approach in which neurons
could interact through PrPSc diffusion and possibly oscillate (depending on their environment
and biological parameters) and then potentially sees their protein synthesis activities become
synchronized thus triggering detrimental outcomes. To this aim, we will have to take several
important physiological features of the neuronal network into account. Indeed, since prion
proteins are anchored to the cell membrane, the PrPSc formation follows the synaptic entan-
glement and thus does not propagate equally in all directions. Thus, some of the neurons
not located in the neighborhood of a stressed one could be impacted by its behavior and
propagate the UPR mechanism in an unexpected heterogeneous way. Furthermore, similarly
to a group of people tied together and trying to figure out how to progress in a jungle, the
diffusion coefficient of PrPSc proteins depends mainly on the on its size (called the polymer
length). The longer the protein is, the less it diffuses. And thus, secondary nucleation could
appear far from the source of the onset of the pathology in a group of neurons if polymers of
small sizes are produced in a sufficient quantity. Then, the synchronicity could be described
either through a local connection in standard but technical way or through an unexpected
nonlocal heterogeneous way. This has to be clearly observed in vivo through image analysis
and described with new mathematical models and technical approaches. This is the object of
our future but promising work.
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