
T.D.Série 3 (Correction) :

Opérateurs différentiels classiques. Théorème des accroissements
finis et applications

Exercice 1 Soit ϕ : R \ {0} → R une fonction deux fois différentiable.
1. Vérifier que la fonction f : R3 \ {(0, 0, 0)} → R, f(x, y, z) = ϕ(

√
x2+y2+z2) est

une fonction continûment différentiable.
Preuve.
On remarque d’abord que la fonction f est la fonction composée f = ϕ ◦ r, où

r : R3 → R, x = (x, y, z) ∈ R3, x 7→ r(x) =
√

x2+y2 + z2 ∈ R;
ϕ : R→ R, y ∈ V = R \ {0} ⊂ R, y ∈ R, y 7→ ϕ(y).

La fonction f : U = R3 \ {(0, 0, 0)} → R est continûment différentiable en chaque point
x ∈ U = R3 \ {(0, 0, 0)} puisque ses dérivées partielles ∂xf, ∂yf, ∂zf sont continues sur
U (selon le théorème 2 du cours, voir la p. 13). Pour démontrer que ∂xf, ∂yf, ∂zf sont
continues sur U il faut les calculer : la fonction g(x) =

√
x2 + const, const ≥ 0, d’une

seule variable x est une fonction dérivable sur R\{0} pour la composée de deux fonctions
dérivables d’une variable on a

∂xf(x) = ∂xϕ(r) = ϕ′(r)∂xr = ϕ′(r)2x 1
2

(
x2+y2+z2

) 1
2−1 = ϕ′(r)x√

x2+y2+z2
= ϕ′(r)x

r .

De la même facon on obtient ∂yf = ϕ′(r)y
r , ∂zf = ϕ′(r)z

r . Les fonctions ϕ′(r)x, ϕ′(r)y,
ϕ′(r)z, r sont continues sur R3 (ϕ′(r) est continue comme composée ϕ′ ◦ r de deux
fonctions continues), r(x, y, z) 6= 0 sur R3 \ {(0, 0, 0)}. Ça entrâıne que les quotients
ϕ′(r)x

r , ϕ′(r)y
r , ϕ′(r)z

r sont continus sur R3 \ {(0, 0, 0)}.
2. Montrer que pour tout (x, y, z) 6= (0, 0, 0)

div(gradf) = ∂x (∂xf)+∂y (∂yf)+∂z (∂zf) = ϕ′′(r) +
2
r
ϕ′(r), r =

√
x2 + y2 + z2.

Preuve. On a deja calculé les dérivées partielles :

∂xf =
ϕ′(r)x

r
, ∂yf =

ϕ′(r)y
r

, ∂zf =
ϕ′(r)z

r
.

On va continuer le calcul :

∂x (∂xf) = ∂x

(
ϕ′(r)x

r

)
= ∂x(ϕ′(r)x)r−ϕ′(r)x∂x(r)

r2 = ϕ′′(r)∂x(r)xr+ϕ′(r)∂x(x)r−ϕ′(r)x x
r

r2 =

= ϕ′′(r)x2

r2 +ϕ′(r)
r −ϕ′(r)x2

r3 , ∂y (∂yf) = ϕ′′(r)y2

r2 +ϕ′(r)
r −ϕ′(r)y2

r3 ,

∂z (∂zf) = ϕ′′(r)z2

r2 +ϕ′(r)
r −ϕ′(r)z2

r3 .

Donc

div(gradf) = ∂x (∂xf)+∂y (∂yf)+∂z (∂zf) = ϕ′′(r)(x2+y2+z2)
r2 +3ϕ′(r)

r −ϕ′(r)(x2+y2+z2)
r3 =

= ϕ′′(r)r2

r2 +3ϕ′(r)
r −ϕ′(r)r2

r3 = ϕ′′(r) + 2
r ϕ′(r).

3. Calculer div

(
grad

(
1√

x2+y2+z2

))
.

Preuve. On peut utiliser la précédente en considerant ϕ(r) = 1
r . On a

div

(
grad

(
1√

x2+y2+z2

))
=

(
1
r

)′′
+

2
r

(
1
r

)′
=

2
r3

+
2
r

(
− 1

r2

)
= 0.
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Exercice 2 On munit Rn du produit scalaire habituel (·, ·) associé à la norme
euclidienne ‖x‖ =

√
(x, x). Soit U un ouvert de Rn et f : U → R une fonction

différentiable. Montrer que ∀a ∈ U il existe un vecteur unique noté par ∇af ∈ Rn

tel que (∇af, h) = dfa(h),∀h ∈ Rn. De plus, si (x1, . . . , xn) sont les coordonnées
canoniques (orthogonales), alors

∇af = (gradf)(a) = (∂x1f(a), . . . , ∂xn
f(a)).

Preuve. Il a été démontré dans le cours (voir la page 13) que pour tout a ∈ Rn on a

dfa(h) = dfa

(
n∑

i=1

hiei

)
=

n∑

i=1

hidfa(ei) =
n∑

i=1

hi
∂f

∂xi
(a) =

n∑

i=1

hi∂xi
f(a).

D’autre part la dernière somme est égale au produit scalaire (écrit par rapport aux coor-
données orthogonales (habituelles)) :

n∑

i=1

hi∂xif(a) = ((∂x1(a), . . . , ∂xn(a)), h) = (∇af, h).

Le vecteur ∇af est unique : s’il existe un second vecteur ∇̄af tel que dfa(h) = (∇af, h) =
(∇̄af, h) on a (∇af−∇̄af, h) = 0, ∀h ∈ Rn. Selon les propriétés du produit scalaire euclidien
on a ∇af − ∇̄af = 0.

Exercice 3 Soient E et F des espaces normés, U un ouvert de E, f : U → F
une fonction continue sur U , différentiable en tout point de U \ {a} et telle que
limx→a dfx existe. Montrer que f est différentiable en a.
Preuve. Notons L = limx→a dfx, L ∈ L(E, F ). Nous allons montrer que f est différentiable
en a et que daf = L. Etudions pour cela

‖f(a+h)− f(a)− L(h)‖F

‖h‖E
.

Pour ε > 0, ∃δ > 0 tel que Bo(a, ε) ⊂ U et

‖x− a‖ ≤ δ, x 6= a ⇒ ‖dfx − L‖L(E,F ) < ε (0.1)

(d’après l’hypothèse de la différentiabilité de f sur U \ {a}). Soit alors h ∈ E t.q.

0 ≤ ‖h‖E ≤ δ.

Pour tout t ∈ [0, 1] on a ‖(a+th)− a‖E = t‖h‖E ≤ δ. Donc a+th ∈ Bo(a, δ) ⊂ U . On peut
donc définir une application g : [0, 1] → F par

g(t) = f(a+th)− f(a)− L(th), ∀t ∈ [0, 1].

La fonction g est dérivable sur ]0, 1[ et ∀t ∈]0, 1[ on a (les applications dfa+th et L sont
linéaires)

g′(t) · s = dgt(s) = dfa+th(sh)− L(sh) = s (dfa+th(h)− L(h)) .

C.-à.-d.

‖g′(t)‖ = ‖df(a+th)(h)− L(h)‖ ≤ ‖df(a+th) − L‖L(E,F )‖h‖E ≤ ε‖h‖E

d’après (0.1) puisque ‖(a + th)− a‖ ≤ δ ∀t ∈]0, 1[.
Apliquons alors le Théorème des accroissements finis à g sur [0, 1] : ‖g(1)− g(0)‖ ≤ ε · ‖h‖.
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On a

g(1)− g(0) = f(a + h)− f(a)−L(h)− f(a) + f(a) + L(0) = f(a + h)− f(a)−L(h)− 0 + 0.

On a alors ∀ε > 0, ∃δ > 0 tel que si 0 < ‖h‖E ≤ δ alors

‖f(a + h)− f(a)− L(h)‖ ≤ ε‖h‖.

Donc f est différentiable en a est dfa = L.

Exercice 4 Soient E = R2 avec les coordonnées x, y et f : E → R et une fonction
définie par

f(x, y) = e
− 1

x2+y2 , x2+y2 > 0; f(0, 0) = 0.

1. Montrer que f est continue sur E = R2.
Preuve. Il a été démontré dans le cours d’analyse, que pour un polynôme arbitraire P (t)
on a

lim
t→+∞

P (t)
et

= 0. (0.2)

Notre fonction f est la composée exp ◦g, où g(x, y) = − 1
x2+y2 . La fonction g est continue

sur R2 \ {(0, 0)}, alors donc f est continue sur R2 \ {(0, 0)}. Il reste un seul point (0, 0)
où il faut vérifier la continuité de f . Mais grâce à (0.2) nous avons

f(0, 0) = lim
(x,y)→(0,0)

1

e
1

x2+y2
= lim

u→+0

1
e

1
u

= lim
t→+∞

1
et

= 0.

La fonction f est donc continue sur R2 tout entier.
2. Est-elle différentiable dans E = R2 ?
Preuve. Notre fonction f est dérivable sur R2 \ {(0, 0)} comme la composée de deux
foctions dérivables sur R2 \ {(0, 0)}.
Il reste un seul point (0, 0) où il faut vérifier la différentiabilité de f . On peut calculer
les dérivées partielles ∂xf, ∂yf aux points (x, y) 6= 0 :

∂xf = ∂x

(
e
− 1

x2+y2
)

=
2x

(x2+y2)2
e
− 1

x2+y2 , ∂yf = ∂y

(
e
− 1

x2+y2
)

=
2y

(x2+y2)2
e
− 1

x2+y2 .

Grâce à (0.2) on a

lim
(x,y)→(0,0)

∂xf = lim
(x,y)→(0,0)

2x

(x2+y2)2
e
− 1

x2+y2 = lim
(x,y)→(0,0)

2x· lim
u→0

1
u2

e−
1
u = 0· lim

t→+∞
t2

et
= 0.

De la même façon on obtient lim(x,y)→(0,0) ∂yf = 0. Donc la limite de la matrice jaco-
bienne Df (voir la page 13 du cours) (de la matrice de l’application linéaire df(x,y)) il
existe bien :

lim
(x,y)→(0,0)

Df((x, y)) = lim
(x,y)→(0,0)

(∂xf, ∂yf) = (0, 0).

Nous pouvons appliquer le résultat de l’exo précédent : dans notre cas il existe

lim
(x,y)→(0,0)

df(x,y)

f est donc dérivable à’l origine (0, 0) et finalement f est dérivable sur R2 tout entier.
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Exercice 5
Soient E et F des espaces normés, U un ouvert de E, f : U → F une application
différentiable dans U . On suppose que df est continue au point x0. Montrer que,
pour tout ε > 0, il existe η > 0 tel que 0 < ‖h‖ ≤ η et 0 < ‖k‖ ≤ η entrâınent

‖f(x0 + h)− f(x0 + k)− dfx0(h− k)‖ ≤ ε‖h− k‖.

On pourra utiliser la fonction x 7→ f(x0+x)−dfx0(x) définie sur un voisinage ouvert
V de 0.
Preuve. Soit r > 0 tel que x0+B0(0, r) ⊂ U . On considère la fonction g(x) = f(x0+x)−dfx0(x)
définie sur Bo(0, r). g est différentiable sur B0(0, r) car f est différentiable et dfx0 est linéaire.
De plus

dgx = df(x0+x) − dfx0 .

df est continue en x0, donc ∀ε > 0,∃δ > 0 tel que ‖x‖E ≤ δ on a

‖df(x0+x) − dfx0‖L(E,F ) ≤ ε.

C.-à.-d.
‖dgx‖ = ‖df(x0+x) − dfx0‖L(E,F ) ≤ ε.

Appliquons le Théorème des accroissements finis à g sur Bo(0, δ) : ∀h, k ∈ Bo(0, δ) qui est
connexe

‖f(x0 + h)− f(x0 + k)− dfx0(h− k)‖ = ‖g(h)− g(k)‖F ≤ ε‖h− k‖E .

Exercice 6 Soient R2 avec les coordonées x, y, U ⊂ R2 un ouvert connèxe et
f : U → R une fonction dont les dérivées partielles ∂xf , ∂yf sont bornées dans U .
Montrer que f est uniformément continue sur U .
Preuve. Lorsque les dérivées partielles ∂xf , ∂yf sont bornées dans U il existe K > 0 tel
que

|∂xf(a)| ≤ K, |∂yf(a)| ≤ K, ∀a ∈ U.

On a donc

‖dfa‖L(R2,R) = sup
h=(h1,h2)∈R2,‖h‖=1

‖dfa(h)‖R = sup
h=(h1,h2)∈R2,‖h‖=1

‖∂xf(a)h1 + ∂yf(a)h2‖R .

Mais
‖∂xf(a)h1 + ∂yf(a)h2‖R = |∂xf(a)h1 + ∂yf(a)h2| ≤ K (|h1|+ |h2|) .

Pour la simplicité on va considérer la norme ‖h|| = |h1| + |h2| sur R2. (On peut obtenir le
cas général en utilisant le théorème d’equivalence des normes sur Rn). Des lors on a montré
que

‖dfa‖L(R2,R) ≤ K.

Maintenant nous pouvons appliquer le Théorème 7 (voir la page 16) du cours. Alors on a

‖f(a)− f(b)‖R = |f(a)− f(b)| ≤ K‖a− b‖R2

quel que soit a, b ∈ U . Donc ∀ε > 0, ∃δ = ε
K > 0 (le cas K = 0 est évident) tel que si

‖a− b‖ ≤ δ on a ‖f(a)−f(b)‖R ≤ ε. Autrement dit la fonction f est uniformément continue
sur U .
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