T.D.Série 3 (Correction) :

Opérateurs différentiels classiques. Théoreme des accroissements
finis et applications

Exercice 1 Soit ¢ : R\ {0} — R une fonction deux fois différentiable.

1. Vérifier que la fonction f : R3\ {(0,0,0)} — R, f(z,y,2) = o(\/22+y2+22) est
une fonction contintiment différentiable.

Preuve.

On remarque d’abord que la fonction f est la fonction composée f = por, ot

r:RP =R, x=(1,9,2) €R3 x> 1r(x)=/22+y2 + 22 € R;

p:R—=R, yeV=R\{0}CR, yeR, y~— o(y).

La fonction f: U =R?\ {(0,0,0)} — R est continfiment différentiable en chaque point
x € U =R3\ {(0,0,0)} puisque ses dérivées partielles 9, f,d, f, . f sont continues sur
U (selon le théoreme 2 du cours, voir la p. 13). Pour démontrer que 0, f,d, f, 0. f sont
continues sur U il faut les calculer : la fonction g(x) = Va2 + const, const > 0, d’une
seule variable z est une fonction dérivable sur R\ {0} pour la composée de deux fonctions
dérivables d’une variable on a

3—1 '(r)x ()
O (x) = 0sp(r) = ¢/ (1) = ¢/ ()20 (P +2) T = i = 200,

De la méme facon on obtient 9, f = @,@f = %. Les fonctions ¢'(r)z, ¢'(r)y,
¢'(r)z, v sont continues sur R3 (©'(r) est continue comme composée ¢’ o r de deux

fonctions continues) r(z,y,2) # 0 sur R3\ {(0,0,0)}. Ca entraine que les quotients
= (Tﬁ, RGN (T)Z sont continus sur R?\ {(0,0,0)}.

r

2. Montrer que pour tout (z,y,z) # (0,0,0)

div(gradf) = 0, (0.) +0, (9, ) +0. (0.f) = &(r) & 2/(r), v = /a4 47+ 22

Preuve. On a deja calculé les dérivées partielles :
"(r)z (r "(r)z
o = EDT g HOW g g P

On va continuer le calcul :

(a f) — 8z ‘P/(T')l' — Oz (@' (1) 2)r—’ (1) 205 (1) _ @'/(T)am(r)zr+cp'(r)aw(m)r—w’(r)m% _

2 2

N2 ’ r ’ r 2
:v(r7)w +<P(7) 90(:)1 ay(ayf):vgjz)y +¢£)_W(T3)y 7
9. (0.f) = ¢’ (T)z +w '(r) sa/(T')ZQ.

r3

Donc

div(gradf) = 0, (9, £) +0, (9, f) +0. (0.f) = L) 132l el

9 y \Uy r3
2

— @’ (T)T +3¢ (T) 1 (;;)7" — (,0//(7") + %4,0/( )

. 1
3. Calculer div (grad (\/W))

Preuve. On peut utiliser la précédente en considerant ¢(r) = % On a

i p 1 (1 ”+2 1 ’_2+2 N\,
w | gra —ﬂ-ky?—l—zz =\ ~\7) T3 r2)



Exercice 2 On munit R" du produit scalaire habituel (-,-) associé a4 la norme
euclidienne |z|| = /(x,z). Soit U un ouvert de R" et f : U — R une fonction
différentiable. Montrer que Va € U il existe un vecteur unique noté par V,f € R"
tel que (V.f,h) = df,(h),Yh € R". De plus, si (z1,...,2,) sont les coordonnées
canoniques (orthogonales), alors

Vaf = (gradf)(a) = (0z, f(a),. .., 0, f(a)).

Preuve. Il a été démontré dans le cours (voir la page 13) que pour tout a € R™ on a

dfo(h) = dfa (Z hq;el) = hidfale:) =) hi%(a) = hids, f(a).
i=1 i=1 i=1 v i=1

D’autre part la derniére somme est égale au produit scalaire (écrit par rapport aux coor-
données orthogonales (habituelles)) :

Y hiby f(a) = (2, (), -, 0s, (@), h) = (Vaf,h).
i=1

Le vecteur V, f est unique : s’il existe un second vecteur V.f tel que df,(h) = (Vof,h) =
(Vaf,h)ona (Vaf—Vaf,h) =0,Yh € R". Selon les propriétés du produit scalaire euclidien
onaV,f—-—V,f=0.

Exercice 3 Soient F et F' des espaces normés, U un ouvert de F, f : U — F
une fonction continue sur U, différentiable en tout point de U \ {a} et telle que
lim, ., df, existe. Montrer que f est différentiable en a.

Preuve. Notons L = lim,_,, df,, L € L(E, F). Nous allons montrer que f est différentiable
en a et que d, f = L. Etudions pour cela

[f(ath) = f(a) = L(W)|[r
[ira '

Pour € > 0,30 > 0 tel que B°(a,e) C U et

|z —all < 6,2 #a=|dfe — Llcer) <€ (0.1)
(d’apres ’hypothese de la différentiabilité de f sur U \ {a}). Soit alors h € FE t.q.
0 <Al <6

Pour tout ¢ € [0,1] on a ||(a+th) — a||g = t||h||g < . Donc a+th € B°(a,d) C U. On peut
donc définir une application ¢ : [0,1] — F par

g(t) = f(a+th) — f(a) — L(th), ¥t € [0,1].

La fonction g est dérivable sur |0,1[ et V¢ €]0,1[ on a (les applications df,y+p et L sont
linéaires)

g (t) - s =dgi(s) = dfatin(sh) — L(sh) = s (dfartn(h) — L(h)) .
C.-a.-d.

lg" O = lldf @sen) () = L) < Nldf areny = Lllecer[Blle < ellh]l e

d’apres (0.1) puisque ||(a + th) —al] < & Vt €]0, 1].
Apliquons alors le Théoréme des accroissements finis & g sur [0,1] : ||g(1) — g(0)]| < e-||A|.



On a
9(1) = g(0) = fla+h) = f(a) = L(h) = f(a) + f(a) + L(0) = f(a+h) — f(a) = L(h) = 0+0.
On a alors Ve > 0,30 > 0 tel que si 0 < ||h]|g < ¢ alors
If(a+h) = fla) = L(h)|| < e|h].
Donc f est différentiable en a est df, = L.

Exercice 4 Soient E = R? avec les coordonnées z,y et f: E — R et une fonction
définie par
1
fla,y) = =07, 2?4y > 0; £(0,0) =0.

1. Montrer que f est continue sur E = R?.
Preuve. Il a été démontré dans le cours d’analyse, que pour un polyndme arbitraire P(t)
on a

P(t)

t——+o0 et

=0. (0.2)

Notre fonction f est la composée exp og, o g(z,y) = *ﬁ- La fonction g est continue

sur R?\ {(0,0)}, alors donc f est continue sur R? \ {(0,0)}. Il reste un seul point (0, 0)
ou il faut vérifier la continuité de f. Mais grace & (0.2) nous avons

—_
—

1
f(0,0) = lim — = lim — = lim — =0.
(@y)—(0,0) 7757 u—t0en  t—tooe

La fonction f est donc continue sur R? tout entier.

2. Est-elle différentiable dans £ = R??
Preuve. Notre fonction f est dérivable sur R? \ {(0,0)} comme la composée de deux
foctions dérivables sur R? \ {(0,0)}.
Il reste un seul point (0,0) ou il faut vérifier la différentiabilité de f. On peut calculer
les dérivées partielles 0, f, 0, f aux points (z,y) # 0 :

1 2z A A 2y L
8$f = 8x (6 w2+y2) = 7(x2+y2)2€ w2+y2’ ayf = 8y (6 12+y2> = 7(x2+y2)2€ 224y2

Gréce a (0.2) on a

2z 1 1 1 t2

lim O,f= lim ———=¢ =2 = lim 2z-lim —e v =0- lim — =0.
(@.4)—(0,0) / (@) —(0.0) (22+y?)? (@) =(0,0)  u—0u? t—+oo e
De la méme fagon on obtient lim(, ,)_.(0,0) 9yf = 0. Donc la limite de la matrice jaco-
bienne D f (voir la page 13 du cours) (de la matrice de I'application linéaire df(, ) il
existe bien :

Df((x,y)) =  lim (9.f,0yf) = (0,0).

lim
(z,)—(0,0) (z,)—(0,0)

Nous pouvons appliquer le résultat de ’exo précédent : dans notre cas il existe

lim  df,
T I [CX

est donc dérivable &'l origine (0, 0) et finalement f est dérivable sur R? tout entier.
f g ;



Exercice 5

Soient E et F' des espaces normés, U un ouvert de E, f: U — F une application
différentiable dans U. On suppose que df est continue au point zy. Montrer que,
pour tout ¢ > 0, il existe 7 > 0 tel que 0 < ||h]| <7 et 0 < ||k|| < n entrainent

[ f(zo +h) = f(xo + k) — dfu,(h = K)|| < el[h — K.

On pourra utiliser la fonction = — f(z¢+z)—df,,(x) définie sur un voisinage ouvert
V de 0.
Preuve. Soit r > 0 tel que xo+B°(0,r) C U. On considere la fonction g(z) = f(zo+z)—dfs, (z)
définie sur B°(0,7). g est différentiable sur B°(0,) car f est différentiable et df, est linéaire.
De plus

dg. = df(ato+z) - dfmo

df est continue en zg, donc Ve > 0,35 > 0 tel que ||z||g < J on a

df (otz) — dfzollc(mr) <€

C.-a.-d.
ldgall = lldf wota) = dfallc(.r) < e

Appliquons le Théoréme des accroissements finis & g sur B°(0,4) : Vh,k € B°(0,6) qui est
connexe

[ (zo + h) = fzo + k) = dfag(h = k)| = [lg(h) — g(B)|[F < ellh = k| 5.

Exercice 6 Soient R? avec les coordonées z,y, U C R? un ouvert connéxe et
f:U — R une fonction dont les dérivées partielles 0, f, 0, f sont bornées dans U.
Montrer que f est uniformément continue sur U.
Preuve. Lorsque les dérivées partielles 0, f, 0,f sont bornées dans U il existe K > 0 tel
que

|0 f(a)] < K, |0y f(a)] < K, Ya € U.

On a donc
|dfallcrer) = sup [dfa(h)|r = sup 102f (a)h1 + 9y f(a)ha|g -
h=(h1,h2)ER2 ||h||=1 h=(h1,h2)ER2 ||h||=1
Mais

10z f(a)h1 + 0y f(a)hallg = 10 f(a)h1 + 9y f(a)ha| < K (|ha] + [hal) .

Pour la simplicité on va considérer la norme ||h|| = |hi| + |h2| sur RZ. (On peut obtenir le
cas général en utilisant le théoreme d’equivalence des normes sur R™). Des lors on a montré
que

dfallzrer) < K.

Maintenant nous pouvons appliquer le Théoréme 7 (voir la page 16) du cours. Alors on a
1f(a) = f(B)llr = [f(a) = f(b)] < Kja — b|r>

quel que soit a,b € U. Donc Ve > 0, 30 = & > 0 (le cas K = 0 est évident) tel que si
la—b|| <donalf(a)— f(b)|lr <e. Autrement dit la fonction f est uniformément continue
sur U.



