Examen 2023

a. over: 1 can la device la flus haute vor x'

autonome: oru: x' = f(x)

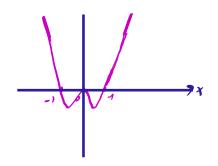
lineau : non car $f(x(t)) = (x+y)(x-y)x^2$

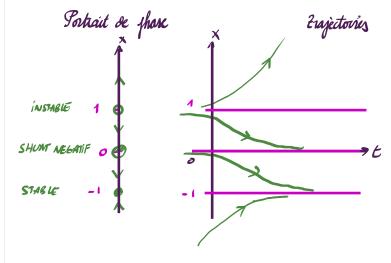
b. Les equilibre x^{+} relifient $x^{+'}=0$ and $f(x^{+})=0$

or f(x*) =0 (=) (x+1)(x-1)x*2=0

(2) x*+1 =0 au x*-1=0 au x =0

(2) x*=-1 on x*=1 on x*=0


On a done 3 equility -1, o et 1


c. Etude de la stabilité des equilits:

METHODE 1:

 $I(x) = \lim_{x \to +\infty} x \cdot x \cdot x^{2}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x \cdot x \cdot x^{2}$ $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x^{4}$

_	ж	- 00	-1 0		,	+ 40
signe de	X+1	-	0 +	4	+	
ngre &	K-/	-	-	- 0	+	
signe &	xz	+	+ 0) +	+	
signe de 9	las	+	o - 0) – 0) <i>†</i>	

Partie 2: $2t^2x'(t) + 6t^2x(t) = t^2$ avec x(t) = 1a. onou: 1 deuxi la fluo haute

autonome non à cours de $2t^3$ au $2t^2$ lineaii oui can elle est de la forme $2t^3$ a, $2t^3x'(t) + 2t^3$ ai $2t^3x'(t) + 2t^3$

6. On remarque la deuxè de t_{+} $2t^{3}$ est la fonction t_{+} $6t^{2}$ Done cette equation peut s'ecicie sous la forme

 $(2t^3x(t))'=t^2$

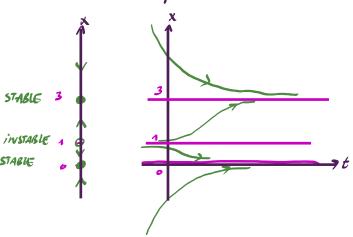
On intégri or chaque côté et on trouve:

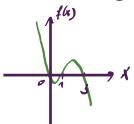
On inligir or chaque côté et on troux:

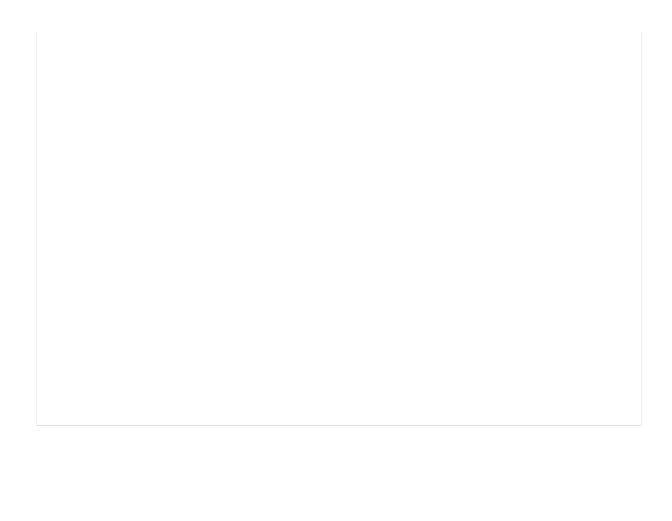
$$2t^{3}\times(t) = \frac{\xi^{3}}{3} + k$$
On divide for $2t^{3}$ on supposent que $t \in J_{0,+} \infty L$ can be considered untial at $\chi(t)=1$
But to an obtaint $\chi(t) = \frac{t^{3}}{3 \cdot 2t^{3}} + \frac{k}{2t^{3}} = \frac{1}{6} + \frac{k}{2t^{3}}$

Deletiminous k comme
$$x(1) = 1$$
 on $a: 1 = \frac{1}{6} + \frac{k}{2 \cdot 1^3} = \frac{1}{6} + \frac{k}{2}$

(=) $\frac{k}{2} = 1 - \frac{1}{6} = \frac{6}{6} - \frac{1}{6} = \frac{5}{6}$ Some $k = \frac{5 \cdot 2}{3 \cdot 2} = \frac{5}{3}$


Conclusion: la solution du poblème est
$$X(t) = \frac{1}{6} + \frac{5}{2.t^3.3} = \frac{1}{6} + \frac{5}{6t^3}$$


$$= \frac{1}{6} \left(\frac{1+\frac{5}{6}}{t^3} \right)$$


$$= \frac{t^5 + 5}{6t^3}$$

Ixuia 2

- 1. La report est la A) can le equilité de cl poblème sont 0,1et3 it le graphe de f "traver chaven de co equilité (aucun exprant pie)
- 2. Portrait de phas :

