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Motivated by nucleation and molecular aggregation in physical, chemical, and biological settings,
we present an extension to a thorough analysis of the stochastic self-assembly of a fixed number
of identical particles in a finite volume. We study the statistics of times required for maximal
clusters to be completed, starting from a pure-monomeric particle configuration. For finite volumes,
we extend previous analytical approaches to the case of arbitrary size-dependent aggregation and
fragmentation kinetic rates. For larger volumes, we develop a scaling framework to study the first
assembly time behavior as a function of the total quantity of particles. We find that the mean
time to first completion of a maximum-sized cluster may have a surprisingly weak dependence
on the total number of particles. We highlight how higher statistics (variance, distribution) of the
first passage time may nevertheless help to infer key parameters, such as the size of the maximum
cluster. Finally, we present a framework to quantify formation of macroscopic sized clusters, which
are (asymptotically) very unlikely and occur as a large deviation phenomenon from the mean-field
limit. We argue that this framework is suitable to describe phase transition phenomena, as inherent
infrequent stochastic processes, in contrast to classical nucleation theory. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4940033]

I. INTRODUCTION

Self-assembly of macromolecules and particles into
clusters is a fundamental process in many physical, chemical,
and biological systems. Although particle nucleation and
assembly have been studied for many decades,1,2 interest
in this field has recently increased due to engineering,
biotechnological, and imaging advances at nanoscale levels.3–5

Applications range from material physics to cell physiology
and virology (for a detailed list of examples, see Ref. 6 and
references therein). Many of these applications involve a fixed
“maximum” cluster size — of tens to hundreds of units —
at which the process is completed or beyond which dynamics
changes.7,8 One example includes the rare and sporadic
self-assembly of misfolded proteins into fibril aggregates at
the origin of several neurodegenerative diseases (Alzheimer,
Parkinson, Prion, etc.).9,10 Developing a stochastic self-
assembly model focusing on formation of a fixed “maximum”
cluster size is thus important for our understanding of a
large class of biological processes, and the quantification of
experimental data11–15 variability in order to find strategies
to optimize processes for industrial applications or to prevent
onsets in the case of neurodegenerative diseases.

Theoretical models for self-assembly have typically
described mean-field concentrations of clusters of all possible
sizes using the well-studied mass-action, Becker-Döring (BD)
equations.16–19 While master equations for the fully stochastic
nucleation and growth problem have been derived, and
initial analyses and simulations have been performed20–24 (we
compare our results with previous ones in Section V), there

has been relatively less scientific contribution to the stochastic
self-assembly problem. On the other hand, it has been recently
shown that in finite systems, where the maximum cluster size
is capped, results from mass-action equations are inaccurate
and a discrete stochastic treatment is then necessary.6,25

We consider here the BD model defined by the following
biochemical reactions:

C1 + Ck

pk


qk+1

Ck+1, k ≥ 1, (1)

where Ck denotes the number of clusters of size k. Thus, the
size of each cluster can increase or decrease by one, with
an attachment or detachment of a single free particle (called
monomer here). The mean-field (BD) model is described in
Sec. II. In the stochastic Becker-Döring (SBD) version, the
state-space of the system is discrete and finite (see Fig. 1),
given by all possible combinations of cluster sizes that have a
given fixed total number of particles (defined by M , given by
the initial condition),

E B
(Ck)k≥1 ⊂ N :


k≥1

kCk = M

. (2)

The key modeling assumption of the SBD model is the
Markovian hypothesis.36 Indeed, clusters (Ck(t))k≥1 evolve in
continuous time by discrete jumps according to a Markovian
description of reactions (1), with Ck(t) ∈ E for all t ≥ 0. In
previous examination of the first assembly time (FAT) in
this model,6 authors surprisingly found that a striking finite-
size effect could arise in the limit of slow self-assembly.
In particular, a faster detachment rate could lead to a
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FIG. 1. Homogeneous self-assembly and growth in a closed unit volume initiated with M = 30 free monomers. At a specific intermediate time 0 < t < t∗ in
this depicted realization, there are six free monomers, four dimers, four trimers, and one cluster of size four. For each realization of this process, there will be a
specific time t∗ at which a maximum cluster of size N = 6 in this example is first formed (blue cluster). This time t∗ is a realization of the first assembly time
(FAT, see definition in (7)).

shorter assembly time. This unexpected effect was proven
to occur when the finite-size system occupies some specific
configurations named “traps,” where no single particle is free
and the maximal-size cluster completion can only be achieved
through the detachment of single particles from a cluster.
Discrepancies between mean-field mass-action approach and
stochastic model were more pronounced in the strong binding
limit.

Objectives of this paper. In this paper, we have the
following:

1. We present a generalization of earlier results6 on the
statistics of the first assembly times towards completion of
a full cluster, for arbitrary aggregation and fragmentation
rates. Indeed, constant-size reaction rates were the main
limitation of previous studies.6 And it is known that, in
general, both of physical and biological modeling require
size-dependent attachment and detachment rates.13,26

2. Moreover, we focus here on how assembly times depend on
the total initial number of monomers M , an aspect which
was not treated in earlier studies.6 We will show how
statistics of the first assembly time as a function of the total
number of monomers M may shed light on the biophysical
properties of the newly formed critical aggregates.

3. We highlight discrepancies between the mean-field mass-
action approach and our stochastic model. Even in the limit
M → ∞, we show that our SBD model can display a large
variability in the first assembly times, with a non-vanishing
normalized variance. Thus, this work gives a suitable
theoretical framework to explain experimental variability
in the in vitro self-assembly of misfolded proteins which
are typically performed14 with a large number of proteins,
in the order of 1010–1012 molecules.

Our work is organized as follows. In Sec. II, we review
Becker-Döring mass-action equations for self-assembly and
introduce our full stochastic problem. We derive stochastic
equations for time-dependent cluster numbers and introduce
assembly times as first passage time problems. In Section III,
we explore two simplified models for which the first assembly
time can be solved analytically and derive asymptotic
expressions for the first assembly time in both large number
of monomer limit and large cluster size limit. Results from

kinetic Monte Carlo (or stochastic simulations algorithm)
simulations are presented in Section IV and compared with
our analytical estimates. Finally, we compare our results to
the literature and discuss possible implications of our results
and propose further extensions in Sec. V.

II. STOCHASTIC BECKER-DÖRING MODEL,
FIRST ASSEMBLY TIMES DEFINITIONS

The classic deterministic mass-action description for
spontaneous, homogeneous self-assembly is the BD model,1

where concentrations ck(t) of clusters of size k obey an infinite
(or truncated up to k = N) system of ordinary differential
equations, given, for all t ≥ 0, by




d
dt

c1(t) = −2 j1(t) −

k≥2

jk(t),
d
dt

ck(t) = jk−1(t) − jk(t), k ≥ 2,

(3)

with

jk(t) = pkc1(t)ck(t) − qk+1ck+1(t), k ≥ 1, (4)

and initial condition c1(0) = M and ck(0) = 0 for all k ≥ 2.
The rates pk and qk are, respectively, monomer attachment and
detachment rates to and from a cluster of size k. These rates are
limited to sub-linear function of k, with bounded increments,
in order to fulfill the standard well-posedness criteria.27,28 It
has been previously shown that such equations provide a poor
approximation of the expected number of clusters when the
total mass M and the maximum cluster size N are comparable
in magnitude.25 Furthermore, such representations do not
capture the randomness of the binding/unbinding events and
cannot describe heterogeneity of cluster size distributions and
of time-dependent properties such as first assembly times. A
stochastic treatment is thus necessary and is the subject of the
remainder of this paper.

Using a Markovian approach, we have previously derived6

a forward master equation to describe the probability that the
system is in any given admissible configuration at times t ≥ 0.
An equivalent formulation of this model is given by stochastic
equations, driven by Poisson processes. This formulation is the
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natural one for performing numerical simulations of sample
paths and is more efficient for computing first assembly
times than the master equation formulation. Moreover, this
formulation leads to a natural comparison with deterministic
systems when the total mass M is large. The equations are
built in the following way. For each reaction (attachment,
detachment of a monomer) involving a cluster of size k, we
associate a counting process, R+

k
(t) and R+

k
(t), that counts

the number of occurrences of that reaction between times 0
and t. The Markovian hypothesis implies that each counting
process can be formulated as a random time-change of a
standard (with a unit rate) Poisson process. When a reaction
occurs, the number of each species is updated according to the
stoichiometry of the reaction. For instance, if the aggregation
reaction of two free particles (k = 1) occurs at time t, the
number C1(t) is decreased by 2 and the number C2(t) is
increased by 1. Given the quantity of free particles C1(t) = C1
at time t, the next increment of R+1 will occur after a random
time given by an exponential law of parameter p1

V
C1(C1 − 1),

where V denotes the volume of the system, and p1 the kinetic
reaction rate constant. Thanks to the homogeneity property of
the exponential law, one can represent the counting process
R+1 as

R+1 (t) = Y+1
(  t

0

p1

V
C1(s)(C1(s) − 1)ds

)
,

where Y+1 is a unit rate Poisson process. All reactions in the
system proceed similarly and independently of each other.
Denoting by Y+

k
(respectively, Y−

k
), the standard Poisson

processes associated to the forward, aggregation (respectively,
backward, fragmentation) reaction of clusters of size k, SBD
equations for time evolution of the number of cluster of size
k, Ck(t), starting from a pure monomeric initial condition, are
given for t ≥ 0 by




C1(t) = M − 2J1(t) −

k≥2

Jk(t),

Ck(t) = Jk−1(t) − Jk(t), k ≥ 2,
(5)

with

Jk(t) = Y+k
(  t

0

pk
V

C1(s)(Ck(s) − δ1k)ds
)

−Y−k+1

(  t

0
qk+1Ck+1(s)ds

)
, k ≥ 1, (6)

where δ1k = 1 if k = 1 and δ1k = 0 if k > 1. Analogy between
Eqs. (5) and (3) is clear. The number of clusters of size k ≥ 2
evolves according to the differences between two (stochastic)
cumulative counts Jk−1 and Jk.

What we call FAT for stochastic discrete Becker-Döring
equations is defined as a first passage time problem29

TN,M
1,0 B inf{t ≥ 0 : CN(t) = 1 | Ck(0) = Mδ1k}. (7)

Hence, FAT is the first time to obtain a cluster of size N ,
starting with an M single particle initial state (see Fig. 1, for
example). To link it with the macroscopic nucleation time
definition, we also consider the generalized first assembly
time (GFAT) problem

TN,M
ρ,h

B inf{t ≥ 0 : CN(t) ≥ ρMh | Ck(0) = Mδ1k}, (8)

for a given positive constant ρ and 0 ≤ h ≤ 1. Superscripts
M,N in Eqs. (7) and (8) and subscripts ρ,h in Eq. (8) are
the key parameters of the first assembly times and are thus
written explicitly. The first assembly times also depend on the
reactions rates pk,qk. This will be mentioned further below.
Subscripts 1 and 0 of FAT in Eq. (7) are consistent with ρ = 1
and h = 0 of GFAT in Eq. (8). For instance, the specific time
t∗ in Fig. 1 represents a particular realization of the random
variable T6,30

1,0 .
Here, we want to analyze how the statistics (mean,

variance, distribution) of TN,M
ρ,h

depend on the total number
of monomers M . We are interested in characterizing the
asymptotic behavior of GFAT TN,M

ρ,h
, for M ≫ 1: convergence,

and speed of convergence, to 0, a positive value or infinity. A
question may arise then here. Is the asymptotic limit random
or deterministic? As M → ∞, the maximal cluster size N is
allowed to increase with M or stay constant, with different
expected results. Two distinct cases are then considered: finite
(small) maximal cluster size N and large maximal cluster size
N ≫ 1. The latter obviously requires that M ≥ N . We see
below that we need to specify more precisely the relationship
between N and M . Influence of the other parameters ρ,h,pk,qk
will also be highlighted.

One way of computing the distribution of first assembly
times is to consider the Backward Kolmogorov equation
(BKE) describing evolution of configuration probabilities as
a function of local changes in initial configuration, as done
previously.6 It has the advantage to yield exact results for
the full distribution of FAT, but it is strictly limited by the
number of reactions, which grows exponentially with M . In
this paper, we rely on exact calculations of simplified reduced
models, limit theorems from Eq. (5) for large M and N , and
extensive numerical simulations of these equations. We use
also asymptotic approaches, when M → ∞, for fixed N , and
when both M,N → ∞. The total number of monomers M can
be expressed as the product of an initial concentration c0 and
volume V ,

M = c0V. (9)

We distinguish two situations: large monomer number limit
M → ∞ can correspond either to a large initial concentration
c0 → ∞ in a fixed volume or to a large volume V → ∞ with
a fixed concentration c0. As aggregation reactions naturally
depend on the volume of system,30 the two situations (large
concentration or large volume) will yield distinct results.
Experimentally, they also correspond to different protocols.

III. RESULTS AND ANALYSIS

Although state-space (2) of our SBD model (5) and (6)
is finite, the first passage problem defined by Eq. (8) is, in
general, a challenging problem. Two of the reasons for this
difficulty rely on intrinsic non-linearity of the aggregation
process, and the (very large) size of state-space (2). There
are two distinct simplifications allowing our problem to be
analytically tractable. Let us develop them in Subsections III A
and III B. In Subsection III A, we consider a linear version
of Eq. (5), and in Subsection III B we present a state-space
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reduction to a one-dimensional space of cardinal N . Then, we
come back to full SBD models (5) and (6) and present
asymptotic results for large initial quantity of particles,
M → ∞, with either large initial concentration c0 → ∞ or
large volume V → ∞. Those results are developed in two
subsections, depending on whether nucleus size is finite
(Subsection III C) or infinite (Subsection III D). Our strategy
is based on a re-scaling procedure of stochastic equation (5).
Numerical illustrations and detailed discussion of our results
are postponed to Section IV.

A. Constant monomer formulation

SBD model defined by Eq. (5) has the constant mass
property 

k≥1

kCk(t) ≡

k≥1

kCk(0) = M, t ≥ 0,

which implies a nonlinear relationship between the size of each
cluster. This contrasts with the original formulation of the BD
model, sometimes used in deterministic contexts,17,27 where
the total mass of the system is not preserved, but the quantity
of free particles is kept constant. We refer to this formulation
as constant monomer stochastic Becker-Döring (CMSBD)
model. We can represent it by the following reactions:




∅
p1
V M (M−1)
−−−−−−−−−⇀↽−−−−−−−−−

q2
C2,

Ck

pk
V M

−−−−⇀↽−−−−
qk+1

Ck+1, i ≥ 2.

(10)

In this formulation (10), C1(t) ≡ M is now a constant
parameter. Note that we expect such model to be close to
the original SBD (for small times, up to the FAT) in the
limit of large number of particles M . The main advantages
of constant monomer formulation are its linearity and the fact
that all clusters are independent from each others. Hence, it
is analytically solvable. Indeed, it is known that for linear
population models,31 the numbers of individuals in each
subclass of a population (starting with no individuals at time
0), namely, here C2(t), . . . ,CN(t) . . ., are independent Poisson
random variables. Moreover, for CMSBD model (10), mean
cluster sizes c2(t), . . . ,cN(t) . . . are solutions of a system of
linear equations, given for all t ≥ 0, by

d
dt

ck(t) = jk−1(t) − jk(t), ∀k ≥ 2, (11)

with




j1(t) = p1

V
M(M − 1) − q2c2(t),

jk(t) = pk
V

Mck(t) − qk+1ck+1(t), ∀k ≥ 2,
(12)

and initial condition ck(0) = 0 for all k ≥ 2. Note that the
last set of Eqs. (11) and (12) is very close to deterministic
Becker-Döring models (3) and (4) taking c1 ≡ M . To calculate
the FAT TN,M

1,0 , we use the survival function

SN,M
1,0 (t)B P�TN,M

1,0 > t
	

= P
�
CN(s) = 0, s ≤ t | Ck(0) = Mδ1k

	
.

Then, using an absorbing boundary condition at k = N
(qN = pN = 0) together with initial condition entails that
CN(t) = 0 for some t ≥ 0 if and only if CN(s) = 0 for all
s ≤ t, so that

SN,M
1,0 (t) = P�CN(t) = 0 | Ck(0) = Mδ1k

	
.

Finally, since CN(t) is Poisson distributed (linear system) with
mean cN(t), we have

SN,M
1,0 (t) = e−cN (t). (13)

Equations (11) and (12) with absorbing boundary at k = N
can be rewritten as a linear system




ċ = Ac + B,
ċN(t) = pN−1McN−1(t), (14)

where c and B are vectors, with c = (c2,c3, . . . ,cn−1)T ,
B = ( p1

V
M(M − 1),0, . . . ,0)T and A is a tridiagonal matrix

with elements




ak,k = −qk+1 −
pk+1

V
M,

ak+1,k =
pk+1

V
M,

ak,k+1 = qk+1.

Study of linear system (14) has been performed both for
the infinite dimensional case32 and for the truncated case.33

See Section 1 of the supplementary material49 for a general
formula of solutions of (14). Asymptotic analysis for small
times of system (14) gives that, for t ≪ 1,

cN(t)≈t≪1
MN

V N−1

N−1
k=1

pk
tN−1

(N − 1)! ,

and Eq. (13) is thus the survival function of a Weibull
distribution, of shape parameter k = N − 1 and scale
parameter λ = V ((N − 1)!/(MN N−1

k=1 pk))1/(N−1). Hence, we
get

⟨TN,M
1,0 ⟩≈M→∞V

Γ(1 + 1/(N − 1))(N−1
k=1 pk

)1/(N−1)
((N − 1)!)1/(N−1)

M1+1/(N−1) . (15)

From Eq. (15), we can distinguish the large concentration limit
from the large volume limit. Recall that we defined M = c0V .
Thus, in the large concentration limit (taking V = 1),

⟨TN,M
1,0 ⟩≈c0→∞

Γ(1 + 1/(N − 1))(N−1
k=1 pk

)1/(N−1)
((N − 1)!)1/(N−1)

(c0)1+1/(N−1) , (16)

while for the large volume limit (taking c0 = 1),

⟨TN,M
1,0 ⟩≈V→∞ Γ(1 + 1/(N − 1))(N−1

k=1 pk
)1/(N−1)

((N − 1)!)1/(N−1)

V 1/(N−1) . (17)

Note that in both cases, Eqs. (16) and (17), the mean
FAT converges to 0, at speeds 1 + 1/(N − 1) and 1/(N − 1),
respectively.

Variance formula for the Weibull distribution yields the
asymptotic coefficient of variation (CV, standard deviation
over the mean)
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cv
TN ,M

1,0
≈M→∞


2(N − 1) Γ(2/(N − 1)

Γ(1/(N − 1))2 − 1. (18)

The coefficient of variation does not vanish in large population,
it is independent of the particular aggregation rate shape and
depends only on the size of the maximal cluster N . It is also
independent of the particular limit, being a large concentration
or a large volume limit.

For the GFAT, a time scale asymptotic on equations
similar to Eq. (14) for mean gives the following expression:

⟨TN,M
ρ,h

⟩≈M→∞V
C(p,N)

M
1

M (1−h)/(N−1) , (19)

where C(p,N) is a constant that depends only on N and
aggregation rates pk, k ≤ N (that can be made explicit if
the full solution of Eq. (14) is known). Those asymptotic
expressions are illustrated in Figure S1 of the supplementary
material49 where a perfect match is observed with numerical
simulations.

B. Single cluster model

Another simplified model that can be analytically solved
for our FAT problem is given by the assumption that only a
single cluster can be formed at a time.6,34 We expect such a
model to be close to the original one when fragmentation
dominates, so that formation of many (large) clusters is
unlikely. In such model, called single-cluster stochastic
Becker-Döring (SCSBD) model, we may represent only the
size of the single cluster, so that our state space is now one
dimensional, being simply

E1 B [1, . . . ,N],
and possible reactions are given by (k denotes the size of the
single cluster)




k = 1
p1
V M (M−1)
−−−−−−−−−⇀↽−−−−−−−−−

q2
k = 2,

k
pk
V (M−k)
−−−−−−−−⇀↽−−−−−−−−

qk+1
k + 1, k ≥ 2.

(20)

In such a scenario, exact solution and classical first passage
theory30 gives (it is a one-dimensional discrete random walk)

⟨TN,M
1,0 ⟩ =

N−1
i=1

i
j=1

i
k= j+1 qki
k= j pk

V i− j+1

Mδ1 j
i

k= j(M − k) . (21)

In addition, general formulas for variance and cumulative
distribution function are available.35 Those theoretical
expressions are illustrated in Figure S2 of the supplementary
material49 where a perfect match is observed with numerical
simulations.

Although exact expressions such as Eq. (21) are valid,
asymptotic expressions are still of interest and will illustrate
the rescaling strategy we use for the full SBD model. Thus, we
consider various different limits, including large fragmentation
rate, large initial number of monomer M , and large maximal
cluster size N .

First, in the unfavorable aggregation limit, i.e., qk =
qk
ε

and ε → 0, the leading order of mean assembly time is

⟨TN,M
1,0 ⟩≈ε→0

1
εN−2

V N−1 N−1
k=2 qkN−1

k=1 pk
N−1

k=0 (M − k) .

Also, one can show that in the asymptotic ε → 0, for
large fragmentation rate, the FAT TN,M

1,0 is an exponential
distribution.6

Then, we consider the limit of large total number of
monomers M . For the large volume scenario, taking c0 = 1,
we have

⟨TN,M
1,0 ⟩≈V→∞

N−1
i=2

i
j=2

i
k= j+1 qki
k= j pk

, (22)

which corresponds to the mean first passage time of a simple
random walk between 2 and N , with rates pk,qk. For large
concentration scenario, the leading order of the mean assembly
time is

⟨TN,M
1,0 ⟩≈c0→∞

1
c0

*
,

N−1
k=2

1
pk(1 − k/M)

+
-
, (23)

and the normalized FAT, MTN,M
1,0 , is asymptotically a sum of

N − 2 exponential variables of parameter pi, 2 ≤ i ≤ N − 1.
Note that as in the linear CMSBD model, for very large
concentration c0, mean FAT is only dependent on the forward
aggregation rates and is roughly inversely proportional to M .

Finally, to illustrate the case of very large nucleus size,
let us consider N as a fraction α < 1 of the total number of
particles, i.e., N = ⌊αM⌋ in Eq. (21). Writing

p(x) =

k≥2

pk1[k/M,(k+1)/M )(x),

the sum in Eq. (23) may be approximated by

⟨TαM,M
1,0 ⟩≈c0→∞

 α

0

1
p(x)(1 − x)dx, (24)

which may be finite or infinite according to the behavior of
p and α. Thus, in the large concentration limit (favorable
aggregation limit), a simple criterion for formation of a very
large cluster in a finite time is that integral (24) has to be finite.
For large N and in the large volume limit, let us introduce
a continuous rescaled size variable x = k/N , and define the
rescaled kinetic rates

p(x) =

k≥2

pk1[k/N,(k+1)/N )(x),

q(x) =

k≥2

qk1[k/N,(k+1)/N )(x).

We have, for N =
√

M , taking c0 = 1 and V → ∞ (see Section
2.2 of the supplementary material49 for detailed calculations),

⟨T
√
M,M

1,0 ⟩ ≈V→∞ V
 1

0

 y

0

e(y2−z2)/2

q(y) .

exp
√

V
 y

z

ln
(

q(x)
p(x)

)
dx


dydz. (25)

In particular, when q(x) > p(x) on an interval of positive
measure on [0,1], last expression (23) implies that the mean
FAT required to reach macroscopic size x = 1 (k = N =

√
M)
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is exponentially large as M → ∞. This case corresponds to
the one studied numerically in earlier study.20 As an example,
suppose that kinetic rates are size-independent with q > p.
Then, Eq. (23) becomes

⟨T
√
M,M

1,0 ⟩≈V→∞ V
q

 1

0

 y

0
e(y

2−z2)/2
(

q
p

)√V (y−z)
dydz.

Those theoretical expressions are illustrated in Figures S3 and
S4 of the supplementary material49. We could have derived the
asymptotic expressions straightforwardly because of explicit
formula (21). This is unfortunately not the case for the full
SBD model. Note however that, for the single-cluster model, a
different approach from the exact formula to derive asymptotic
expressions for FAT is to link one-dimensional discrete
random walk (20) to a continuous size one-dimensional
ordinary or stochastic differential equation, and to use limit
theorems and large deviation theory34 (see Section 2.3 of
the supplementary material49 for a brief introduction). This
scaling approach, and the link with a continuous size model
when N → ∞, will be used on the full SBD model in Sections
III C and III D.

C. Full SBD, large M , finite N

In this section, we investigate the behavior of the SBD
model and its FAT when the total number of particles M goes
to infinity, while size N stays finite. We recall that writing
M = c0V leads to distinguishing two scenarios that yield
distinct results. In the first one, concentration c0 is large. As the
overall aggregation propensities increase with concentration
c0, it is expected that the FAT will decrease to 0 as M → ∞.
The objective is to find a valid asymptotic expression, and its
dependence with respect to other parameters, like the maximal
cluster size N for instance. In the second case, volume
V is large. This scaling is motivated by classical system
size expansion of chemical reaction networks.30 As volume
increases, the total number of particles also increases, so
that overall reaction propensities of aggregation reactions stay
constant. In such a case, one expect to regain the deterministic
first passage time of the classical deterministic BD model.

Before introducing our general rescaling strategy, let us
consider an illustrative example. Consider the deterministic
irreversible aggregation model with first passage time defined
as follows:




dck
dt
= c1(pk−1ck−1 − pkck), k ≥ 2,

c1(t) = m −

k≥2

kci(t),

t∗ = inf{t ≥ 0 : cN(t) = ρm | c1(0) = m}.

Then, we remark that the transformation c̃i(τ) = ci(τ)
m

, τ = t/m
leads to




dc̃k
dτ
= c̃1(pk−1c̃k−1 − pk c̃k), k ≥ 2,

c̃1(τ) = 1 −

k≥2

kc̃k(τ),

τ∗ = inf{τ ≥ 0 : c̃N(τ) = ρ | c̃1(0) = 1}.

The right hand side in formulation of τ∗ is independent of
m (and is finite if ρ is small enough). Hence, if N, ρ,pk are
such that τ∗ < ∞, there exists a constant that depends only on
N, ρ,pi such that

t∗ =
C (N, ρ,pi)

m
.

We now use a similar strategy, but on the SBD model given
by Eqs. (5) and (6). The number of clusters of size k, given
by Ck, is rescaled into

DM
k (t) = Ck(t/Mγ)

M
, (26)

with γ a scaling coefficient to be chosen later. Eq. (26) stands
for the cluster size rescaled in time and in monomer size. From
Eqs. (5) and (6), we obtain, by a simple change of variable,
for any t ≥ 0,




DM
1 (t) = 1 − 2JM

1 (t) −

k≥2

JM
k (t),

DM
k (t) = JM

k−1(t) − JM
k (t), k ≥ 2,

(27)

with

JM
k (t)= 1

M
Y+k

(  t

0
M2−γ pk

V
DM

1 (s)(DM
k (s) − δ1k

M
)ds

)
− 1

M
Y−k+1

(  t

0
M1−γqk+1DM

k+1(s)ds
)
, k ≥ 2. (28)

We recall a standard convergence results for Poisson processes
(a law of large numbers,36 which will be useful in the
following). A standard Poisson process at large times can
be rescaled to obtain a deterministic process, that is,

1
n

Y (nt)→ n→∞ t, (29)

where convergence here means convergence in distribution.
It is clear that the mean value of random variable Y (nt) is
nt. Fundamental result (29) states that fluctuations around
this mean value are negligible compared to n, as n → ∞.
Such result can be generalized36 for the solution of stochastic
differential equations (27) and (28). Having the limiting model
in our hands, we can deduce an approximation for the FAT
and GFAT.

1. Large concentration c0

Here, we set V = 1 and c0 = M → ∞. Using γ = 1 in
Eq. (26), and the standard law of large numbers applied
to Eqs. (27) and (28), can show37 (see Section 3.1 of the
supplementary material49 for details) that the sequence of
stochastic processes (DM

k
(t)) converges, as M → ∞, in a

rigorous way (in trajectory space) to the solution of the
irreversible aggregation deterministic model (BD with qk = 0),
given, for all t ≥ 0, by




d
dt

d1 = −2 j1(t) −

k≥2

jk(t),
d
dt

dk = jk−1(t) − jk(t), for all k ≥ 2,

(30)

with

jk(t) = pkd1dk(t), for all k ≥ 1, (31)
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and initial condition d1(0) = 1 and dk(0) = 0, for all k ≥ 2.
Intuitively, in the rescaled variable DM

k
, aggregation process is

much more favorable compared to fragmentation because the
number of free particles is large. By definition of the GFAT
Eq. (8), with h = 1,

MTN,M
ρ,1 = inf{t ≥ 0 : DM

N (t) ≥ ρ}.
Then, using the convergence of (DM

k
(t)), we obtain the

following asymptotic behavior of the GFAT for h = 1:

lim
M→∞

MTN,M
ρ,1 = inf{t ≥ 0 : dN(t) ≥ ρ}. (32)

The right hand side in formulation of (32) is deterministic,
and may be finite or infinite, according to the respective
value of pk,N and ρ. However, it is independent of M . If
for deterministic models (30) and (31), pk,N and ρ are such
that inf{t ≥ 0 : dN(t) ≥ ρ} < ∞, then, for the GFAT of SBD
models (5) and (6), we have

TN,M
ρ,1 ≈c0=M→∞

C(pk,N, ρ)
M

,

where C(pk,N, ρ) is a constant that depends only on pk,N and
ρ. Thus, TN,M

ρ,1 is asymptotically inversely proportional to M
and deterministic. This result is similar to the CMSBD model
(Eq. (19)).

Limit models (30) and (31) do not capture the FAT and
the GFAT TN,M

ρ,h
for h < 1 (such an event is reached for

time t = 0+). However, as the initial number of monomers is
large, we can derive a simple criterion to know the order of
magnitude of the GFAT and to understand its variability. The
following criterion will be confirmed by numerical simulations
in Section IV.

First, limiting models (30) and (31) show that our SBD
asymptotically behaves as a pure coagulation BD model. Such
models (30) and (31) have been extensively studied,38 where
exact time-dependent solutions for pk = pk are given, and
time asymptotic behaviors are given for power law coefficient
pk = pkλ, 0 ≤ λ ≤ 1. We restrict the following discussion
to the constant rate case, λ = 0, for simplicity (results are
analogous in the power law case). In such case, the stationary
state of the pure coagulation BD model17,38 (30) and (31) is
d∗1 = 0 and

d∗k =
k − 1
ek!

, k ≥ 2. (33)

Although the rescaled threshold ρMh−1 will be reached by
dN (and hence by DM

N ) for any ρ and h < 1 for large enough
M (as d∗N > 0), one can see that for “intermediate” M , we
may have Md∗N ≪ 1, so that the threshold may not be reached
before the free particles have vanished (Md∗1 ≈ 0). In such a
case, it is necessary to take into account the small but crucial
contribution of the aggregate shortening. To this end, let us
consider as a further approximation of Eqs. (27) and (28) the
following deterministic model, given, for all t ≥ 0, by Eq. (30)
and fluxes defined as

jk(t) = pd1(t)dk(t) − 1
M

qdk+1(t), k ≥ 1, (34)

where M is large enough such that 1/M is a small parameter.
We detail in Section 3.2 of the supplementary material49

the successive relevant time scales of deterministic models
(30)-(34) which are also illustrated with Fig. 2 (see also
Figures S7 and S8 of the supplementary material49). In
particular, it is known17 that under the favorable aggregation
limit q/M ≪ p, our deterministic BD model, Eqs. (30)-(34),

FIG. 2. SBD and BD trajectories. For
the SBD, we simulate rescaled equations
(27) and (28), with M = 105.5, V = 1,
and kinetic rates are pk ≡ 1 for all k ≥ 1
and qk ≡ 1 for all k ≥ 2. For the BD
model, we simulate on the left columns
full BD Eqs. (30) and (34) and on the
right columns irreversible BD Eqs. (30)
and (31). The rescaled SBD trajectories
are plotted with filled circles, together
with the corresponding BD trajectories
in plain lines, for the monomer and
i-cluster, i = 2,3,4,5,10,20, according
to the legend. The lower panel corre-
sponds to the same numerical simulation
of the upper panel, with a zoom on the
y-axis to improve the visualization of
the i−cluster for i = 5,10,20. It is im-
mediate to see that full BD Eqs. (30)
and (34) agree perfectly with rescaled
SBD equations (27) and (28) for all
time, while irreversible BD Eqs. (30)
and (31) match only up to a time scale
of order M .
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has a metastable state, reached in a time scale of order
log(M), in which concentrations of each species of size
k ≥ 2 are nearly constant, equal to d∗

k
, the equilibrium state

(Eq. (33)) of the irreversible aggregation BD model, Eqs. (30)
and (31). The concentration dk(t) stays roughly constant for
a time of order log(M), and relax to the steady-state values
of the full BD Eqs. (30)-(34) in a time of order M only.
During the metastable period, monomer concentration is also
nearly constant, given by Ref. 17 (see Section 3.2 of the
supplementary material for detailed calculations and Figure
S10 of the supplementary material49 for illustration),

d∗1 =
q
M

d∗2 +


k≥2d∗
k

p


k≥2d∗
k

=
3
2

q
pM

.

Thus, when looking at the original variable, the cluster number
CN(t) given by the SBD model will reach the metastable value
c∗N = Md∗N in a very short time (log(M)/M). If M is large
enough, the metastable state will be large enough to reach
ρMh. In that case, the GFAT TN,M

ρ,h
is found to behave as linear

CMSBD model (10) with C1 = M (see numerical section). If
M takes intermediate values, such that Md∗N < ρMh, however,
one needs to wait longer for aggregate shortening to produce
more critical clusters. As the initial pure-aggregation phase
is short, we can neglect it and use the metastable values
c∗
k
= Md∗

k
as initial values for a linear CMSBD model (10),

where the monomer number is now equal to C1 ≡ c∗1
given by

c∗1 = Md∗1 =
3
2

q
p
.

The metastable state c∗1 is independent of the initial number
of monomers M and is of order q/p. Thus, the GFAT depends
on M only through the initial condition c∗

k
= Md∗

k
, k ≥ 2,

and is found to be (see numerical results, Section IV A)
almost independent of M over several orders of magnitude
for N ≥ 15. Finally, note that there is always a probability
for the threshold to be reached before the metastable period,

TABLE I. Normalized metastable values d∗
k

for the deterministic BD model
((30)-(34)) in the favorable aggregation case pM ≫ q. In this table, we
compute the numerical values of the normalized metastable values d∗i for
the deterministic BD model ((30)-(34)) with constant kinetic rate pk ≡ p and
qk ≡ q in the favorable case pM ≫ q. Such values represent the level that
each variable reach during the metastable period after the pure-aggregation
period. It is given by the equilibrium value of the irreversible BD model ((30)
and (31)), see Eq. (33). See text in Subsection III C 1.

Size Value Size Value

d∗2 0.1839 d∗10 9.1240 × 10−7

d∗3 0.1226 d∗11 9.2162 × 10−8

d∗4 0.0460 d∗12 8.4481 × 10−9

d∗5 0.0123 d∗13 7.0894 × 10−10

d∗6 0.0026 d∗14 5.4858 × 10−11

d∗7 4.3795 × 10−4 d∗15 3.9385 × 10−12

d∗8 6.3868 × 10−5 d∗20 2.8730 × 10−18

d∗9 8.1102 × 10−6 d∗50 5.9269 × 10−64

which is responsible for the bimodal behavior of TN,M
ρ,h

seen
in numerical results. For values of d∗

k
and a summary of the

different cases, see Tables I and II.

2. Large volume V

We now deal with the case where c0 is set to 1 and
V = M → ∞. We recall that in this case the limit M → ∞ is
to be understood as a volume expansion, and the reaction rates
must be scaled with the volume according to their respective
order. In particular, it is classical30 to assume the first-order
reaction rates to be independent of the volume, and the
second-order reaction rates to be inversely proportional to the
volume. With γ = 0, the re-scaled variable DM

k
(t) = Ck(t)/M

now converges to the BD system given, for all t ≥ 0, by
Eq. (30) and flux definition

jk(t) = pkd1dk(t) − qkdk+1(t), k ≥ 1. (35)

TABLE II. Summary of the First Assembly Time (FAT) and Generalized First Assembly Time (GFAT) findings
in this paper. Analytical and numerical results. In this table, we sum up the different analytical findings on the
FAT, for the full Stochastic Becker-Döring (SBD), Eqs. (5) and (6) and its two simplifications with constant
monomer (CMSBD), Eq. (10) and single cluster (SCSBD), Eq. (20). The first column denotes which model is
considered with which scaling. The second column provides in which asymptotic the results are valid (we recall
that M = c0V ). The third column gives the slope of the log-log dependence of the GFAT with respect to M

(except for the SCSBD and SBD with N =
√
M where exponential large deviation occurs). The last column gives

the full distribution of the FAT (if known). See text for more details.

Model Condition M (log-log) dependence Distribution

CMSBD c0→ ∞ −(1+ (1−h)/(N −1)) Weibull
CMSBD V → ∞ −(1−h)/(N −1) Weibull
SCSBD q→ ∞ −N Exponential
SCSBD c0→ ∞ −1
SCSBD V → ∞ 0 (finite sum)
SCSBD N =

√
M,V → ∞, qk > pk Me

√
M Expo. Large deviation

SBD c0→ ∞ −(1+ (1−h)/(N −1)) Weibull
SBD c0≫ 1,Md∗N ≪ 1 ∼0 Bimodal
SBD V → ∞ −(1−h)/(N −1) Weibull
SBD N =

√
M,c0→ ∞ −1/2

SBD N =
√
M,V → ∞ 1/2

SBD N =
√
M,V → ∞, qk > pk Me

√
M Expo. Large deviation
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As before, using the convergence of (DM
k
(t)), we obtain the

following asymptotic behavior of the GFAT for h = 1:

lim
M→∞

TN,M
ρ,1 = inf{t ≥ 0 : dN(t) ≥ ρ}.

Once again, the latter quantity is deterministic, and may
be finite or infinite, according to the respective value
of qk,pk,N , and ρ. Thus, in this scenario, if for the
deterministic model (Eqs. (30)-(35)), qk,pk,N , and ρ are
such that inf{t ≥ 0 : dN(t) ≥ ρ} < ∞, the GFAT TN,M

ρ,1 is
asymptotically independent of M .

As in the first scenario, for very large M , the GFAT TN,M
ρ,h

with h < 1 behaves asymptotically as the GFAT of linear
CMSBD model (10) with C1 ≡ M = V . Thus,

⟨TN,M
ρ,h

⟩≈M=V→∞C(p,N) 1
M (1−h)/(N−1) , (36)

where C(p,n) is a constant that depends only on N and
pk, k ≤ N .

D. Full SBD, large M , and large N

In this section, we investigate the behavior of the SBD and
its FAT when the size N of the maximal cluster is large, and
scales with the total number of particles M . As in section B,
we will use the natural rescaling variable x = k/N . We
distinguish again two scenarios, which yield distinct results.
In the first one, the volume V is fixed and the concentration
c0 is large. In the second one, the concentration c0 is fixed
and the volume V is large. In both cases, a rescaling of the
solution is found to be solution of a deterministic continuous
size model, namely, the Lifschitz-Slyozov model (LS). The
LS model is a partial differential equation of transport type,
which arises naturally in the study of BD model,40,41 when
cluster sizes change in small steps. Indeed, we have detailed in
a companion paper how to choose a proper scaling and how to
derive the limit equation for that rescaled solution.39 We show
here the consistency of this scaling with the behavior of the
GFAT, which will be confirmed in Section IV by numerical
simulations.

We will look at the case N =
√

M . We define the rescaled
measure on R+,

µM(t,dx) =

k≥2

Ck(t/Mγ)
√

M
δk/
√
M(dx), (37)

and CM
1 (t) = C1(t/Mγ)/M , where δx(·) is the Dirac measure

at x. The GFAT T
√
M,M

ρ,h
involves an increasing maximal

size
√

M , which is rescaled to the macroscopic size x = 1
by the definition of the measure µM in Eq. (37). We also
need to define corresponding macroscopic aggregation and
fragmentation rates, using




pM(x) =

k≥2

pk1[k/√M,(k+1)/√M )(x),

qM(x) =

k≥2

qk1[k/√M,(k+1)/√M )(x),
(38)

where 1I(·) is the characteristic function that is equal to 1 in
set I and 0 outside.

1. N → ∞, large concentration c0

Using γ = 1/2, a fixed volume V = 1, and a rescaled50

nucleation rate p1 =
p1
c0 , we have shown that the measure µM

satisfies

lim
M→∞

µM(t,dx) = f (t, x)dx,

where f is a density, solution of the irreversible LS coagulation
model39 (see Section 4 of the supplementary material49 for
detailed calculations). The LS model is given for all t ≥ 0, by




∂

∂t
f (t, x) + ∂

∂x
(p(x)c1(t) f (t, x)) = 0, ∀x > 0,

c1(t) +
 ∞

0
x f (t, x)dx = 1,

lim
x→0+

(p(x) f (t, x)) = p1c1(t),
(39)

with initial condition c1(0) = 1 and f (0, ·) = 0, and where p(x)
is the limit of the macroscopic coagulation rate pM(x) defined
in Eq. (38). Eq. (39) is a transport partial differential equation
with ingoing characteristics at x = 0+ and is well defined if a
boundary condition at x = 0 is given. We refer to the paper39

for the choice of the boundary condition (that depends on the
scaling used in Eq. (37) and the scaling of the reaction rates).
The large cluster Ck(t) for k =

√
M is thus approximated by

f (√Mt,1), which yields
√

MT
√
M,M

ρ,h
≈M=c0→∞ inf{t ≥ 0 : f (t,1) ≥ ρMh−1/2}. (40)

For any h ≤ 1/2, the right hand side in Eq. (40) is
deterministic, and may be finite or infinite, according to
the macroscopic coagulation rate p and the threshold ρ.

2. N → ∞, Large volume V

Finally, if we consider a fixed concentration c0 = 1 and
large volume V = M → ∞, and a rescaled nucleation rate
p1 =

p1
V

. Then, using γ = −1/2, we have shown in Ref. 39
that the measure µM satisfies

lim
M→∞

µM(t,dx) = f (t, x)dx,

where f is a density, solution of the LS coagulation-
fragmentation model given, for all t ≥ 0, by




∂

∂t
f (t, x) + ∂

∂x
[(p(x)c1(t) − q(x)) f (t, x)] = 0,

c1(t) +
 ∞

0
x f (t, x)dx = 1,

lim
x→0+

(xr f (t, x)) = c1(t),
(41)

with initial condition c1(0) = 1 and f (0, ·) = 0, and where
p(x),q(x) are the limits of the macroscopic rate pM(x),qM(x)
defined in Eq. (38), and r ∈ [0,1] is determined through the
relation p(x)≈x→0xr . Again, such Eq. (41) is well-defined if a
boundary condition at x = 0 is given when the characteristics
are ingoing at x = 0+. The large cluster Ck(t) for k =

√
M is

now approximated by f (t/√M ,1), so that

1
√

M
T
√
M,M

ρ,h
≈M=V→∞ inf{t ≥ 0 : f (t,1) ≥ ρMh−1/2}. (42)
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FIG. 3. First assembly time TN ,M
1,0 for

the original SBD (Section III C 1) as
a function of the total mass M (in
log-log scale) for five different maxi-
mal cluster sizes N ∈ {6,10,15,20,50},
and V = 1. Each color light dot is a
single realization of the FAT. For each
condition, large circles represent the
statistical mean over 1000 samples (a
few condition are sampled only once,
namely, for N = 15,20,50 and large M ,
for which the mean is not shown). Black
dashed-dotted lines are straight lines of
slope −1, color dashed-dotted lines are
straight lines of slope −(1+1/(N −1))
(as in Eq. (15)). And for N = 15,20,50
we plot additionally dashed lines of
slope, respectively, −0.26,−0.15, and
−0.10. The last panel in bottom-right
represents the 5 mean FATs on the same
scale. Kinetic rates are p1= 0.5, pk ≡ 1,
and qk ≡ 100 for all k ≥ 2.

Again, for any h ≤ 1/2, the latter quantity in Eq. (42) is
deterministic, and may be finite or infinite, according to the
macroscopic rates p,q, and ρ.

The results of Subsections III D 1 and III D 2 are
illustrated below in Section IV with the help of numerical
simulations. Note that for particular choice of rates p and
q, one is able to obtain analytically time-dependent solution
of Eqs. (39) and (41) (see Section 4.1 of the supplementary
material49 for detailed calculations).

IV. SIMULATIONS AND ANALYSIS

In this section, we present results derived from
simulations of the SBD model associated to stochastic
equations (5) and (6), for various values of its key parameters
{M,N,pk,qk} and volume V . Specifically, we use an exact
stochastic simulation algorithm (kinetic Monte Carlo, KMC)
to compute first assembly times.42–44 For each set of
{M,N,V,pk,qk}, we sample 103 trajectories (except for few
cases where sampling so many trajectories was out of reach
in terms of computational time) and follow the time evolution
of the clusters until the threshold is reached, at which
point simulation is stopped and the FAT/GFAT recorded.
We compare and contrast our numerical results with the
theoretical findings of Sec. III. The following is divided
into four subsections that correspond to four main results
on the FAT and the GFAT. In all figures from Figs. 3 and
9, we represent each realization of the FAT (respectively,
GFAT) in light dot together with its empirical mean in
large dot. We superpose on top to it the relevant analytical
curves to illustrate the consistency with the theoretical
findings.

A. The first assembly time can be weakly dependent
on the total number of monomer M , and highly
variable even in large population

We begin with the analysis of the FAT as a function of
the total number of monomers M , when maximal cluster size
N and volume V are fixed. For N = 6,10,15, prediction of
the asymptotic behavior of TN,M

1,0 , time needed for a single
maximal cluster to be formed, is verified: the mean FAT
decreases linearly in log-log scale as M increases, with a
slope equal to −(1 + 1/(N − 1)), as in the linear CMSBD
model (Fig. 3, upper panels), see Eq. (15). The CV that
measures variability of the FAT is close to 1 for small M
and close to the predicted value by Eq. (18) (Fig. 4, and
Figure S1 of the supplementary material49 for the CMSBD)
for very large M . This fact is consistent with a transition

FIG. 4. Coefficient of Variation (CV) for the first assembly time TN ,M
1,0 as a

function of the total mass M corresponding to the realizations of Fig. 3. For
N = 6,10, we plot additionally horizontal dashed lines at the value predicted
by the Weibull distribution, see Eq. (18).
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FIG. 5. First assembly time TN ,M
1,0 for

the SBD as a function of the total mass
M (in log-log scale) when the concen-
tration c0= 1 is fixed and M =V (Sec-
tion III C 2) for three different detach-
ment rates q ∈ {0.1,1,10}, and N = 10.
Kinetic rates are p1= 0.5, and pk ≡ 1
and qk ≡ q for all k ≥ 2. Each color
light dot is a single realization of the
FAT. For each condition, large circles
represent the statistical mean over 1000
samples. Black dashed-dotted lines are
straight lines of slope −1, color dashed-
dotted lines are straight lines of slope
−1/(N −1). Finally, the panel in bottom
right represent the Coefficient of Varia-
tion (CV) as a function of the total mass
M corresponding to the realizations of
the first three panels (top and bottom
left).

from an exponential distribution to a Weibull distribution as
M gets large. However, the CV for the FAT for N = 10
is non-monotonic and has a large peak at intermediate
values of M (Fig. 4). The same behavior is suspected for
N = 15 (and N = 20,50) but could not be verified due to
numerical cost. Corresponding to this peak for the cv, one
can observe very clearly for N = 10,15 the bimodal behavior
predicted for large but intermediate M values (Fig. 3, second
and third panels). For instance, for N = 15 and M ranging
from 106 to 1010, the sampled FAT segregates between two
groups separated by several orders of magnitude (one group
below 10−6, one group around 10−2,10−3). The higher values
of the sampled FAT correspond to trajectories that went
through the threshold CN = 1 after the metastable period
described in Sec. III C 1. For N = 20 and N = 50, we could
simulate in a reasonable computation time (several weeks)

only up to M = 1013 and M = 1011, respectively. Below these
values, the metastable states computed in Table I predict that
the threshold will be mostly reached after the metastable
period, which explains the large “plateau” observed for
the FAT up to M13 (respectively, M11): the FAT is nearly
independent of M over a broad range of values (Fig. 3, the
slopes for N = 15,20,50 are, respectively, approximatively
−0.26,−0.15,−0.10). Trajectories of the number of cluster
as a function of time help to visualize the different phases.
We illustrate in Figures S7 and S8 of the supplementary
material,49 stochastic trajectories of the SBD model together
with the favorable aggregation limit of the deterministic BD
model, in order to clearly identify the metastable period.
In Figures S9 and S10 of the supplementary material,49 we
exhibit two trajectories of the stochastic SBD model that
results in two FATs that differ from several logs of order of

FIG. 6. (Left) Generalized first assem-
bly time TN ,M

ρ,h
for the SBD as a func-

tion of the total mass M (in log-log
scale) when the conce ntration c0= 1
is fixed and M =V (Section III C 2),
for h ∈ {0.25,0.5,0.75,1}, and N = 10.
Kinetic rates are p1= 0.5, pk ≡ 1, and
qk ≡ 1 for all k ≥ 2. Each color light dot
is a single realization of the GFAT. For
each condition, large circles represent
the statistical mean over 1000 samples
(a few conditions are sampled only once,
namely, for h = 0.75 and large M , for
which the mean is not shown). Color
dashed-dotted lines are straight lines of
slope −(1−h)/(N −1). (Right) Coeffi-
cient of Variation (CV) as a function of
the total mass M corresponding to the
realizations of the left panel.
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FIG. 7. First assembly time T
√
M,M

1,0
for the original SBD and large max-
imal cluster size of order N =

√
M

as a function of the total mass M
(in log-log scale) when the volume
V = 1 is fixed (Section III D 1) for
three different kinetic rates (pk,qk)
∈ {(1,1);(10,1);(1,10)}. The FAT is
multiplied by

√
M to verify the scaling

in Eq. (40). Finally, the panel in bottom
right represents the Coefficient of Varia-
tion (CV) as a function of the total mass
M corresponding to the realizations of
the first three panels (top and bottom
left).

magnitude, due to the metastable period. We also point out
the accuracy of the approximation by a linear model that has
metastable state for initial condition. Finally, the transition
from an exponential distribution to a Weibull distribution as
M increases, through an intermediate bimodal distribution, is
illustrated on histograms of the FAT over 103 realization in
Figure S11 of the supplementary material.49

Similar results are obtained for the GFAT TN,M
ρ,h

, where
the linear log-dependence with a slope −(1 + (1 − h)/(N − 1))
(see Eq. (19) for the CMSBD model) is found to be perfectly
satisfied for N = 3,5 and h = 0.25,0.5,0.75 and h = 1 (Figure
S5 of the supplementary material,49 upper panels). Bimodal
behavior and nearly flat log-dependence of the GFAT TN,M

ρ,h
as a function of M on a broad range of M values are also
observed for N = 10,20 (Figure S5 of the supplementary
material,49 lower panels). The size of the bimodal region
is found to be increased with increasing h (and N). For
N = 10,20 and h = 1, the mean FAT is increasing to∞ as the
deterministic limit given by Eq. (32) is infinite. The CV is
non-monotonic with respect to M with a peak corresponding
to the bimodal behavior (Figure S6 of the supplementary
material49). We show that the GFAT has a lower variability as
h increases, and vanishes for h = 1 and large M , in agreement
with the deterministic limit in Eq. (32).

B. The first assembly time is non-monotonic
with respect to the detachment rate

We verify in Figures S12-S14 at Ref. 49 the previously
published6 dependence of the FAT on the detachment rate.
We confirm that the bimodal behavior is observed for small
detachment rate, and that the mean FAT (and the cv) is a
non-monotonic function of the detachment rate.

C. The generalized first assembly time may increase
with M for large volume

When the concentration c0 is fixed, and the volume V
increases together with the total number of monomers M (see
Section III C 2), the FAT to reach a maximal cluster of fixed
size N decreases monotonically with M , and asymptotically
with a linear log-dependence with a slope 1/(N − 1) (Fig. 5),
as predicted by Eq. (36). The same observation is valid for the
GFAT TN,M

ρ,h
, for h < 1, with a slope (1 − h)/(N − 1) (Fig. 6).

However, for h = 1, if the threshold ρ is too large, the GFAT
is never reached by the deterministic BD model ((30)-(35)).
Thus, for the finite SBD, the GFAT for h = 1 increases to
∞ as M increases to ∞. For h = 0.75, we also found that
the GFAT is non-monotonic with respect to the total number
of monomers, even though it converges to 0 for (very) large
volume and number of monomers.

D. Exponentially Large FAT for large maximal cluster
size N and phase-transition phenomena

Finally, for large maximal size N , of order
√

M , we
illustrate the validity of the two scalings in Eqs. (40)-(42).
Specifically, in Fig. 7, we see that for M > 106, the FAT is
nearly deterministic and can then be predicted by limit model
Eq. (39). The same threshold is empirically observed in Fig. 8
for the GFAT as well. However, considering p(x) = x and
q(x) = 1, in Fig. 9, we show that exponential large deviation
in the large volume limit may occur if the aggregation is
not favorable compared to the fragmentation, as in SCSBD
model (20) (Figure S4 of the supplementary material49).
Indeed, in such a case, deterministic limit (41) predicts that
the FAT is never reached (is infinite) as the drift of the
transport equation is negative for small (macroscopic) size x.
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FIG. 8. First assembly time T
√
M,M

1,0
(top left) and generalized first assem-

bly time T
√
M,M

ρ,h
(top right) for the

SBD and large maximal cluster size
of order N =

√
M as a function of

the total mass M (in log-log scale)
when the concentration c0= 1 is fixed
and M =V (Section III D 2). Ki-
netics rates are p(x)≡ 5 and q(x)
= x. Both the FAT and the GFAT are
divided by

√
M to verify the scaling in

Eq. (42). Finally, the panels in bottom
left and right represent the Coefficient
of Variation (CV) as a function of the
total mass M corresponding to the real-
izations of the upper panels.

For the finite system, the FAT grows exponentially fast
with M , in agreement with Eq. (23). On the right panels
in Fig. 9, we show few time-dependent trajectories that
are representative of a phase-transition phenomenon, with
a very abrupt change of phase, occurring at a widely variable
time (the CV is near 1). Although the deterministic limit
predicts that the aggregation will not take place (and the

monomer number will not decrease), in the SBD model the
aggregation is always complete (no monomer at the end), but
at very large time values as volume V and initial number
of monomers M increase. The phase-transition is associated
with the emergence of a single cluster that aggregates at the
expense of smaller clusters, giving a stochastic description of
the Ostwald ripening theory.

FIG. 9. (Top left) First assembly time

T
√
M,M

1,0 for the rescaled SBD and large

maximal cluster size of order N =
√
M

as a function of the total mass M
(in log-log scale) when the concentra-
tion c0= 1 is fixed and M =V (Sec-
tion III D 2). Kinetics rates are p(x)
= x and q(x)= 1. (Bottom Left) Coef-
ficient of Variation (CV) as a function
of the total mass M corresponding to
the realizations of the upper left panel.
(Top and bottom right) Time-dependent
trajectories of the rescaled number of
monomers c1(t)=C1(t)/M , for M
= 2000 (top) and M = 5000 (down).
Each color line represents a single re-
alization with the same initial condition
and kinetic parameter.
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V. SUMMARY AND CONCLUSIONS

We have studied the problem of determining the FAT of
a cluster of a pre-determined size N from an initial pool of
M independent monomers characterized by size-dependent
attachment and detachment rates pk and qk, respectively. We
have developed a full stochastic approach, based on the SBD
equations.

Up to our knowledge, the early work20 paves the
way to study fluctuations of the time-dependent cluster
distributions and first passage time in finite system nucleation
models. In particular, authors of this works estimate rates
of individual cluster growth and shrinkage with physics
arguments, they show numerical simulations for a special
case, and heuristically derive a moment closure through
deterministic approximation of the master equation governing
the cluster distribution evolution. They also investigated
reaction rates of the form pk ≈ k2/3 and qk ≈ k2/3e−k

1/3
, for

which a critical cluster size exists, as in the Ostwald ripening
theory. This case has also been considered in the present work
and developed in detail in Sections IV B and IV D (where
we quantified the mean FAT and explained the observed
variability). It is important to note that the authors of this
previous work noticed that the first passage time was subjected
to large fluctuations. Later on, this approach was extended23

by exploring numerical ways to solve the master equation,
and by being focused on discrepancies between the classical
deterministic nucleation rate (expressed as a particular flux
jk∗, see Eq. (4)) and its stochastic analog using moment
equations. Note that if first passage time and nucleation rate
are clearly linked, their precise relationship is not trivial. Also,
we mention that Chapter 8 of Ref. 21 contains useful results
on the equilibrium distribution for general clustering process,
proven with the use of a queueing network theory approach.
Finally, the recent work6 presents in detail the first passage
time TN,M

1,0 behavior for constant kinetic rates pk ≡ p, qk ≡ q,
and finite N,M , as a function of the detachment rate q.

In this study, we started by two simplified models and
were able to find exact results for the FAT statistics for general
values of M , N and pk, qk.

The first simplification was to consider that the number of
monomers stayed constant over time (linear CMSBD model).
The mean FAT was found to be a decreasing function of the
total number of monomers M , with an asymptotic log-linear
dependence with respect to M , with negative slope equal to
−(1 + 1/(N − 1)) (see Eq. (15)). Importantly, the coefficient of
variation of the FAT was found to be asymptotically a positive
value depending only on N (see Eq. (18)). Finally, the full
distribution of the FAT is known for large M and is given by a
Weibull distribution. We generalized our results for the mean
GFAT, which was also found to be a decreasing function of
M , with a log-linear dependence, with negative slope equal to
−(1 + (1 − h)/(N − 1)), for any h ∈ [0,1], and any N .

The second simplification was to consider that only a
single cluster could be formed at a time (SCSBD). Here, an
analytical formula for the mean FAT (and higher moments)
is available, thanks to first passage time theory on one-
dimensional random walk. The mean FAT depends on sums
of products of ratio qk+1/((M − k)pk) (see Eq. (21)). From

this analytical formula, we gave several asymptotic ones that
are important to understand the full SBD model. First, the
mean FAT increases to infinity as (qk) increases to infinity,
with leading order given by 1/(p1M2)N−1

k=2 qk/(pk(M − k)),
for any N . In such a case (for large detachment rate qk),
the full FAT distribution was found to be asymptotically
an exponential distribution. In the opposite asymptotically
favorable aggregation case, M → ∞, for large concentration
and fixed volume, the mean FAT is roughly inversely
proportional to M , and the normalized FAT distribution
given by a sum of N − 2 exponential random variables of
parameter pi, 2 ≤ i ≤ N − 1. Finally, we studied the FAT of
a very large cluster of size N → ∞ for the SCSBD model.
We transformed the discrete sum formula (see Eq. (21))
into continuous integrals, in order to get simple and easily
computed asymptotic formulas. For N = αM , α < 1, in the
limit of large concentration, the required mean time to form
a cluster of size N becomes independent of M and is given
by a simple continuous integral that depends only on the
forward aggregation rate and α (see Eq. (24)). For the large
volume scenario, for fixed concentrations, we found in contrast
that for unfavorable aggregation (qk > pk), the mean time of
formation of a large cluster takes an exponentially large time
as the volume V increases to infinity.

With the analytical results on the two simplified models
in mind, we analyzed the behavior of the FAT for the full
SBD model. Using a rescaling strategy, as the total number
of monomers M increases to infinity, we found asymptotic
expression of the mean FAT and GFAT as a function of a first
passage time associated to deterministic models, namely, the
discrete-size BD model and the continuous-size LS model.
This way we are able to find quickly the order of magnitude of
the FAT (respectively, GFAT) with the help of a single (fast)
numerical simulation of a deterministic model (rather than
by extensive numerical simulation of the full SBD model).
With the help of a careful time scale analysis, and with
extensive numerical simulation, we also pointed out surprising
deviations from the mean field deterministic model. Hence,
in the limit of large concentrations, as expected, the time
to form a macroscopic quantity (a positive fraction ρ of
the total mass M) of clusters of size N is asymptotically
deterministic and linked with a corresponding first passage
time of the deterministic BD model. However, the time to
obtain any “smaller” quantity (ρMh, h < 1) is not well
captured by the deterministic BD model. Indeed, the FAT
TN,M

1,0 and the GFAT TN,M
ρ,h

for h < 1 decays to 0 at a speed
faster than M (given asymptotically by 1/M1+(1−h)/(N−1)) and
has a non-vanishing coefficient of variation as M → ∞. This
was explained by analogy with the simpler linear CMSBD
model. Importantly, for moderately large maximal cluster
size (N ≥ 15), the mean FAT is found to be only weakly
dependent on the total number of monomers M , and so for
several orders of magnitude of intermediate values of M (from
106 to 1013 in our simulations). The coefficient of variation
is much larger than 1 on this parameter region and the full
distribution of the FAT is bimodal. We explained and gave
a practical criterion (given by the comparison of d∗N and
ρMh−1, see Eq. (33)) for this phenomenon to occur by a
careful inspection of the metastable state of the favorable
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aggregation limit for the deterministic BD model. Also, for
the case corresponding to large volume experiments, and
fixed concentrations, we exhibited in numerical simulations
an example where the GFAT is non-monotonic with respect
to the total mass parameter M (yet with vanishing limit),
reflecting the intrinsic non-linearity of the full SBD model.

Finally, for large maximal cluster size N → ∞, we found
that an appropriate rescaling of the FAT (and the GFAT)
was asymptotically deterministic if some corresponding first
passage time was finite for the continuous-size transport
equation LS model. In the opposite, we showed that for large
volume and unfavorable aggregation kinetic (q(x) > p(x)),
the mean FAT is exponentially large as M increases to infinity
for the full SBD model, and the coefficient of variability close
to 1 (as in the SCSBD model). We linked this behavior with
phase-transition phenomenon, when the number of monomers
drastically drops to 0 in a very short time, compared to the
FAT. This phase-transition phenomenon occurs as a large
deviation from the macroscopic deterministic model, which
predicts that the number of monomers remains constant (no
aggregation takes place).

This study has generalized previous studies on the first
passage time on the stochastic Becker-Döring model.6,20,23

To our knowledge, this study is the first one to capture
the behavior of the FAT and its generalization for arbitrary
kinetic rates, and to explore systematically its dependence
with respect to the total number of monomers and the size of
the maximal cluster. In particular, our study sheds lights on
the variability of various first passage times that arise even
in the large population limit. Also, taking into account size-
dependent kinetic rate is important in practice, as monomer
binding and unbinding usually depend on the available surface
area of the cluster (for the spherical shape, pk ∼ k2/3).
This study may have several important applications. One
of these is the explanation of the nucleation time observed
in in vitro polymerization assay of misfolded proteins
linked to neurodegenerative diseases.11–15 Typical experiments
performed in this field are able to record the nucleation time
(defined as the time for which the polymerization starts) for
various initial quantity of proteins. Some experiments have
described a very weak dependence with respect to this initial
quantity, where traditional nucleation theory could not explain
this fact. Our stochastic approach points out several new
behaviors that may explain the observations. Furthermore, we
argue that having a model that is able to take into account the
observed variability on the nucleation time will be important
for parameter inference from experimental data (see also the
recent preprint45). Indeed, even though the mean FAT may be
weakly dependent on the maximal cluster size N (consider the
slope of 1 + 1/(N − 1) for large M), having the observation of
the full distribution will facilitate the inference of the maximal
cluster size (the shape parameter of the Weibull distribution
is k = N − 1). Finally, on a more theoretical side, the phase-
transition phenomenon of the SBD model for unfavorable
aggregation and large cluster size seems to be described here
for the first time. This gives a possible different definition of the
nucleation rate, as an inherent infrequent stochastic process, in
contrast to classical nucleation theory. It remains in the future
to link this work with studies on gelation phenomenon, that is,

when a fraction of the mass is concentrated in a giant particle
(N is of order of M). Such studies have been performed
mostly, in general, Smoluchowski coagulation models.37,46,47

A number of generalization of this model could be
considered and will be relevant to tackle new biophysical
problems. One could generalize this study to allow general
coagulation-fragmentation between any two clusters.48 This
extension as well as the treatment of heterogeneous nucleation
and secondary pathways will be considered in a future work.
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