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A MATHEMATICAL MODEL DESCRIBING CELLULAR
DIVISION WITH A PROLIFERATING PHASE DURATION

DEPENDING ON THE MATURITY OF CELLS

MOSTAFA ADIMY & LAURENT PUJO-MENJOUET

Abstract. In this paper, we investigate a linear population model of cells that

are capable of simultaneous proliferation and maturation. We consider the case
when the time required for a cell to divide depends on its maturity. This model

is described by first order partial differential system with a retardation of the

maturation variable and a time delay depending on this maturity. Both delays
are due to cell replication.

1. Introduction

Time-age and time-maturity structured models have been used, for more than
40 years, to study cell replication (see for example Von Foerster in 1959 [26], Trucco
in 1965 [23], [24], in 1966 [25], Oldfield in 1966 [17], Nooney in 1967 [16], Rubinow
in 1968 [21], and Rubinow and Lebowitz in 1975 [22]).

More recently, in 1994 [13] and in 1999 [14], Mackey and Rudnicki considered
a particular time-age-maturity structured model to study the biological process of
hematological cell development in the bone marrow. This model is an extension
of models that have been considered previously both in the absence of maturation
(Mackey in 1978 [11] and in 1979 [12]) or with maturation and only one phase
(Rey and Mackey in 1992 [19] and in 1993 [20]). It consists of a population of
cells capable of both proliferating and maturating. In this model, the period of
life of each cell is divided into a proliferating phase and a resting phase. In the
proliferating phase the cells are committed to undergo cell division a time τ later.
The position of a cell in the proliferating phase is denoted by a (cell age) which
is assumed to range from a = 0 (the point of commitment) to a = τ (the point
of cytokinesis). In addition, each cell is characterized by a maturation variable
m, that is the concentration of what composes a cell such as proteins, or other
elements one can measure experimentally. This maturity can be taken, without
loss of generality, from m = 0 to m = 1. Cells in the proliferating phase can be lost
at a rate γ. At age a = τ a cell divides and gives two daughter cells, which enter
directly the resting phase. If the maturation of the mother cell at age a = τ is m,
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the maturation of a daughter cell at birth is assumed to be g(m), with g(m) ≤ m.
In the resting phase, cells can either return to the proliferating phase at a rate β
and complete the cycle or die at a rate δ before ending the cycle. A cell can remain
in the resting phase indefinitely, and then the cell age ranges from a = 0, when
the cell enters, to a = +∞. The maturation of a cell and the total number of
resting cells determine the capacity of this cell for entering the next proliferating
phase. We assume that cells of both types age with unitary velocity, da/dt = 1,
and mature with a velocity V (m).

In their models, Mackey and Rudnicki [13] and [14], Dyson, Villella-Bressan and
Webb [3], [4], [5], [6], [7], [8] and [9], Adimy and Pujo-Menjouet [1] and [2], and
Pujo-Menjouet and Rudnicki [18], assumed that the point of cytokinesis τ is the
same for all cells. This means that the time required for a cell to divide does
not depend on its maturity, and in particular, the division duration of a cell with
small maturity (also called stem cell) is the same as one with a higher maturity
level. This assumption is not compatible with the biological reality. It is commonly
believed that a stem cell proliferates more rapidly than a more mature cell. To our
knowledge, the hypothesis that τ depends on the maturity variable, has been given
for the first time by Mitchison in 1971 [15], and by John in 1981 [10], but never
been used in recent models.

We will assume in this paper that each cell entering the proliferating phase with
a maturity m divides at age τ(m), depending on this maturity, and we require that
the mapping

m→
∫ 1

m

ds

V (s)
− τ(m) (1.1)

is strictly decreasing on (0, 1]. Note that
∫ 1

m
ds

V (s) represents the time required for
a cell with maturity m to reach the maximal maturity 1. The assumption (1.1) is
satisfied in the particular case when the mapping m 7→ τ(m) is increasing.

Our aim in this paper is to extend and to analyze the model of Mackey and
Rudnicki ([13] and [14]) taking into account the new condition. We obtain two
time-age-maturity structured partial differential equations with two boundary con-
ditions. We integrate these equations with respect to age, and we obtain two
time-maturity structured partial differential equations, in which there is a delay in
the time variable as well as in the maturation variable. The time delay depends on
the maturity. The model takes the form of a delay-differential equation in a Banach
space.

We prove in this model that if the cells have enough time in the proliferating
phase,

τ(m) >
∫ g−1(m)

m

ds

V (s)
, for all m ∈ (0, g(1)] ,

to increase sufficiently their maturity, m > ∆(m), then the uniqueness of solutions
depends, for a finite time, only on cells with small maturity. In particular, if
the initial population of cells is 0 for small maturity then the population becomes
extinct for a finite time. This result is a first step to study the asymptotic behavior
of solutions. We consider here only the linear case. That is a simplification of a
more general nonlinear model. We defer to a further publication the use of our
approach in the nonlinear case (β = β(N)), to prove some results on stability of
solutions.
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2. Equations of the model

Denote the density of resting cells by n(t,m, a) and the density of proliferating
cells by p(t,m, a), the governing equations of this model are

∂n

∂t
+
∂n

∂a
+
∂ (V (m)n)

∂m
= − (δ(m) + β(m))n, (2.1)

∂p

∂t
+
∂p

∂a
+
∂ (V (m)p)

∂m
= −γ(m)p. (2.2)

Throughout this paper, we shall require the following hypothesis concerning the
velocity of maturation V in the two phases.
(H1) V is continuously differentiable on [0, 1], positive on (0, 1] and satisfies V (0) =
0, and ∫ m

0

ds

V (s)
= +∞, for m ∈ (0, 1]. (2.3)

Note that the integral
∫ m2

m1

ds
V (s) , m1 < m2, represents the time required for a cell to

go from maturity m1 to maturity m2. The condition (2.3) describes the fact that
the velocity of cells increases slowly for a small maturity. As example, we have

V (m) ∼
m→0

α1m
p, α1 > 0, p ≥ 1.

(H2) The functions δ, β and γ are continuous and nonnegative on [0, 1].
The total number of cells in the resting stage is given by

N(t,m) =
∫ +∞

0

n(t,m, a)da.

We assume that the quantity N(t,m) determines the reintroduction at a rate β(m)
of cells with maturity m from the resting into the proliferating phase. This hypoth-
esis is given by the following boundary condition

p(t,m, 0) =
∫ +∞

0

β(m)n(t,m, a)da = β(m)N(t,m). (2.4)

In completing the formulation of this problem, we need a second boundary con-
dition which determines the transfer of cells from the point of cytokinesis into the
resting compartment.

We assume that a cell entering the proliferating phase with a maturity x0 ∈ [0, 1]
divides at age τ(x0) > 0, and we require that
(H3) τ is a continuously differentiable and positive function on [0, 1] such that
τ ′(m) + 1

V (m) > 0, for m ∈ (0, 1].
Consider a cell in the proliferating phase at time t, with maturity x ∈ (0, 1], age

a and initial maturity x0, i.e. at age 0. Then, naturally we have

x0 ≤ x and a =
∫ x

x0

ds

V (s)
≤ τ(x0).

If x is the maturity of the cell at the point of cytokinesis, then there exists Θ(x) ∈
(0, x) (the maturity at the point of commitment) such that∫ x

Θ(x)

ds

V (s)
= τ(Θ(x)). (2.5)
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This value Θ(x) is unique because the condition (H3) implies that the function

x0 →
∫ x

x0

ds

V (s)
− τ(x0)

is continuous and strictly decreasing from (0, x] into [−τ(x),+∞). Then we can
define a function Θ : (0, 1]→ (0, 1] such that, for each x ∈ (0, 1], Θ(x) is the solution
of Equation (2.5).

Remark that 0 < Θ(x) < x for x ∈ (0, 1]. This implies, in particular, that

lim
x→0

Θ(x) = 0 and lim
x→0

( ∫ x

Θ(x)

ds

V (s)

)
= τ(0) < +∞.

One can prove that Θ is continuously differentiable on (0, 1] and satisfies

Θ′(x)V (x) =
V (Θ(x))

1 + τ ′(Θ(x))V (Θ(x))
, for x ∈ (0, 1]. (2.6)

This implies, in particular, that

Θ′(x) > 0, for x ∈ (0, 1],

lim
x→0

(
Θ′(x)V (x)

)
= 0.

From a biological point of view, Θ(x) represents the initial maturity of cells in the
proliferating phase (the point of commitment) that divide at maturity x (the point
of cytokinesis). We deduce that the age of a cell with maturity x at the point
of cytokinesis is τ(Θ(x)). So, the total number P of proliferating cells of a given
maturation level x ∈ [0, 1] is given by

P (t, x) =
∫ τ(Θ(x))

0

p(t, x, a)da. (2.7)

At the end of the proliferating phase, a cell with a maturity x divides into two
daughter cells, with maturity g(x). These cells enter directly the resting phase
with age a = 0. We assume that
(H4) g : [0, 1]→ [0, 1] is a continuous function, continuously differentiable on [0, 1)
and such that g(x) ≤ x, for x ∈ [0, 1] and g′(x) > 0, for x ∈ [0, 1).

We also assume, for technical reasons and without loss of generality, that

lim
x→1

g′(x) = +∞.

We put g−1(m) = 1, form > g(1). This implies that the function g−1 : [0, 1]→ [0, 1]
is continuously differentiable and satisfies

(g−1)′(m) = 0, for m > g(1).

Note that the maturity m of the daughter cells just after division is smaller than
g(1). Then, we can assume that

n(t,m, 0) = 0, for m > g(1). (2.8)

The maturity of the mother cell at the point of cytokinesis was x = g−1(m), its age
was τ(Θ(g−1(m))) and its maturity at the point of commitment was Θ(g−1(m)).
We set,

∆(m) = Θ
(
g−1(m)

)
for m ∈ [0, 1]. (2.9)

Then, we can give the second boundary condition

n(t,m, 0) = 2(g−1)′(m)p
(
t, g−1(m), τ(∆(m))

)
for m ∈ [0, 1], (2.10)
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which includes also the condition (2.8). The explanation of the multiplicative term
2(g−1)′(m) in the condition (2.10) is the following. The factor 2 accounts for the
division of each cell at mitosis (doubling of the cell). The term (g−1)′(m) describes
the fact that the two new born cells with maturity on an interval (m,m+dm) come
from a mother cell with maturity on the interval

(
g−1(m), g−1(m) + (g−1)′(m)dm

)
.

In fact, the boundary condition (2.10) can be reformulated, by considering the total
population of new born cells, as follows∫ 1

0

n(t,m, 0)dm = 2
∫ 1

0

p (t,m, τ(Θ(m))) dm.

From a biological point of view, ∆ gives the link between the maturity of a new
born cell and the maturity of its mother at the point of commitment. This function
∆ : [0, 1] → [0, 1] is continuous, continuously differentiable on (0, 1] and satisfies
the following properties:

∆(0) = 0,

Θ(m) ≤ ∆(m) and ∆′(m) > 0, for m ∈ (0, g(1)),

∆(m) = Θ(1), for m ∈ [g(1), 1].

Now, we specify initial conditions:
p(0,m, a) = Γ(m,a), for (m,a) ∈ [0, 1]× [0, τ ],

n(0,m, a) = µ(m,a), for (m,a) ∈ [0, 1]× [0,+∞),
(2.11)

where τ := maxx∈[0,1] τ(x), Γ and µ are assumed to be continuous and the function

m 7→
∫ +∞

0

µ(m,a)da

is continuous on [0, 1], (in particular, lima→+∞ µ(m,a) = 0, for m ∈ [0, 1]).

3. Equations for the total population in the resting phase

Before giving the equations for the total population in the resting phase N(t,m),
we define the characteristic curves s → πs(m) through (0,m), m ∈ [0, 1], given as
follows: s→ πs(m) is the solution of the differential equation

d

ds
u(s) = V (u(s)), s ∈ R,

u(0) = m.
(3.1)

Note that π0(m) = m, for m ∈ [0, 1], and πs (0) = 0, for s ∈ R. The expression
πs(m) appears in our model, only for s ≤ 0. Furthermore, πs(m) is given explicitly,
for s ≤ 0 and m ∈ [0, 1], by

πs(m) = h−1 (h(m)es) , (3.2)

where h : [0, 1]→ [0, 1] is defined as

h(m) =

{
exp

(
−

∫ 1

m
ds

V (s)

)
, if m ∈ (0, 1],

0, if m = 0.
(3.3)

Let m ∈ [0, 1] and t ≥ 0. We define

ξ(m, t) := exp
{
−

∫ t

0

(γ(π−s(m)) + V ′(π−s(m))) ds
}
. (3.4)
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It is clear that

ξ(m, t) =
V (π−t(m))
V (m)

exp
{
−

∫ m

π−t(m)

γ(y)
V (y)

dy
}
.

Then we obtain the following result.

Proposition 3.1. Let m ∈ [0, 1] and t ≥ 0. The total population N(t,m) of cells
in the resting phase satisfies the following conditions:

(1) If 0 ≤ t ≤ τ(∆(m)), then
∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = − [δ(m) + β(m)]N(t,m) + F (t,m), (3.5)

with

F (t,m) = 2(g−1)′(m)ξ(g−1(m), t)Γ
(
π−t

(
g−1(m)

)
, τ(∆(m))− t

)
. (3.6)

(2) If τ(∆(m)) ≤ t, then
∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m))

= − [δ(m) + β(m)]N(t,m) +K(m)N (t− τ(∆(m)),∆(m)) ,
(3.7)

with

K(m) = 2(g−1)′(m)ξ
(
g−1(m), τ(∆(m))

)
β (∆(m)) . (3.8)

Proof. Equation (2.2) can be solved using the method of characteristics. First, we
obtain the following representation of solutions of (2.2),

p(t,m, a) =

{
ξ(m, t)p(0, π−t(m), a− t), for 0 ≤ t < a,

ξ(m,a)p(t− a, π−a(m), 0), for a ≤ t.
(3.9)

The initial condition (2.11) and the boundary condition (2.4) give

p(t,m, a) =

{
ξ(m, t)Γ(π−t(m), a− t), for 0 ≤ t < a,

ξ(m,a)β(π−a(m))N(t− a, π−a(m)), for a ≤ t .
(3.10)

By integrating (2.1) with respect to the age between 0 and +∞, it follows that
∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) = − [δ(m) + β(m)]N(t,m) + n(t,m, 0).

Because of the second boundary condition (2.10), we obtain
∂

∂t
N(t,m) +

∂

∂m
(V (m)N(t,m)) =− [δ(m) + β(m)]N(t,m)

+ 2(g−1)′(m)p(t, g−1(m), τ(∆(m))).

Furthermore, (3.10) implies

p(t, g−1(m), τ(∆(m)))

=


ξ(g−1(m), t)Γ

(
π−t

(
g−1(m)

)
, τ(∆(m))− t

)
, for 0 ≤ t < τ(∆(m)),

ξ(g−1(m), τ(∆(m)))β
(
π−τ(∆(m))

(
g−1(m)

))
×N

(
t− τ(∆(m)), π−τ(∆(m))

(
g−1(m)

))
, for τ(∆(m)) ≤ t .

(3.11)

Set x = π−τ(∆(m))

(
g−1(m)

)
and remark that

h(x)
h(g−1(m))

= e−τ(Θ(g−1(m))).
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Then ∫ g−1(m)

x

ds

V (s)
= τ(Θ(g−1(m))).

According to the definition of Θ, we deduce that

x = Θ(g−1(m)) = ∆(m).

Then, the equations (3.5) and (3.7) follow immediately from Equation (3.11). �

We remark that the solutions of System (3.5)-(3.7) are independent of the pro-
liferating cells, and it is easy to prove (by steps) the existence, uniqueness and
regularity of these solutions. We focus our study on Equation (3.7) for t ≥ τ ,
with an initial condition ϕ, which is a solution of the system (3.5)-(3.7) on the
set [0, τ ] × [0, 1]. We assume that this function ϕ is continuous (ϕ ∈ C([0, τ ], X),
with X = C[0, 1]). We shall look for integrated solutions of Problem (3.7), for
t ≥ τ , which are continuous functions on t with values in X. Therefore, we rewrite
Problem (3.7) as the following abstract delay differential equation

d

dt
u(t) = Au(t) + L(uτ

t ), t ≥ τ ,

u(t) = ϕ(t, .), t ∈ [0, τ ],
(3.12)

where uτ
t : [0, τ ] 7→ X is the function defined for t ≥ τ by uτ

t (s) = u(t + s − τ),
A : D(A) ⊆ C[0, 1]→ C[0, 1] is the unbounded closed linear operator defined by:

D (A) =
{
u ∈ C[0, 1], u differentiable on (0, 1], u′ ∈ C(0, 1],

and lim
m→0

V (m)u′(m) = 0
}
,

and

Au(m) =

{
− (δ(m) + β(m) + V ′(m))u(m)− V (m)u′(m), if m ∈ (0, 1],
− (δ(0) + β(0) + V ′(0))u(0), if m = 0 ,

and L : C([0, τ ], X)→ X is the linear operator defined for all ψ in C([0, τ ], X) by

L(ψ)(m) = K(m)ψ (τ − τ(∆(m)),∆(m)) , m ∈ [0, 1].

We establish now the C0-semigroup generated by the operator A.

Proposition 3.2. Operator A is the infinitesimal generator of the C0-semigroup
(S(t))t≥0 defined on C[0, 1] by

(S(t)y) (m) = ξ(m, t)y (π−t(m)) , for y ∈ C[0, 1] and m ∈ [0, 1],

where

ξ(m, t) =
V (π−t(m))
V (m)

exp
{
−

∫ m

π−t(m)

δ(s) + β(s)
V (s)

ds
}
.

The proof of this proposition is similar to the proof of Proposition 1, in [3];
therefore we omit it.

Let ϕ ∈ C ([0, τ ], X) and t0 ∈ [0, τ ]. The following variation of constants formula
gives an integrated version of (3.12),

u(t) =

{
S(t− t0)ϕ(t0, .) +

∫ t

t0
S(t− s)L(ut0

s )ds, t ≥ t0,

ϕ(t, .), t ∈ [0, t0].
(3.13)
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Then, for m ∈ [0, 1] and t ≥ t0

u(t)(m) = ξ(m, t− t0)ϕ
(
t0, π−(t−t0)(m)

)
+

∫ t

t0

ξ(m, t− s)L(ut0
s )(π−(t−s)(m)) ds.

(3.14)
Consequently, the integrated solutions of Equation (3.7) for m ∈ [0, 1] and t ≥ τ
are given by

N(t,m)

= ξ(m, t− τ)ϕ
(
τ , π−(t−τ)(m)

)
+

∫ t

τ

ξ(m, t− s)K(π−(t−s)(m))N
(
s− τ

(
∆(π−(t−s)(m))

)
,∆(π−(t−s)(m))

)
ds,

(3.15)
and N(t,m) = ϕ(t,m), for (t,m) ∈ [0, τ ]× [0, 1].

Proposition 3.3. There exists a unique continuous solution N of (3.15) with initial
condition ϕ ∈ C([0, τ ]× [0, 1]).

The proof of this proposition follows immediately using standard techniques.
The maturity of the daughter cells just after division is smaller than g(1). Then,

we can first focus our study on the resting phase for the maturity interval [0, g(1)],
which is the source of the cells production. Suppose that
(H5) the mapping

m 7→
∫ g−1(m)

m

ds

V (s)
, m ∈ [0, g(1)],

is bounded on a neighborhood of 0.
This condition means that the time required for a cell to reach the maturity of

its mother is bounded. As a simple mathematical example we have

V (m) ∼
m→0

α1m, α1 > 0.

Then, Condition (H5) is satisfied if and only if g′(0) > 0. We also assume that

(H6) τ(m) >
∫ g−1(m)

m
ds

V (s) , for all m ∈ (0, g(1)].
This assumption means that, in the proliferating phase, cells have enough time to

reach the maturity of their mother. With the conditions (H5) and (H6), we obtain
more than uniqueness. Before reformulating this result, we need the following
lemmas.

Lemma 3.4. Let m ∈ [0, 1]. Then Θ(m) is the unique solution of the equation

x = π−τ(x)(m) and x ≤ m.

Proof. The equation ∫ m

x

ds

V (s)
= τ(x) with x ≤ m

is equivalent to x = π−τ(x)(m) and x ≤ m, which completes the proof. �

Lemma 3.5. If the conditions (H5) and (H6) are satisfied, then for all m ∈
(0, g(1)], we have ∆(m) < m.
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Proof. First, recall that for all m ∈ (0, g(1)],∫ g−1(m)

∆(m)

ds

V (s)
= τ(∆(m)) .

Then, from Condition (H6), it follows that

τ(m)−
∫ 1

m

ds

V (s)
> τ(∆(m))−

∫ 1

∆(m)

ds

V (s)
.

On the other hand, Condition (H3) implies that the mapping

m 7→ τ(m)−
∫ 1

m

ds

V (s)

is continuous and strictly increasing on (0, g(1)]. Then m > ∆(m) which completes
the proof. �

We remark that Lemma 3.5 implies, in particular, that

Θ(1) := ∆(g(1)) < g(1).

Let 0 < b < Θ(1) be fixed. The transmission of the maturity from a generation
n to the generation (n+ 1) can be defined by the sequence

bn+1 =

{
∆−1(bn), if bn ∈ [0,Θ(1)],
g(1), if bn ∈ [Θ(1), g(1)],

(3.16)

and b0 = b. Note that the sequence (bn)n∈N is increasing. The following result is
immediate.

Lemma 3.6. There exists N ∈ N such that bN < Θ(1) ≤ bN+1 ≤ g(1).

We give now our main result, which emphasizes the strong link between the
process of production of cells and the population of stem cells.

Theorem 3.7. Let N(t,m) be a solution of (3.15) with an initial condition ϕ ∈
C ([0, τ ]× [0, 1]). Suppose that there exists 0 < b < Θ(1) such that ϕ(t,m) = 0,
for t ∈ [0, τ ] and m ∈ [0, b]. Then, there exists t ≥ τ such that N(t,m) = 0, for
m ∈ [0, g(1)] and t ≥ t, where t can be chosen to be

t = ln
[
h (g(1))
h (b)

]
+ (N + 2)τ ,

N ∈ N is given by Lemma 3.6, and N(t,m) = 0, for m ∈ [g(1), 1] and
t ≥ t+ τ − ln (h (g(1))) = (N + 3)τ − ln (h (b)).

Proof. First, we prove by induction that N(t,m) = 0, for m ∈ [0, b] and t ≥ 0. We
know that N(t,m) = 0 for (t,m) ∈ [0, τ ]× [0, b]. Let m ∈ [0, b] and t ≥ τ . We have

π−(t−τ)(m) ≤ m ≤ b.

So ϕ
(
τ , π−(t−τ)(m)

)
= 0. We suppose that t ∈ [τ , τ + τ ], with τ := min

x∈[0,1]
τ(x) > 0,

and s ∈ [τ , t]. Then s − τ
(
∆(π−(t−s)(m))

)
∈ [0, τ ]. Because ∆ is an increasing

function and π−(t−s)(m) ≤ m, then

∆(π−(t−s)(m)) ≤ ∆(m).
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From lemma 3.5, we deduce that ∆(π−(t−s)(m)) < m ≤ b. Consequently,

N
(
s− τ

(
∆(π−(t−s)(m))

)
,∆(π−(t−s)(m))

)
= 0.

Then, (3.15) implies that N(t,m) = 0 for m ∈ [0, b] and t ∈ [0, τ + τ ]. By steps on
the intervals [0, τ + nτ ], n = 1, 2, . . . , we conclude that

N(t,m) = 0, for m ∈ [0, b] and t ≥ 0.

Let us now reconsider the sequence (bn)n≥0 given by (3.16), and the sequence
(tn)n∈N defined by

t0 = 0,

tn+1 = tn + ln[h(bn+1)/h(bn)] + τ .
(3.17)

Then,

tn = ln
[h (bn)
h(b)

]
+ nτ. (3.18)

We recall that the sequence (bn)n∈N is increasing. Then, the sequence (tn)n∈N is
also increasing.

We will prove, by induction, the following result
(Hn) N(t,m) = 0 for m ∈ [0, bn] and t ≥ tn.

We remark that for m ∈ (0, g(1)],∫ g−1(m)

m

ds

V (s)
= ln

(h (
g−1(m)

)
h(m)

)
.

First, (H0) is true. Let us suppose that (Hn) is true. Letm ∈ [0, bn+1] and t ≥ tn+1.
Then, because of (3.17),

tn+1 ≥ tn + τ .

Using the variation of constant formula (3.14), the solutions of (3.15) can be refor-
mulated, for t ≥ tn+1, as

N(t,m) = ξ(m, t− tn − τ)N
(
tn + τ , π−(t−tn−τ)(m))

)
+

∫ t

tn+τ

ξ(m, t− s)K(π−(t−s)(m))

×N
(
s− τ(∆(π−(t−s)(m))),∆(π−(t−s)(m))

)
ds.

We remark that π−(t−tn−τ)(m)) = h−1
(
h(m)e−(t−tn−τ)

)
and

e−(t−tn−τ) =
h(bn)
h(bn+1)

e−(t−tn+1) ≤ h(bn)
h(bn+1)

.

Then, we deduce that

π−(t−tn−τ)(m)) ≤ h−1
(
h(m)

h(bn)
h(bn+1)

)
≤ h−1

(
h(bn+1)

h(bn)
h(bn+1)

)
= bn.

Hence, (Hn) implies
N

(
tn + τ , π−(t−tn−τ)(m))

)
= 0.

Furthermore, for tn + τ ≤ s ≤ t, we have

s− τ(∆(π−(t−s)(m))) ≥ (tn + τ)− τ(∆(π−(t−s)(m)) ≥ tn,

and ∆(π−(t−s)(m)) ≤ ∆(m) ≤ ∆(bn+1) = bn. Consequently,

N
(
s− τ(∆(π−(t−s)(m))) , ∆(π−(t−s)(m)

)
= 0.
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Then, we deduce that (Hn+1): N(t,m) = 0 for m ∈ [0, bn+1] and t ≥ tn+1. Thanks
to Lemma 3.6, we have bN < Θ(1) ≤ bN+1 ≤ g(1), which implies

N(t,m) = 0, for m ∈ [0,Θ(1)], t ≥ tN+1 = ln
[h(bn+1)

h(b)
]
+ (N + 1)τ .

Suppose now that m ∈ [Θ(1), g(1)] and t ≥ tN+1 + ln[ h(g(1))
h(bn+1)

] + τ = t. Since
∆−1(g(1)) = Θ(1), using the same technique as in the first part of this proof, we
obtain N(t,m) = 0 for m ∈ [0, g(1)] and t ≥ t. Finally, take m ∈ [g(1), 1] and
t ≥ t+ τ . We can write

N(t,m) = ξ(m, t− t− τ)N
(
t+ τ , π−(t−t−τ)(m))

)
+

∫ t

t+τ

ξ(m, t− s)K(π−(t−s)(m))

×N
(
s− τ(∆(π−(t−s)(m))),∆(π−(t−s)(m))

)
ds.

Let t+ τ ≤ s ≤ t. Then

s− τ(∆(π−(t−s)(m))) ≥
(
t+ τ

)
− τ(∆(π−(t−s)(m)) ≥ t.

Consequently, if π−(t−s)(m) ≤ g(1), then, ∆(π−(t−s)(m)) ≤ g(1). This implies that

N
(
s− τ(∆(π−(t−s)(m))),∆(π−(t−s)(m))

)
= 0.

On the other hand, if π−(t−s)(m) > g(1), then, by the definition of K, we have
K(π−(t−s)(m)) = 0. We conclude that, for m ∈ [g(1), 1] and t ≥ t+ τ ,

N(t,m) = ξ(m, t− t− τ)N
(
t+ τ , π−(t−t−τ)(m))

)
.

We remark that ln(h(m)) < 0, for all m ∈ (0, g(1)]. Then, for m ∈ [g(1), 1] and
t ≥ (N + 3)τ − ln (h(b)) = t+ τ − ln(h(g(1))), we have

π−(t−t−τ)(m) = h−1
(
h(m)e−(t−t−τ)

)
≤ h−1

(
h(m)h(g(1))

)
≤ h−1(h(g(1))) = g(1).

Hence,
N

(
t+ τ , π−(t−t−τ)(m))

)
= 0.

This completes the proof of the theorem. �

This result proves that the production of cells depends strongly on the state of
the population of stem cells. It describes, in particular, the destruction of the cell
population in the resting phase when its starting value is defective. It is believed
that the pathology of aplastic anemia is due to injury or destruction of a common
pluripotential stem cell. This result is a first step to prove stability or instability
results in the nonlinear case β = β(N) (see further publication). In the next
section, we prove that the proliferating cells also depends strongly on the state of
the population of stem cells.

4. Equations for the total population in the proliferating phase

To complete the formulation of our model, we give the equations satisfied by the
total population

P (t,m) =
∫ τ(Θ(m))

0

p(t,m, a)da

of proliferating cells for a given maturation level m ∈ [0, 1].
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Proposition 4.1. Let m ∈ [0, 1] and t ≥ 0. Then P (t,m) satisfies the following
equations:

(1) If 0 ≤ t ≤ τ(Θ(m)), then

∂

∂t
P (t,m) +

∂

∂m
(V (m)P (t,m))

= −γ(m)P (t,m) + β(m)N(t,m)−G(t,m),
(4.1)

with

G(t,m) =
1

1 + τ ′(Θ(m))V (Θ(m))
ξ(m, t)Γ (π−t(m), τ(Θ(m))− t) , (4.2)

where ξ is given by (3.4) and Γ is the initial data given by (2.11).
(2) If t ≥ τ(Θ(m)), then

∂

∂t
P (t,m) +

∂

∂m
(V (m)P (t,m))

= −γ(m)P (t,m) + β(m)N(t,m)−H(m)N (t− τ(Θ(m)),Θ(m)) ,
(4.3)

where

H(m) =
ξ (m, τ(Θ(m)))β (Θ(m))
1 + τ ′(Θ(m))V (Θ(m))

. (4.4)

Proof. Taking a = τ(Θ(m)) in (3.10), we obtain

p(t,m, τ(Θ(m))) =


ξ(m, t)Γ(π−t(m), τ(Θ(m))− t), for 0 ≤ t < τ(Θ(m)),

ξ(m, τ(Θ(m)))β
(
π−τ(Θ(m))(m)

)
×N(t− τ(Θ(m)), π−τ(Θ(m))(m)), for τ(Θ(m)) ≤ t.

(4.5)
According to Lemma 3.4, we deduce that π−τ(Θ(m))(m) = Θ(m) for all m ∈ [0, 1].
On the other hand, we have

∂

∂m
(V (m)P (t,m))

=
∂

∂m

( ∫ τ(Θ(m))

0

V (m)p(t,m, a)da
)
,

=
∫ τ(Θ(m))

0

∂

∂m
(V (m)p(t,m, a)) da+ τ ′(Θ(m))Θ′(m)V (m)p(t,m, τ(Θ(m))).

Consequently, by integrating (2.2) with respect to the age between 0 and τ(Θ(m)),
we obtain the following time-maturation structured equation,

∂

∂t
P (t,m) +

∂

∂m
(V (m)P (t,m))

= −γ(m)P (t,m) + p(t,m, 0)− p(t,m, τ(Θ(m)))

+ τ ′(Θ(m))Θ′(m)V (m)p(t,m, τ(Θ(m))),

= −γ(m)P (t,m) + p(t,m, 0)− [1− τ ′(Θ(m))Θ′(m)V (m)] p(t,m, τ(Θ(m))).

Using (2.4), (2.6) and (4.5) in this last equation, we obtain (4.1) and (4.3). �

It is not difficult to prove, by steps, the existence, uniqueness and regularity of
solutions of System (4.1)–(4.3). Let ψ ∈ C ([0, τ ]× [0, 1]) be an integrated solution
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of this system on the set [0, τ ] × [0, 1]. As for the resting phase, an integrated
expression of Equation (4.3), for t ≥ τ and m ∈ [0, 1], is given by

P (t,m)

= ξ(m, t− τ)ψ
(
τ , π−(t−τ)(m)

)
+

∫ t

τ

ξ(m, t− s)β(π−(t−s)(m))N
(
s, π−(t−s)(m)

)
ds

+
∫ t

τ

ξ(m, t− s)H(π−(t−s)(m))N
(
s− τ

(
Θ

(
π−(t−s)(m)

))
,Θ

(
π−(t−s)(m)

))
ds,

(4.6)
and P (t,m) = ψ (t,m), for (t,m) ∈ [0, τ ]× [0, 1]. Then we have the following result.

Proposition 4.2. Under the assumptions in Theorem 3.7 and ψ(t,m) = 0 for
t ∈ [0, τ ], m ∈ [0, b], the solution P of (4.6) is equal to 0, for t ≥ t, m ∈ [0, g(1)],
and for t ≥ t+ τ − ln(h(g(1))), m ∈ [g(1), 1].

Proof. In the proof of Theorem 3.7, we obtained that N(t,m) = 0 for m ∈ [0, bn]
and t ≥ tn. Then (4.6) becomes

P (t,m) = ξ(m, t− tn)P
(
tn, π−(t−tn)(m)

)
for t ≥ tn m ∈ [0, bn].

Then, by steps, we prove that P (t,m) = 0 for t ≥ tn and m ∈ [0, bn]. This leadds
to

P (t,m) = 0, for t ≥ t, m ∈ [0, g(1)].
Using the same argument as in the proof of Theorem 3.7, we also obtain, for m ∈
[0, 1] and t ≥ t+ τ − ln(h(g(1))),

P (t,m) = ξ(m, t− t− τ)P
(
t+ τ , π−(t−t−τ)(m)

)
.

Then P (t,m) = 0 for m ∈ [g(1), 1] and t ≥ t+ τ − ln(h(g(1))), which completes the
proof. �
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