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Abstract We introduce a mathematical model of the in vivo progression of Alzhei-
mer’s disease with focus on the role of prions in memory impairment. Our
model consists of differential equations that describe the dynamic formation of
β-amyloid plaques based on the concentrations of Aβ oligomers, PrPC proteins, and
the Aβ-×-PrPCcomplex, which are hypothesized to be responsible for synaptic tox-
icity. We prove the well-posedness of the model and provided stability results for its
unique equilibrium, when the polymerization rate of β-amyloid is constant and also
when it is described by a power law.
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1 Introduction

1.1 What is the link between Alzheimer disease and prion proteins?

Alzheimer’s disease (AD) is acknowledged as one of the most widespread diseases
of age-related dementia with ≈35.6 million people infected worldwide according to
Wimo and Prince (2010). By the 2050’s, this same report has predicted three or four
times more people living with AD. AD affects memory, cognizance, behavior, and
eventually leads to death. Apart from the social dysfunction of patients, another notable
societal consequence of AD is its economic cost (≈$422 billion in 2009, e.g. Wimo
and Prince 2010). The human and social impact of AD has driven extensive research
to understand its causes and to develop effective therapies. Among recent findings are
the results that imply cellular prion protein (PrPC) is connected to memory impairment
(Cissé and Mucke 2009; Cissé et al. 2011; Gimbel et al. 2010; Laurén et al. 2009; Nath
et al. 2012). This connection is the focus of our modeling here, which we hope will
contribute to understanding the relation of AD to prions.

The pathogenesis of AD is related to a gradual build-up of β-amyloid(Aβ) plaques
in the brain (Duyckaerts et al. 2009; Hardy and Selkoe 2002). β-amyloid plaques
are formed from the Aβ peptides obtained from the amyloid protein precursor (APP)
protein cleaved at a displaced position. There exist different forms of β-amyloids,
from soluble monomers to insoluble fibrillar aggregates (Chen et al. 2010; Lomakin
et al. 1996; Lomakin et al. 1997; Urbanc et al. 1999; Walsh et al. 1997). It has been
revealed by Selkoe (2008) that the toxicity depends on the size of these structures and
recent evidence suggest that oligomers (small aggregates) play a key role in memory
impairment rather than β-amyloid plaques (larger aggregates) formed in the brain.
More specifically, Aβ oligomers cause memory impairment via synaptic toxicity onto
neurons. This phenomenon seems to be induced by a membrane receptor, and there is
evidence that this rogue agent is the PrPCprotein (Nygaard and Strittmatter 2009; Zou
et al. 2011; Resenberger et al. 2011; Gimbel et al. 2010; Laurén et al. 2009) We note
that this protein, when misfolded in a pathological form called PrPSc, is responsible for
Creutzfeldt–Jacob disease. Indeed, it is believed that there is a high affinity between
PrPCand Aβ oligomers, at least theoretically by Gallion (2012). Moreover, the prion
protein has also been identified as an APP regulator, which confirms that both are
highly related (Nygaard and Strittmatter 2009; Vincent et al. 2008). This discovery
offers a new therapeutic target to recover memory in AD patients, or at least slow
memory depletion (Freir et al. 2011; Chung et al. 2010).

1.2 What is our objective?

Our objective here is to introduce and study a new in vivo model of AD evolution
mediated by PrPCproteins. To the best of our knowledge, no model such as the one
proposed here has yet been advanced. There exist a variety of models specifically
designed for Alzheimer’s disease and their treatment (Achdou et al. 2012; Craft et al.
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2002, 2005). Nevertheless, the prion protein has never been taken into account in the
way we formulate here, and our model could help in designing new experiments and
treatments.

This paper is organized as follows. We present the model in Sect. 2, and provide a
well-posedness result in the particular case that β-amyloids are formed at a constant
rate. In Sect. 3 we provide a theoretical study of our model in a more general context
with a power law rate of polymerization, i.e. the polymerization or build-up rate
depends on β-amyloid plaque size.

2 The model

2.1 A model for beta-amyloid formation with prions

The model deals with four different species. First, the concentration of Aβ oligomers
consisting of aggregates of a few Aβ peptides; second, the concentration of the
PrPC protein; third, the concentration of the complex formed from one Aβ oligomer
binding onto one PrPC protein. These quantities are soluble and their concentration
will be described in terms of ordinary differential equations. Fourth, we have the insol-
uble β-amyloid plaques described by a density according to their size x . This approach
is standard in modeling prion proliferation phenomena (see for instance Greer et al.
2006; Prigent et al. 2012; Calvez et al. 2009, 2010; Gabriel 2011; Greer et al. 2006,
2007; Laurençot and Walker 2007; Prüss et al. 2006; Simonett and Walker 2006 for
modeling approach and analysis). Note that the size x is an abstract variable that could
be the volume of the aggregate. Here, however, we view aggregates as fibrils that
lengthen in one dimension. The size variable x thus belongs to the interval (x0,+∞),
where x0 > 0 stands for a critical size below which the plaques cannot form. To
summarize we denote, for x ∈ (x0,+∞) and t ≥ 0,

– f (t, x) ≥ 0 : the density of β-amyloid plaques of size x at time t ,

– u(t) ≥ 0: the concentration of soluble Aβ oligomers (unbounded oligomers) at
time t ,

– p(t) ≥ 0: the concentration of soluble cellular prion proteins PrPC at time t ,

– b(t) ≥ 0: the concentration of Aβ-×-PrPCcomplex (bounded oligomers) at time t .

Note that β-amyloid plaques are formed from the clustering of Aβ oligomers.
The rate of agglomeration depends on the concentration of soluble oligomers and the
structure of the amyloid which is linked to its size. It occurs in a mass action between
plaques and oligomers at a nonnegative rate given by ρ(x), where x is the size of the
plaque. This is the reason why the intentionally misused word “size” considered here
(and described above) accounts for the mass of Aβ oligomers that form the polymer.
We assume indeed, that the mass of one oligomer is given by a “sufficiently small”
parameter ε > 0. Thus, the number of oligomers in a plaque of mass x > 0 is
x/ε which justifies our assumption that the size of plaques is a continuum. Moreover,
amyloids have a critical size x0 = εn > 0, where n ∈ N

∗ is the number of oligomers in
the critical plaque size. The amyloids are prone to be damaged at a nonnegative rate μ,
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Table 1 Parameter description of the model

Parameter/variable Definition Unit

t Time Days

x size of β-amyloidplaques –

x0 Critical size of β-amyloidplaques –

n Number of oligomers in a plaque of size x0 –

ε Mass of one oligomer –

λu Source of Aβ oligomers Days−1

γu Degradation rate of Aβ oligomers Days−1

λp Source of PrPC Days−1

γp Degradation rate of PrPC Days−1

τ Binding rate of Aβ oligomers onto PrPC Days−1

σ Unbinding rate of Aβ-×-PrPC Days−1

δ Degradation rate of Aβ-×-PrPC Days−1

ρ(x) Conversion rate of oligomers into a plaque (SAF/sq)−1 ∗· days−1

μ(x) Degradation rate of a plaque Days−1

∗ SAF/sq means Scrapie-Associated Fibrils per square unit and is explained in detail by Rubenstein et al.
(1991) (we consider plaques as being fibrils here)

possibly dependent on the size x of the plaques. All the parameters for Aβ oligomers,
PrPC, and β-amyloid plaques, such as production, binding and degradation rates, are
nonnegative and described in Table 1.

Then, writing evolution equations for these four quantities, we obtain

∂

∂t
f (x, t) + u(t)

∂

∂x

[
ρ(x) f (x, t)

] = −μ(x) f (x, t) on (x0,+∞) × (0,+∞),

(1)

u̇ = λu − γuu − τup + σb − nN (u) − 1

ε
u

+∞∫

x0

ρ(x) f (x, t)dx on (0,+∞), (2)

ṗ = λp − γp p − τup + σb on (0,+∞), (3)

ḃ = τup − (σ + δ)b on (0,+∞). (4)

The term N accounts for the formation rate of a new β-amyloidplaque with size x0
from the Aβ oligomers. In order to balance this term, we add the boundary condition

u(t)ρ(x0) f (x0, t) = N (u(t)), t ≥ 0. (5)

The integral in the right-hand side of equation (2) is the total polymerization with
parameters1/ε, since dx/ε counts the number of oligomers into a unit of length dx .
Finally, the problem is completed with nonnegative initial data, a function f in ≥ 0
and uin, pin, bin ≥ 0, such that at time t = 0
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f (·, t = 0) = f in on (x0,+∞), (6)

and

u(t = 0) = uin, p(t = 0) = pin and b(t = 0) = bin . (7)

The above system (1–5) involves two formal balance laws: the first one for prion
proteins

d

dt
(b + p) = λp − γp p − δb,

and the second for Aβ oligomers

d

dt

⎛

⎝b + u + 1

ε

+∞∫

x0

x f dx

⎞

⎠ = λu − γuu − δb − 1

ε

+∞∫

x0

xμ f dx .

The total concentrations of both evolve in time according to the production and degra-
dation rates. In Fig. 1 we give a schematic representation of these processes.

Before going further, we emphasis some modeling points:

– Modeling fibril formation involves many more complex features. Indeed, in vivo but
also in vitro, their dynamics include phenomena of depolymerization, fragmentation
and possible coagulation. A fully developed model would take into account all these
processes. In this work we focus on the dynamics of oligomers and their interactions
with fibrils and PrPC. Therefore, we neglect the internal dynamics of polymers and
their depolymerization to give priority to an apparent extension rate of fibrils.

– There exist various sizes of Aβ oligomers, from dimer up to ten or so peptides.
Nevertheless, these are unstable until they reach a stable structure, and that is why

Fig. 1 Schematic diagram of the evolution processes of β-amyloidplaques, Aβ oligomers (bounded and
unbounded), and PrPCin the model
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we assume here only one stable oligomer size, which is the one that interacts with
PrPC and that is able to form protofibrils (also called critical plaques here). We refer
to the papers by Serpell (2000) and Fawzi et al. (2007) for their discussions about
intermediate oligomers, fibril structure, and fibril nucleation.

2.2 An associated ODE system

In this section we investigate constant polymerization and degradation rates, i.e, rates
independent of the size of the plaque involved in the process. This first approach is
biologically less realistic, but technically more tractable, yet still quite challenging for
an analytical study of the problem. In Sect. 3, the polymerization rate ρ will be taken
more realistically as a power of x . Here we assume that ρ(x) := ρ and μ(x) := μ

are positive constants. Moreover, without loss of generality, we let ε = 1, which only
requires a rescaling of the units in the equations.

Then, we assume a pre-equilibrium hypothesis for the formation of β-amyloidplaq-
ues, as formulated by Portet and Arino (2009) for filaments, by setting N (u) = αun ,
with α > 0 the formation rate. It is obtained assuming n − 1 reactions lead to a fibril
of size n from oligomers:

u + u � F2,

F2 + u � F3
· · ·

Fn−1 + u � Fn

where Fi are pre-fibrils or aggregates of i-oligomers for i = 2, . . . , n and the coef-
ficient rate of each equation is given by Ki . So, taking all the equations at the equi-
librium, we get F2 = K2u2, F3 = K3 F2u = K3 K2u3, etc. until Fn = αun , where
the formation rate α of a critical plaque, composed of n ≥ 1 oligomers, is given by
α = Kn × · · · × K2 > 0. Once the length n is achieved, we assume the fibrils reach
a stable structure. Therefore, we only take into account their polymerization and not
their reverse reactions (see, for instance, a discussion about prion fibrils in Serpell
(2000), Fawzi et al. (2007).

With these assumptions we are able to close the system (1–4) with respect to (5)
into a system of four differential equations. Indeed, integrating (1) over (x0,+∞) we
get formally an equation over the quantity of amyloids at time t ≥ 0

A(t) =
+∞∫

x0

f (x, t)dx,

which is given by
d

dt
A(t) − u(t)ρ f (x0, t) = −μA(t).

We close the system using expression of the boundary (5), recalling that ρ is constant,
and the fact that N (u) = αun . This method has already been used on the prion model
by Greer et al. (2006). Now the problem reads, for t ≥ 0,
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Ȧ = αun − μA, (8)

u̇ = λu − γuu − τup + σb − αnun − ρu A, (9)

ṗ = λp − γp p − τup + σb, (10)

ḃ = τup − (σ + δ)b. (11)

The mass of β-amyloidplaques is given by M(t) = ∫ +∞
x0

x f (x, t)dx which satisfies
an equation (formal integration of 1) that can be solved independently, since

d

dt
M(t) − x0u(t)ρ f (x0, t) −

+∞∫

x0

ρu(t) f (x, t)dx = −μM(t).

Indeed, we use once again the boundary condition (5), the expression of the formation
rate N and that x0 = n since ε = 1, in order to get

Ṁ = nαun + ρu A − μM. (12)

Notice that initial conditions for A and M are given by Ain = ∫ +∞
x0

f in(x)dx and

Min = ∫ +∞
x0

x f in(x)dx , while the initial conditions for u, p and b are unchanged.
The next subsection is devoted to the analysis of the system (8–11).

2.3 Well-posedness and stability of the ODE system

We prove in the following proposition the nonnegativity, existence, and uniqueness
of a global solution to the system (8–11) with classical techniques from the theory of
ordinary differential equations.

Proposition 1 (Well-posedness) Assume λu, λp, γu, γp, τ, σ, δ, ρ and μ are pos-
itive, and let n ≥ 1 be an integer. For any (Ain, uin, pin, bin) ∈ R

4+ there exists a
unique nonnegative bounded solution (A, u, p, b) to the system (8–11) defined for all
time t > 0, i.e, the solution A, u, p and b belong to C1

b(R+) and remains in the stable
subset

S =
{
(A, u, p, b) ∈ R

4+ : n A + u + p + 2b ≤ n Ain + uin + pin + 2bin + λ

m

}

(13)

with λ = λu +λp and m = min{μ, γu, γp, δ}. Furthermore, let M(t = 0) = Min ≥ 0,
and then there exists a unique nonnegative solution M to (12), defined for all time
t > 0.
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Proof Let F : R
4 �→ R

4 be given by

F(A, u, p, b) =

⎛

⎜⎜
⎝

F1 := αun − μA
F2 := λu − γuu − τup + σb − αnun − ρu A
F3 := λp − γp p − τup + σb
F4 := τup − (σ + δ)b

⎞

⎟⎟
⎠.

F is obviously C1 and locally Lipschitz continuous on R
4. Moreover, if (A, u, p, b) ∈

R
4+, F1 ≥ 0 when A = 0, F2 ≥ 0 when u = 0, F3 ≥ 0 when p = 0, and F4 ≥ 0 when

b = 0. Thus, the system is quasi-positive and the solution remains in R
4+. Finally, we

remark that

d

dt
(n A + u + p + 2b) ≤ λ − m (n A + u + p + 2b),

with λ = λu + λp and m = min
{
μ, γu, γp, δ

}
> 0, and Gronwall’s lemma ensures

that

n A(t) + u(t) + p(t) + 2b(t) ≤ n Ain + uin + pin + 2bin + λ

m
.

This proves the global existence of a unique nonnegative bounded solution (A, u, p, b).
The claim for the mass M is straightforward. 
�

We next consider the existence of a steady state A∞, u∞, p∞, b∞ and the asymptotic
behavior of solutions to (8–11). It is easy to compute the steady state by solving the
problem

μA∞ − αun∞ = 0 (14)

λu − γuu∞ − τu∞ p∞ + σb∞ − αnun∞ − ρu∞ A∞ = 0 (15)

λp − γp p∞ − τu∞ p∞ + σb∞ = 0 (16)

τu∞ p∞ − (δ + σ)b∞ = 0 (17)

From the structure of the second equation, we cannot give an explicit formula for
this problem. To obtain u∞ we have to solve an algebraic equation, which involves a
polynomial of degree n. However, we can prove that the solution exists, and then u∞
is given implicitly. The next proposition establishes the local stability of the steady
state.

Theorem 1 (Linear Stability) Under hypothesis of the Proposition 1, there exists a
unique positive steady state A∞, u∞, p∞ and b∞ to (8–11) with

A∞ = α

μ
un∞, p∞ = λp

τ ∗u∞ + γp
, b∞ = 1

σ

λp(τ − τ ∗)
τ ∗u∞ + γp

u∞,
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where τ ∗ = τ(1 − σ/(δ + σ)) and u∞ is the unique positive root of Q, defined by

Q(x) = γpλu + ax − P(x), for every x ≥ 0

with a = τ ∗(λu − λp) − γuγp and

P(x) = τ ∗γu x2 + αγpnxn +
(

ατ ∗n + ργp
α

μ

)
xn+1 + ρτ ∗ α

μ
xn+2

Moreover, this equilibrium is locally linearly asymptotically stable.

Proof First, Eq. (14) gives A∞ with respect to u∞. Then, combining (16) and (17)
we get p∞ and b∞ as functions of u∞. Now replacing p∞ and b∞ in (15) we get
u∞ as the root of Q. It is straightforward that Q has a unique positive root. Indeed,
it is the intersection between a line and a monotonic polynomial on the half plane.
Now, we linearize the system in A∞, u∞, p∞ and b∞. Let X = (A, u, p, b)T and the
linearized system reads

d

dt
X = DX,

where

D =

⎛

⎜
⎜⎜⎜⎜
⎝

−μ αnun−1∞ 0 0

−ρu∞ γu − τp∞ − αn2un−1∞ − ρ A∞ −τu∞ σ

0 −τp∞ −(γp + τu∞) σ

0 τp∞ τu∞ −(σ + δ)

⎞

⎟
⎟⎟⎟⎟
⎠

.

The characteristic polynomial is of the form

P(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ + a4,

with the ai > 0, i = 1 . . . 4 given in the Appendix. Moreover it satisfies

a1a2a3 > a2
3 + a2

1a4.

Then, according to the Routh–Hurwitz criterion (see Allen 2007*Th. 4.4, page 150),
all the roots of the characteristic polynomial P are negative or have negative real part,
thus the equilibrium is locally asymptotically stable. 
�

To go further, we give a conditional global stability result when no nucleation is
considered, i.e., α = 0.

Proposition 2 (Global stability) Assume that α = 0. Under the condition

(
1 + 2

δ + γu

σ

)
>

δ

2γp
>

γp

σ
,
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the unique equilibrium is given by

A∞ = 0, p∞ = λp

τ ∗u∞ + γp
, b∞ = 1

σ

λp(τ − τ ∗)
τ ∗u∞ + γp

u∞,

where u∞ is the unique positive root of Q(x) = γpλu + ax − τ ∗λu x2, with a =
τ ∗(λu − λp)− γuγp. Further, this equilibrium is globally asymptotically stable in the
stable subset S defined in (13).

Proof The proof is given by a Lyapunov function Φ stated in the Appendix. It is
positive when the condition above is fulfilled and its derivative along the solution to
the system (8–11) is negative definite. Thus, from the LaSalle’s invariance principle,
we get that under these hypotheses the equilibrium of (8–11) is globally asymptotically
stable. 
�

In the next section we will study from a mathematical point of view a more realistic
model. Nevertheless, our model emphasizes a major dilemma in AD. Indeed, consider
the steady state given in Theorem 1. If the rate of polymerization increases, it increases
the growth rate of the polynomial P , so the intersection occurs faster (the positive root
of Q). This means that u∞ decreases, and likewise b∞. The balance law of oligomers
suggests that when b∞ decreases in such a way, the mass of fibrils M will increase.
So a question remains, what is the less toxic quantity, and is there any criteria under
which we could optimize ρ.

3 A power law polymerization rate

The assumption that the polymerization rate ρ and the degradation rate μ are constant
is not always biologically realistic, as recognized by Calvez et al. (2010) and Gabriel
(2011). Consequently, we study here the more realistic case ρ(x) ∼ xθ , and in the
following we restrict our analysis to θ ∈ (0, 1). We will see that we are able to obtain
a result of existence and uniqueness of solutions for this more general case.

3.1 Hypotheses and main result

We are interested in nonnegative solutions to the system (1–4) with the boundary
condition (5), completed by initial data (6) and (7), but with the new assumption
ρ(x) ∼ xθ . Moreover, we require that our solution preserves the total mass of β-
amyloidin order to be biologically relevant. Hence, the solution f will be sought in
the natural space L1(x0,+∞; xdx), since xdx measures the mass at any time. Our
hypotheses for the system (1–4) are

(H1)

∣∣∣∣∣
∣

f in ∈ L1(x0,+∞; xdx), f in ≥ 0, a.e. x > x0.
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(H2)

∣∣∣∣
∣∣

ρ ≥ 0 , ρ ∈ W 2,∞([x0,∞)), μ ≥ 0 , μ ∈ W 1,∞([x0,∞)).

(H3)

∣∣∣∣
∣∣

N ≥ 0 , N ∈ W 1,∞
loc (R+), N (0) = 0.

(H4)

∣∣∣∣∣
∣

λu, γu, λp, γp, τ, σ, δ > 0.

We note that (H2) implies the existence of a constant C > 0 such that ρ(x) ≤ Cx ,
with for example, C = 2‖ρ′‖L∞ + ρ(x0)/x0. For any x ≥ x0, we have

ρ(x) ≤ ‖ρ′‖L∞(x + x0) + ρ(x0) ≤
(

2‖ρ′‖L∞ + ρ(x0)

x0

)
x .

We remark that this kind of regularity of the rate ρ covers the case that ρ(x) ∼ xθ

with θ ∈ (0; 1). Also, (H3) implies the existence of a constant KM > 0 such that
N (w) ≤ KMw, for any w ∈ [0, M]. Further, The nonnegativity of the parameters
of Table 1 (hypothesis (H4)) is a natural assumption with regard to their biological
meaning.

We introduce the definition of a solution to system (1–4).

Definition 1 Consider a function f in satisfying (H1) and let uin , pin , bin be three
nonnegative real data. Assume that ρ, μ, N and all the parameters of Table 1 verify
assumptions (H2)–(H4), and let T > 0. Then a quadruplet ( f, u, p, b) of nonnegative
functions is said to be a solution on the interval (0, T ) to the system (1–4) with
the boundary condition (5) and the initial data (6) and (7), if it satisfies, for any
ϕ ∈ C∞

c ([0, T ] × [x0,+∞)) and t ∈ (0, T )

+∞∫

x0

f (x, t)ϕ(x, t)dx =
+∞∫

x0

f in(x)ϕ(x, 0)dx +
t∫

0

N (u(s))ϕ(x0, s)ds

+
t∫

0

+∞∫

x0

f (x, s)

[
∂

∂t
ϕ(x, s) + u(s)ρ(x)

∂

∂x
ϕ(x, s) − μ(x)ϕ(x, s)

]
dxds,

and

u(t) = uin +
t∫

0

⎡

⎣λu − γuu − τup + σb − x0 N (u) − u

+∞∫

x0

ρ(x) f (x, s)dx

⎤

⎦ ds,
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p(t) = pin +
t∫

0

[
λp − γp p − τup + σb

]
ds,

b(t) = bin +
t∫

0

[τup − (σ + δ)b] ds,

with the regularity f ∈ L∞ (
0, T ; L1 (x0,+∞; xdx)

)
and u, p, b ∈ C0(0, T ).

Theorem 2 (Well-posedness) Let f in be a nonnegative function satisfying (H1), let
uin, pin and bin be nonnegative real numbers, and assume hypothesis (H2) to (H4).
Let T > 0. There exists a unique nonnegative solution ( f, u, p, b) to (1–4) with (5)
and initial conditions given by (6) and (7), in the sense of Definition 1, such that
f ∈ C0

([0, T ], L1(x0,+∞; xr dx)
)

for every r ∈ [0, 1], and u, p, b ∈ C1
b(0, T ).

The proof of the Theorem 2 is decomposed into two parts. First, we study the initial
boundary value problem

∂

∂t
f (x, t) + u(t)

∂

∂x

[
ρ(x) f (x, t)

] = −μ(x) f (x, t) on (x0,+∞) × (0,+∞),

(18)

u(t)ρ(x0) f (x0, t) = N (u(t)), on (0,+∞), (19)

f (·, t = 0) = f in, on (x0,+∞). (20)

We prove in the Sect. 3.2 the following proposition:

Proposition 3 Let u ∈ C0
b (R+), let f in satisfy (H1), and assume hypothesis (H2)

to (H3). For any T > 0, there exists a unique nonnegative solution f to (18–20) in
the sense of distributions, such that f ∈ C0

([0, T ], L1(x0,+∞; xr dx)
)

for every
r ∈ [0, 1].

The proof is in the spirit of the proof proposed by Collet and Goudon (2000) for
the Lifshitz–Slyozov equation. It consists of a proof based on the concept of a mild
solution in the sense of distributions, with the additional requirement of continuity
from time into L1(xdx) space.

The second step of the proof of Theorem 2 is performed in Sect. 3.3. Precisely,
once we have the existence of a unique density f , when u is given, we are able to
construct the operator

S : C0([0, T ])3 �→ C0([0, T ])3

(u, p, b) �→ (Su, Sp, Sb) = S(u, p, b), (21)

Su = uin +
t∫

0

⎡

⎣λu − γuu − τup + σb − x0 N (u) − u

+∞∫

x0

ρ(x) f (x, s)dx

⎤

⎦ ds,
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Sp = pin +
t∫

0

[
λp − γp p − τup + σb

]
ds,

Sb = bin +
t∫

0

[τup − (σ + δ)b] ds,

where f is the unique solution associated to u given by Proposition 3. Then, Theorem 2
is finally proven in Sect. 3.3 applying the Banach fixed point theorem to the operator S.

3.2 Existence of a solution to the autonomous problem

In the following we let u ∈ C0
b (R+) and we use the notations a(x, t) = u(t)ρ(x) and

c(x, t) = −u(t)ρ′(x) for every (x, t) ∈ [x0,+∞) × R+. From (H2) and noting that
ρ(x) ≤ Cx , we have for any t > 0

a(t, x) ≤ Ax, for x > x0, (22)

|a(t, x) − a(t, y)| ≤ A|x − y|, for x, y > x0, (23)

|c(t, x)| ≤ B, (24)

where A = max
(
C‖u‖L∞ , ‖u‖L∞‖ρ′‖L∞

)
and B = ‖u‖L∞‖ρ′‖L∞(x0,+∞). In order

to establish the mild formulation of the problem, we define the characteristic reaching
x ≥ x0 at time t ≥ 0, that is, the solution to

d

ds
X (s; x, t) = a(t, X (s; x, t)),

X (t; x, t) = x . (25)

From property (23), their exists a unique characteristic that reaches (x, t).We note that
it makes sense as long as X (s; x, t) ≥ x0. Thus, we define the starting time of the
characteristic as

s0(x, t) := inf {s ∈ [0, t] : X (s; x, t) ≥ x0} .

The characteristic will be defined for any time s ≥ s0 and takes its origin from the
initial or the boundary condition, respectively, if s0 = 0 or s0 > 0. We recall the
classical properties of these characteristics

X (s; X (σ ; x, t), σ ) = X (s; x, t)

J (s; x, t) := ∂

∂x
X (s; x, t) = exp

⎛

⎝
t∫

s

c(σ, X (σ ; x, t))dσ

⎞

⎠

∂

∂t
X (s; x, t) = −a(t, x)J (s; x, t).
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Also, remarking that s0(X (t; x0, 0), t) = 0, then by monotonicity and continuity of
X for any t > 0, we get x ∈ (x0, X (t; x0, 0)) ⇐⇒ s0(x, t) ∈ (0, t), and for any
x ∈ (x0, X (t; x0, 0)) we have X (s0(x, t); x, t) = x0. It follows that for every x
belongs to (x0, X (t; x0, 0))

I (x, t) := − ∂

∂x
s0(x, t) = J (s0(x, t); x, t)/a(s0(x, t), x0).

Considering the derivative of f (s, X (s; x, t)) in s, and integrating over (s0, t)
we obtain the mild formulation of the problem. The mild solution is defined for
a.e. (x, t) ∈ (x0,+∞) × R+ by

f (x, t) =
⎧
⎨

⎩
f in(X (0; x, t))J (0; x, t)e− ∫ t

0 μ(X (σ ;x,t))dσ x ≥ X (t; x0, 0),

N (u(s0(x, t)))I (x, t)e
−∫ t

s0(x,t) μ(X (σ ;x,t))dσ
x ∈ (x0,X (t; x0, 0)).

(26)

We infer from the formulation (26) that for a.e (x, t) ∈ [x0,+∞) × R+, f is non-
negative, since J and I are nonnegative, and f in satisfies (H1). We recall some useful
properties that are derived in Lemma 1 from the paper by Collet and Goudon (2000).

Lemma 1 Let u ∈ C0
b (R+) be a given data and assume that (H2) holds. Then for any

x ≥ x0 and t > 0, as long as the characteristic curve s �→ X (s; x, t) defined in (25)
exists, i.e., s ≥ s0(x, t), we have

for s1 ≤ s2, X (s1; x, t) ≤ X (s2; x, t) ≤ X (s1; x, t)eA(s2−s1)

if xn → +∞, then for all t ≥ s ≥ 0, X (s; x, t) → +∞
for s ≥ t, X (s; x, t) ≤ xeA(s−t).

Proof We refer to the proof given by Collet and Goudon (2000), where the result
follows from the fact that for any x ≥ x0, t > 0 and s0(x, t) ≤ s1 ≤ s2, we have

x0 ≤ X (s2; x, t) = X (s1; x, t) +
s2∫

s1

a(s, X (s; x, t))ds ≤ X (s1; x, t)

+A

s2∫

s1

X (s; x, t)ds,

where A is given by (22). 
�
In the sequel we will repeatedly refer to the changes of variables

y = X (0; x, t) over x ∈ (X (t, x0, 0),+∞), with Jacobian J (0; x, t),

s = s0(x, t) over x ∈ (x0, X (t; x0, 0)), with Jacobian − I (x, t).
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The first is a C1-diffeomorphism from (X (t, x0, 0),+∞) into (x0,+∞), and the
second from (x0, X (t; x0, 0)) into (0, t). Integrating f defined by (26) over (0, R)

with R > X (t; x0, 0), using the change of variables above, using Lemma 1, and
taking the limit R → +∞, we get

+∞∫

x0

x | f (t, x)|dx ≤
+∞∫

x0

X (t; y, 0)| f in(y)|dy +
t∫

0

X (t; s, x0)|N (u(s))|ds

≤ eAt

⎛

⎝
+∞∫

x0

y| f in(y)|dy +
t∫

0

x0|N (u(s))|ds

⎞

⎠ , (27)

where we have split the integral into two parts and uses both the previous changes of
variables. Thus,for any T > 0, f ∈ L∞ (

0, T ; L1(x0,+∞; xdx)
)
, and therefore in

L∞ (
0, T ; L1(x0,+∞; xr dx)

)
, for any r ∈ [0, 1]. In the next lemma we claim that

f defined by (26) is a weak solution.

Lemma 2 Let f be the mild solution defined by (26). Then for any t > 0

+∞∫

x0

f (x, t)ϕ(x, t)dx =
+∞∫

x0

f in(x)ϕ(x, 0)dx +
t∫

0

N (u(s))ϕ(x0, s)ds

+
t∫

0

+∞∫

x0

f (x, s)

[
∂

∂t
ϕ(x, s)u(s)ρ(x)

∂

∂x
ϕ(x, s) − μ(x)ϕ(x, s)

]
dxds,

for all ϕ ∈ C∞
c ([0, T ] × [x0,+∞)).

Proof Since f belongs to L∞ (
0, T ; L1(x0,+∞; xdx)

)
, it is possible to multiply the

mild solution f against a test function ϕ ∈ C∞
c ([0, T ]× [x0,+∞)) and integrate over

(x0,+∞) to obtain

+∞∫

x0

f (x, t)ϕ(x, t)dx =
+∞∫

x0

f in(y)ϕ(X (t; y, 0))e− ∫ t
0 μ(X (σ ;y,0))dσ dy

−
t∫

0

N (u(s))ϕ(X (t; x0, s), t)e− ∫ t
s μ(X (σ ;x0,s))dσ ds, (28)

by the same change of variable made above for (27). Furthermore, we have
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t∫

0

X (s;x0,0)∫

x0

f (x, s) [∂tϕ(x, s) + a(s, x)∂xϕ(x, s) − μ(x)ϕ(x, s)] dxds

=
t∫

0

+∞∫

x0

f in(x)
d

ds

(
ϕ(X (s; x, 0), s)e− ∫ s

0 μ(X (σ ;x,0))dσ
)

dyds

=
+∞∫

x0

f in(x)ϕ(X (t; x, 0), t)e− ∫ t
0 μ(X (σ ;y,0))dσ dx −

+∞∫

x0

f in(x)ϕ(x, 0)dx,

(29)

still using the change of variable mentioned above and

t∫

0

∞∫

X (s;x0,0)

f (x, s) [∂tϕ(x, s) + a(s, x)∂xϕ(x, s) − μ(x)ϕ(x, s)] dxds

= −
t∫

0

s∫

0

N (u(z))
d

ds

(
ϕ(X (s; x0, z), s)e− ∫ s

z μ(X (σ ;x0,z))dσ
)

dzds

= −
t∫

0

N (u(s))ϕ(X (t; x0, s), t)e− ∫ t
s μ(X (σ ;x0,s))dσ dzds

−
t∫

0

N (u(s))ϕ(x0, s)ds. (30)

Finally, combining (28), (29) and (30) we obtain that f is a weak solution. 
�
The aim of the following lemma is to prove that the moments of f less than 1 are

continuous in time.

Lemma 3 Let hypothesis (H1) to (H3) hold. Let f be the mild solution given by (26).
Then for any T > 0,

f ∈ C0
(
[0, T ], L1(x0,+∞; xr dx)

)
, for every r ∈ [0, 1].

Proof Let T > 0 and r ∈ [0, 1], since f ∈ L∞
loc

(
R+, L1(x0,+∞; xr dx)

)
, we have

for any t > 0 and δt > 0 such that t + δt ≤ T

+∞∫

x0

xr | f (x, t + δt) − f (x, t)| dx = I1 + I2 + I3,
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where

I1 =
X (t;x0,0)∫

x0

xr | f (x, t + δt) − f (x, t)| dx,

I2 =
X (t+δt;x0,0)∫

X (t;x0,0)

xr | f (x, t + δt) − f (x, t)| dx,

I3 =
+∞∫

X (t+δt;x0,0)

xr | f (x, t + δt) − f (x, t)| dx .

Our goal is to prove that each term goes to zero when δt goes to zero. We first bound I3,
which results from the initial condition, since for x ≥ X (t + δt; x0, 0) ≥ X (t; x0, 0),
it follows that

I3 =
+∞∫

X (t+δt;x0,0)

xr
∣∣∣ f in(X (0; x, t + δt))J (0; x, t + δt)e− ∫ t+δt

0 μ(X (σ ;x,t+δt))dσ

− f in(X (0; x, t))|J (0; x, t)e− ∫ t
0 μ(X (σ ;x,t))dσ

∣∣
∣ dx .

Let f in
ε ∈ C∞

0 with compact support supp( f in
ε ) ⊂ (0, Rε) and converge in the space

L1([x0,+∞), xdx) to f in . We write I3 as follows

I3 = I 1
3 + I 2

3 + I 3
3 , (31)

where

I 1
3 =

+∞∫

X (t+δt;x0,0)

xr
∣∣ f in(X (0; x, t + δt)) − f in

ε (X (0; x, t + δt))
∣∣

× J (0; x, t + δt)e− ∫ t+δt
0 μ(X (σ ;x,t+δt))dσ dx,

I 2
3 =

+∞∫

X (t+δt;x0,0)

xr
∣∣ f in

ε (X (0; x, t + δt))J (0; x, t + δt)

× e− ∫ t+δt
0 μ(X (σ ;x,t+δt))dσ

− f in
ε (X (0; x, t))J (0; x, t)e− ∫ t

0 μ(X (σ ;x,t))dσ
∣∣dx,

I 3
3 =

+∞∫

X (t+δt;x0,0)

xr | f in
ε (X (0; x, t)) − f in(X (0; x, t))|

× J (0; x, t)e− ∫ t
0 μ(X (σ ;x,t))dσ dx .
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Dropping the exponential term, which is bounded by one, and changing variables
y = X (0; x, t + δt) in I 1

3 and y = X (0; x, t) in I 3
3 , we get

I 1
3 + I 3

3 ≤ 2eAT

+∞∫

x0

yr | f in(y) − f in
ε (y)|dy = C1

3(T, ε), (32)

with the help of Lemma 1. Next we bound I 2
3 by

I 2
3 ≤

+∞∫

X (t+δt;x0,0)

xr | f in
ε (X (0; x, t + δt)) − f in

ε (X (0; x, t))|J (0; x, t + δt)dx

+
+∞∫

X (t+δt;x0,0)

xr f in
ε (X (0; x, t))|J (0; x, t + δt) − J (0; x, t)|dx

+
+∞∫

X (t+δt;x0,0)

xr f in
ε (X (0; x, t))J (0; x, t)

× |e− ∫ t+δt
0 μ(X (σ ;x,t+δt))dσ − e− ∫ t

0 μ(X (σ ;x,t))dσ |dx,

and we denote the integrals by J 1
3 to J 3

3 , respectively. We remark that J (0, x, t) ≤ eBT

by (24) and so

J 1
3 ≤ eBT ‖ f in

ε ‖L∞

Cε∫

X (t+δt;x0,0)

xr |X (0; x, t + δt) − X (0; x, t)|dx

≤ δteBT ‖ f in
ε ‖L∞

Cε∫

X (t+δt;x0,0)

xr sup
s∈[t,t+δt]

∣∣∣∣
∂

∂t
X (0; x, s)

∣∣∣∣ dx

≤ δt Ae2BT ‖ f in
ε ‖L∞

Cε∫

x0

xr+1dx, (33)

where Cε depends on T , A and Rε i.e., the compact support of f in
ε . Then

J 2
3 ≤ eBT ‖ f in

ε ‖L∞

Rε∫

X (t+δt;x0,0)

xr |eG(t,δt,x) − 1|dx
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with

|G(t, δt, x)| =
∣
∣∣

t+δt∫

0

c(σ, X (σ ; x, t + δt))dσ −
t∫

0

c(σ, X (σ ; x, t))dσ

∣
∣∣

≤
t+δt∫

0

∣∣∣ρ′(X (σ ; x, t + δt)) − ρ′(X (σ ; x, t))
∣∣∣u(σ )dσ

+
t+δt∫

t

∣∣∣c(σ, X (σ ; x, t))
∣∣∣dσ.

Thus, with (22) and (24),

|G(t, δt, x)| ≤ K‖u‖L∞

T∫

0

∣∣∣X (σ ; x, t + δt) − X (σ ; x, t)
∣∣∣dσ + δt B

≤ δt K‖u‖L∞

T∫

0

sup
s∈[t,t+δt]

∣
∣∣∣
∂

∂t
X (σ ; x, s)

∣
∣∣∣ dσ + δt B

≤ δt
(

K‖u‖L∞ AT eBT x + B
)

,

where K is the Lipschitz constant of ρ′. Since x ≤ Rε, let

CG(T, ε) = K‖u‖L∞ AT eBT Rε + B,

and if |x | ≤ y, then

|ex − 1| ≤ |ey − 1| + |e−y − 1|.

Thus, we get

J 2
3 ≤ eBT ‖ f in

ε ‖L∞
(∣∣eδtCG (T,ε) − 1

∣∣ + ∣∣e−δtCG (T,ε) − 1
∣∣
) Rε∫

x0

xr dx . (34)

Since μ is nonnegative, J 3
3 ≤

eBT ‖ f in
ε ‖L∞

Rε∫

X (t+δt;x0,0)

xr
∣∣∣∣e

−
(∫ t+δt

0 μ(X (σ ;x,t+δt))dσ−∫ t
0 μ(X (σ ;x,t))dσ

)

− 1

∣∣∣∣ dx .
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Exactly as above,

∣∣∣∣∣∣

t+δt∫

0

μ(X (σ ; x, t + δt))dσ −
t∫

0

μ(X (σ ; x, t))dσ

∣∣∣∣∣∣
≤ δt M AT eBT x + δt‖μ‖L∞ ,

with M = Lipschitz constant of μ. Denoting by CM (T, ε) = M AT eBT Rε + ‖μ‖L∞ ,
we get

J 3
3 ≤ eBT ‖ f in

ε ‖L∞
(∣∣eδtCM (T,ε) − 1

∣∣ + ∣∣e−δtCM (T,ε) − 1
∣∣
) Rε∫

x0

xr dx . (35)

From (32), (33), (34) and (35) we can conclude that for any ε > 0,

I3(δt) ≤ C1
3(T, ε) + C2

3 (T, δt, ε), (36)

with limε→0 C1
3(T, ε) = 0 and limδt→0 C2

3 (T, δt, ε) = 0.

Next, concerning I1, f can be written from the boundary condition. Let uε ∈ C∞
0

such that uε −→ u uniformly on [0, T ]. Then we write I1 as follows:

I1 ≤
X (t+δt;x0,0)∫

x0

xr |N (u(s0(x, t + δt)) − N (uε(s0(x, t + δt))|I (x, t + δt)dx

+
X (t;x0,0)∫

x0

xr
∣∣
∣∣N (uε(s0(x, t + δt))I (x, t + δt)e

− ∫ t
s0(x,t+δt) μ(X (σ ;x,t+δt))dσ

−N (uε(s0(x, t))I (x, t)e
− ∫ t

s0(x,t) μ(X (σ ;x,t))dσ

∣
∣∣∣ dx

+
X (t;x0,0)∫

x0

xr |N (u(s0(x, t)) − N (uε(s0(x, t))|I (x, t)dx .

From (H3) we obtain, similarly to I3, that there exist two constants C1
1(T, ε) and

C2
1 (T, δt, ε) such that

I1(δt) ≤ C1
1(T, ε) + C2

1 (T, δt, ε), (37)

with limε→0 C1
1(T, ε) = 0 and limδt→0 C2

1 (T, δt, ε) = 0.
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Finally, for I2, we use the two formulas of f ,

I2 =
X (t+δt;x0,0)∫

X (t;x0,0)

xr
∣
∣∣∣N (u(s0(x, t + δt)))I (x, t + δt)e

− ∫ t+δt
s0(x,t+δt) μ(X (σ ;x,t+δt))dσ

− f in(X (0; x, t))J (0; x, t)e
− ∫ t

s0(x,t) μ(X (σ ;x,t))dσ

∣∣
∣∣ dx

Using the Lipschitz constant of N denoted by KN , from the definition of I and with
the help of Lemma 1, we get

I2 ≤ xr
0e(r A+B)T KN |X (t + δt; x0, 0) − X (t; x0, 0)|

+xr
0er AT

X (t+δt;x0,0)∫

X (t;x0,0)

∣∣∣ f in(X (0; x, t))J (0; x, t)
∣∣∣ dx .

Using the regularization f in
ε of f in , there exist two constants C1

2 (T, ε) and C2
2 (T, δt, ε)

such that for any ε > 0,

I2(δt) ≤ C1
2(T, ε) + C2

2 (T, δt, ε), (38)

with limε→0 C1
2(T, ε) = 0 and limδt→0 C2

2 (T, δt, ε) = 0.
In conclusion, combining (36), (37) and (38), we get for any ε > 0 and δt > 0,

+∞∫

x0

xr | f (x, t + δt) − f (x, t)|dx ≤ C1(T, ε) + C2(T, δt, ε),

where C1(T, ε) and C2(T, δt, ε) are two constants such that limε→0 C1(T, ε) = 0
and limδt→0 C2(T, δt, ε) = 0. Noticing that the proof remains the same when δt is
negative, taking the lim sup in δt we get

0 ≤ lim sup
δt→0

+∞∫

x0

xr | f (x, t + δt) − f (x, t)|dx ≤ C1(T, ε), for any ε > 0.

The proof is completed by taking the limit as ε goes to zero, which yields to the
required regularity, f ∈ C0([0, T ], L1([x0,+∞), xr dr) for all r ∈ [0, 1]. 
�

We finish this section with a useful estimate for the uniqueness investigation.

Proposition 4 Let T > 0 and u1, u2 ∈ C0
b (0, T ). Let f1 and f2 be two mild solutions

to (18)–(20), associated, respectively to u1 and u2, with initial data f in
1 , f in

2 given by
formula (26). Then, for any t ∈ (0, T )
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+∞∫

x0

x | f1(x, t) − f2(x, t)| dx ≤
+∞∫

x0

x
∣∣
∣ f in

1 (x) − f in
2 (x)

∣∣
∣ dx

−
t∫

0

+∞∫

x0

μ(x)x
∣∣
∣ f in

1 (x, s) − f in
2 (x, s)

∣∣
∣ dxds

+A1

t∫

0

+∞∫

x0

x | f1(x, s) − f2(x, s)| dxds

+
t∫

0

(
K1,2 + C‖ f2(·, s)‖L1(xdx)

) |u1(s) − u2(s)| ds,

where A1 is given by (22) for u1 and K1,2 is the Lipschitz constant of N on [0, R]
with R = max(‖u1‖L∞(0,T ), ‖u2‖L∞(0,T )). Finally C > 0 denotes a constant such
that ρ(x) < Cx.

Proof This estimation is obtained from a classical argument of approximation. Let
h = f1 − f2 and

+∞∫

x0

h(x, t)ϕ(x, t)dx =
+∞∫

x0

hin(x)ϕ(x, 0)dx

+
t∫

0

+∞∫

x0

h(x, s)

[
∂

∂t
ϕ(x, s) + a1(s, x)

∂

∂x
ϕ(x, s) − μ(x)ϕ(x, s)

]
dxds

+
t∫

0

(N (u1(s)) − N (u2(s))) ϕ(x0, s)ds

+
t∫

0

+∞∫

x0

(a1(s, x) − a2(s, x)) f2(x, s)
∂

∂x
ϕ(x, s)dxds.

Let hε be a regularization of h and Sδ a regularization of the Sign function. Take
ϕ(x, s) = Sδ(hε(s, x))g(x) with g ∈ C∞

c ([x0,+∞)). Then, letting δ → 0 and then
ε → 0, we get

+∞∫

x0

|h(x, t)|g(x)dx =
+∞∫

x0

|hin(x)|g(x)dx

+
t∫

0

+∞∫

x0

|h(x, s)|
[

a1(s, x)
∂

∂x
g(x) − μ(x)g(x)

]
dxds
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+
t∫

0

|N (u1(s)) − N (u2(s))) Sign(h0(x0))g(x0)ds

+
t∫

0

+∞∫

x0

(a1(s, x) − a2(s, x)) f2(x, s)Sign(h(s, x))
∂

∂x
g(x)dxds.

Finally, we approximate the identity function with a regularized function given by
ηR ∈ C∞

c ([x0,+∞)) such that ηR(x) = x over (0, R), and then taking the limit
R → +∞ ends the proof. 
�

It is straightforward from Proposition 2 that f defined by (26) is a weak solution and
the only one from Proposition 4. Indeed, getting u1 = u2 and f 0

1 = f 0
2 in Proposition

4 leads to the uniqueness. Finally, Proposition 3 provides the continuity in time of the
moments with order less or equal to one. This concludes the proof of Proposition 3.

3.3 Proof of the well-posedness

In this section we prove Theorem 2. We first study the operator S defined by (21).

Lemma 4 Consider hypothesis (H2) to (H4). Let uin, pin and bin be nonnega-
tive initial data, and let f in satisfy (H1). Let M > 0 be large enough such that
uin, pin, bin < M/2 and define

X M =
{
(u, p, b) ∈ C0([0, T ])3 : 0 ≤ u, p, b ≤ M

}

where C0([0, T ])3 is equipped with the uniform norm. Then, there exists T > 0 (small
enough) such that S : X M �→ X M is a contraction.

Proof Let M be sufficiently large such that max(uin, pin, bin) < M/2, and let T > 0
be small enough such that

(γu + τ M + σ + x0C1(M) + C2(M, T ))MT ≤ M/2,

(γp + τ M)MT ≤ M/2,

(σ + δ)MT ≤ M/2,

(λu + σ M)T ≤ M/2,

(λp + σ M)T ≤ M/2,

τ M2T ≤ M/2,

where C1(M) is the Lipschitz constant of N on (0, M) and

C2(M, T ) = CeMCT
(
‖ f in‖L1(xdx) + C1(M)MT

)
, (39)
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where C is the constant such that ρ(x) ≤ Cx , see (27). This assumption ensures that
for any (u, p, b) ∈ X M , then S(u, p, b) ∈ X M , i.e, the solution is bounded by M
and is nonnegative. It remains to prove that S is a contraction. Let (u1, p1, b1) and
(u2, p2, b2) belong to X M . Then

‖Su1 − Su2‖∞ ≤ γu T ‖u1 − u2‖∞ + τT ‖u1 p1 − u2 p2‖∞ + σ T ‖b1 − b2‖∞
+x0T C1(M)‖u1 − u2‖∞

+T sup
t∈[0,T ]

∣∣∣∣
∣∣
u1

+∞∫

x0

ρ(x) f1(x, s)dx − u2

+∞∫

x0

ρ(x) f2(x, s)dx

∣∣∣∣
∣∣
. (40)

Then,

‖u1 p1 − u2 p2‖∞ ≤ M‖u1 − u2‖∞ + M‖p1 − p2‖∞, (41)

sup
t∈[0,T ]

∣∣
∣∣∣∣
u1

+∞∫

x0

ρ(x) f1(x, s)dx − u2

+∞∫

x0

ρ(x) f2(x, s)dx

∣∣
∣∣∣∣

≤ C2(M, T )‖u1 − u2‖∞ + C M sup
t∈[0,T ]

∣∣
∣∣∣∣

+∞∫

x0

x | f1(x, t) − f2(x, t)|dx

∣∣
∣∣∣∣
,

(42)

and from Proposition 4,

sup
t∈[0,T ]

∣∣
∣∣∣∣

+∞∫

x0

x | f1(x, t) − f2(x, t)|dx

∣∣
∣∣∣∣
≤ T (C1(M) + CC2(M, T )) ‖u1 − u2‖∞.

(43)

We get similar bounds for |Sp1 − Sp2 |∞ and |Sb1 − Sb2 |∞. We infer that there exists
a constant C(M, T ) depending only on M and T such that

‖(Su1 , Sp1 , Sb1) − (Su2 , Sp2 , Sb2)‖∞ ≤ C(M, T )T ‖(u1, p1, b1) − (u2, p2, b2)‖∞,

(44)

with C(M, T )T → 0, when T goes to 0. Hence, if T is small enough we are able to
get C(M, T )T < 1 , then S is a contraction. 
�

From Lemma 4, we have a local nonnegative solution on [0, T ], which is
unique with the solution (u, p, b) bounded by the constant M . The solution sat-
isfies f ∈ C0(0, T ; L1(xdx)) and u, p, b ∈ C0(0, T ). Furthermore from (H3),
N is continuous and from (H2), ρ(x) ≤ Cx where C is a positive constant. Thus
ρ f ∈ C0(0, T ; L1(dx)). We conclude that u, p and b defined in Definition 1 have
continuous derivatives.

Now we remark that the solutions satisfy on [0, T ]
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d

dt
(u + p + 2b) = λu + λp − γuu − γp p − δ2b − nN (u)

−1

ε
u

+∞∫

x0

ρ(x) f (x, t)dx ≤ λ − m(u + p + 2b),

with m = min(γu, γp, δ) and λ = λu + λp. Using Gronwall’s lemma, the solutions
remain bounded at any time by

u + p + 2b ≤ uin + pin + 2bin + λ

m
. (45)

From this global bound on u, p and b, we can construct the solution on any interval
of time by repetition of the local argument. The proof of the theorem is complete.

4 Perspectives and biological implications

The connection of prions and AD is not fully understood, but recent research suggests
that soluble Aβ oligomers are possible inducers of AD neuropathology. The key
element of this hypothesis is the formation of a neurotoxic complex Aβ-×-PrPC,
which is created by the association of Aβ oligomers and PrPC proteins, and not only
the progression of β-amyloid plaques by the clustering of Aβ oligomers.

We believe the model developed and studied here is a step forward in the under-
standing of the mechanisms underlying AD progression. We have introduced a math-
ematical model of the evolution of AD based on the hypotheses that Aβ oligomers
exist both as bounded and unbounded to PrPC proteins, and the agglomeration rate
in the formation of β-amyloid plaques depends on the concentrations of the bound
and unbound Aβ oligomers, the concentration of soluble PrPC, and the size of the β-
amyloid plaques. Specifically, we have analyzed in detail the existence and uniqueness
properties of solutions of the model, as well as the qualitative properties of solution
behavior. In specific cases we have quantified the stabilization of the solutions to
steady state. In future work, we will explore applications of this model to specific AD
laboratory and clinical data. Nevertheless, from this approach we can deduce some
suggestions for further research:

– The model suggests a stabilization to steady state for the quantities incorporated
into the model. Such phenomena can be very difficult to ascertain in a progressive
disease such as AD. Nevertheless, any experimental data quantifying stabilization
of AD progression can be valuable in identifying the parameters of the model.

– From an experimental point of view, the investigation of the size distribution of the
fibrils is an important consideration. Indeed, we have neglected some phenomena
in our study (such as fragmentation-coagulation and depolymerization), and thus
it remains to clarify these assumptions. Moreover, in the case of a size-dependent
polymerization rate, we would also investigate the character of the polymerization
rate from experimental data.
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– Finally, we emphasize one further point. One of the main issues in AD is to mitigate
progressive memory impairment. Both Aβ-×-PrPCand β-amyloidplay a key role
in the evolution of disease progression, but disappearance of β-amyloid plaques via
a vaccine does not mitigate neurodegeneration (Holmes et al. 2008). One simple
answer would be to increase the degradation rate of Aβ-×-PrPC by some treat-
ments, which are at present not available. But, as suggested by the model, the
polymerization rate could be a key point in the control of disease progression.
Indeed, increasing this rate would exhaust the availability of oligomers, and thus
reduce the formation of complexes. An important issue remains, namely, what is the
best balance between Aβ-×-PrPC and β-amyloid plaques such that AD patients
live the longest without toxicity effects. Perhaps the solution is not to suppress
the β-amyloid plaques, but rather control their progression. The question is open
and a deeper analysis of the model, together with biological data, would provide
understanding in this direction.

Acknowledgments The authors thanks the Reviewers for their usefull comments and suggestions. E.H.
thanks A. Rambaud for helpful discussions, which improved the paper.

Appendix A: Characteristic polynomials of the linearized ODE system

Here we give the coefficient ai , i = 1, . . . , 4 for the characteristic polynomial of the
linearized system in Theorem 1:

a1 =
(

μ + γu + τ
λp

τ ∗u∞ + γp
+ αn2un−1∞ + ρ

α

μ
un∞ + γp + τu∞ + σ + δ

)
,

a2 =
(

μ + γu + αn2un−1∞ + ρ
α

μ
un∞

)
(γp + τu∞ + σ + δ) + γpσ + (γp + τu∞)δ

+μ

(
γu + τ

λp

τ ∗u∞ + γp
+ αn2un−1∞ + ρ

α

μ
un∞

)
+ ραnun∞ + τ(γp + δ)

λp

τ ∗u∞ + γp
,

a3 =
(

μ + γu + αn2un−1∞ + ρ
α

μ
un∞

)
(γpσ +(γp +τu∞)δ)+(γpδ+(γp + δ)μ)τ

λp

τ ∗u∞ + γp

+
{
μ

(
γu + αn2un−1∞ + ρ

α

μ
un∞

)
+ ραnun∞

}
(γp + τu∞ + σ + δ),

a4 = μγpδτ
λp

τ ∗u∞ + γp
+
{
μ

(
γu + αn2un−1∞ + ρ

α

μ
un∞

)
+ ραnun∞

}
(γpσ + (γp + τu∞)δ).

Appendix B: Lyapunov functional

Here we detail a Lyapunov function Φ which is the key ingredient to prove global
stability of system (8–11) in Proposition 2. This function appears to be a bit tricky,
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but determining it rest upon the backward method described for instance Chapter 4,
p. 120, in the book by Khalil (1996). It consists in investigate an expression of the
derivative Φ ′ and then going back to chose the parameters Φ such as Φ ′ is neg-
ative definite. After tedious calculus, a Liapunov function Φ for system (8–11) is
given by

Φ = 1

2

(
2γp

δ

)
s1θ

2
1 + 1

2

(
1 + 2

δ + γu + ρ(A∞ + θ1)

σ

)
θ2

2 + 1

2

(
2γp

δ

)
θ2

3

+1

2

(
σ

γp

)
θ2

4 +
(

ρp∞
γu + ρ A∞ + μ

)
θ1θ2 + θ1θ3

+
(

ρp∞
γu + ρ A∞ + μ

+ 1 + ρ

τ

)
θ1θ4 + θ2θ3 + 2θ2θ4 +

(
2γp

δ

)
θ3θ4,

where θ1 = A− A∞, θ2 = u−u∞, θ3 = p− p∞, θ4 = b−b∞, with s1 = max(T1, T2)

such that

T1 = ρ2δu2∞
(
1 + 2 1+δ

σ

)

8μγp
+

(γp + μ)2
(

δ
2γp

)2

4γpμ

+
[
(δ + μ)

(
ρp∞

γu+ρ A∞+μ
+ 1

)
+ (σ + δ + μ)

ρ
τ

+ 2ρu∞
]2

8μσ
,

and T2 = Γ
(

δ
2γp

)2
T ′

2 with

T ′
2 =

(
ρp∞

γu + ρ A∞ + μ

)2
{

2σ + δ

2γp
+
(

δ

2γp
Γ

)−1
(

1

1 + 2 δ+γu
σ

)}

+ ρp∞
γu + ρ A∞ + μ

{
2 + 4

ρ

τ

δ + γu

σ

}
+ δ

2γp

{
ρ

τ

(
2 + ρ

τ

)
+ σ + 2(δ + γu)

γp

}

+
(

1 + 2
δ + γu

σ

){
ρ

τ

(
1 + ρ

τ

)
+ δ

2γp

σ

γp
− 1

}

and

Γ = 1
(

1 + 2 δ+γu
σ

− δ
2γp

) (
δ

2γp

σ
γp

− 1
) ·

We remark that T1 > 0 so that s1 > 0, and then we deduce that the Lyapunov function

Φ is positive when condition
(

1 + 2 δ+γu
σ

)
> δ

2γp
>

γp
σ

holds true. In such case, its

derivative along the solutions of system (8–11) is given by
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Φ ′ = −
(

μs1 + ρu
δ

2γp
· ρp∞
γu + ρ A∞ + μ

)
θ2

1 − ρu∞
δ

2γp

(
1 + 2

γu +ρ(A∞ + θ1)+δ

σ

)
θ1θ2

− δ

2γp

(
2(γu + ρ(A∞ + θ1) + τp)(γu + ρ(A∞ + θ1) + δ)

σ
+ γu + ρ(A∞ + θ1)

)
θ2

2

− δ

2γp

(
(δ + μ)

(
ρp∞

γu + ρ A∞ + μ
+ 1

)
+ (σ + δ + μ)

ρ

τ
+ 2ρu∞

)
θ1θ4

−
(

δτu

2γp
+ γp

)
θ2

3 − δ

(
σ

γp

δ

2γp

)
θ2

4 − δ

2γp
(γp + μ)θ1θ3.

and remains nonpositive. Furthermore, Φ ′ = 0 if and only if θ1 = θ2 = θ3 = θ4 = 0.
The conclusion holds by the LaSalle Invariance Principle LaSalle (1976).
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