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The transcriptional repressor Hes1, a basic helix-loop-helix family protein, periodically
changes its expression in the presomitic mesoderm. Its periodic pattern of expression is
retained in a number of cultured murine cell lines. In this paper, we introduce an
extended mathematical model for Hes1 oscillatory expression that includes regulation of
Hes1 transcription by Drosophila Groucho (Gro) or its vertebrate counterpart, the
transducine-like enhancer of split/Groucho-related gene product 1 (TLE1). Gro/TLE1 is
a necessary corepressor required by a number of DNA-binding transcriptional repressors,
including Hes1. Models of direct repression via Hes1 typically display an expression
overshoot after transcription initiation which is not seen in the experimental data.
However, numerical simulation and theoretical predictions of our model show that the
cofactor Gro/TLE1 reduces the overshoot and is thus necessary for a rapid and finely
tuned response of Hes1 to activation signals. Further, from detailed linear stability and
numerical bifurcation analysis and simulations, we conclude that the cooperativity
coefficient (h) for Hes1 self-repression should be large (i.e. hR4). Finally, we introduce
the characteristic turnaround duration, and show that for our model the duration of the
repression loop is between 40 and 60 min.

Keywords: Hes-1; Gro/TLE1; Hill coefficient; transcriptional repression loop;
turnaround duration
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*A
1. Introduction

Recent experiments on cultured mammalian cell lines have shown oscillatory
dynamics in the expression of at least three transcriptional factors: Hes1, p53 and
NF-kB (Lev Bar-Or et al. 2000; Hirata et al. 2002; Hoffmann et al. 2002). In this
paper, we deal with one of them, Hes1. We propose an extended model for the
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regulation of Hes1 expression that explains its oscillatory nature, and look for
parameter requirements in different versions of the model.

Somites are transient embryonic structures that are formed through
segmentation of the presomitic mesoderm (PSM) in a highly regulated process
called somitogenesis. They are the origin of the skeletal muscles of the body as
well as the axial skeleton and the dermis of the back (Christ & Ordahl 1995). The
partitioning of the vertebrate body into a repetitive series of somites requires the
spatially and temporally coordinated behaviour of the cells in PSM. This is
achieved by an oscillatory mechanism generating periodic waves of gene
expression (order of 2 h) known as segmentation clock (Schnell et al. 2002).

The genes that are periodically expressed belong to the HES family (for Hairy
Enhancer of Split; Gao et al. 2001). They act by negatively regulating
transcription of tissue-specific transcription factors (Ohsako et al. 1994). The
transcription factor Hes1 is essential to neurogenesis, myogenesis, haematopoi-
esis and sex determination (Proush et al. 1994; Ishibashi et al. 1995). Hirata et al.
(2002) showed that a single serum treatment induces an oscillation of Hes1
mRNA and protein concentrations with a 2 h period in a variety of cultured cells,
such as myoblasts, fibroblasts, neuroblastoma cells and teratocarcinoma. They
also showed that Hes1 acts as its own repressor through a negative feedback loop.
To account for the appearance of these oscillations, they proposed the
involvement of a third factor in addition to Hes1 protein and Hes1 mRNA,
because three species are necessary to induce oscillations in a negative feedback
system (Griffith 1968). However, the introduction of an explicit delay of
15–20 min in a basic two-species model with negative feedback is also sufficient to
explain the oscillations (Jensen et al. 2003; Monk 2003). The delay accounts for
the time needed for transcription, translation and formation of a complex in the
nucleus to start repression.

Drosophila Groucho (Gro) and its vertebrate counterparts, the transducine-
like enhancer of split/Groucho-related gene products 1–4 (TLEs1–4), lack DNA
binding ability but can functionally associate with a number of DNA-binding
proteins, including Hes1. Interaction with Gro/TLE1 at the nuclear matrix is
necessary for transcriptional repression by Hes1 (McLarren et al. 2001). Hes1
itself activates hyperphosphorylation of Gro/TLEs bound to it. This correlates
with association of Gro/TLE1 to a nuclear matrix, suggesting that chromatin
remodelling might be a mechanism for this transcriptional repression (Nuthall
et al. 2002). We present here a model that includes Gro/TLE1 in the regulation
of Hes1-mediated repression of transcription.

Ordinary differential equations (ODEs) with negative feedback loops need to
be at least three-dimensional to sustain oscillations. A requirement for these
oscillations is a high cooperativity coefficient, i.e. a large feedback gain is
necessary for the onset of oscillations (Tyson & Othmer 1978). One such system,
the Goodwin model (Goodwin 1965), has been extensively used in circadian clock
modelling. However, this model requires a cooperativity coefficient of at least 9 to
induce oscillations, which is large and unrealistic unless a cascade mechanism is
involved (Ferrell 1996). On the other hand, the introduction of a time delay in a
feedback loop allows sustained oscillations even in a one-dimensional delay
differential equation with a relatively low cooperativity coefficient.

Time-series of Hes1 mRNA and protein levels in various cell cultures were
used as a starting point for modelling Hes1 repression loop. This paper considers
Phil. Trans. R. Soc. A (2006)
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two different models of self-repression kinetics, and uncovers conserved features
among them. Section 2 presents an analysis of the two-dimensional system
proposed by Jensen et al. (2003). In §3, we develop an extension of the Jensen
et al. model considering Gro/TLE1 interaction with the Hes1 regulatory
pathway. We then discuss the effects of Gro/TLE1 on the properties of
oscillatory Hes1 expression after initiation by a serum shock. Section 4 considers
general features of the two models that allow the estimation of parameter values.
We find quantities that are relatively invariant with respect to different models.
We conclude that although interaction of Hes1 with the corepressor Gro/TLE1 is
not necessary for oscillatory expression of Hes1, it does allow a much more
realistic activation curve that is consistent with the experimental data.
2. Two-dimensional Hes1–mRNA repression model

Standard mathematical analysis shows that two-component models with a
negative feedback cannot have stable self-sustained oscillations. Two possibilities
are then offered for a simple extension of the model to achieve oscillatory
behaviour.

First, one can invoke the existence of a third dependent variable. This is the
route taken by Hirata et al. (2002) who have considered a three-dimensional
system, in which a third (unknown) species X actively degrades Hes1, while Hes1
also acts as a repressor for X. However, the analysis of this model is not further
considered in this paper. Second, an explicit delay (Jensen et al. 2003; Monk
2003; Lewis 2003) is considered, which has its origin in the underlying biology. In
either case the Hill coefficient h, which accounts for the cooperativity of
repression activity of agents involved in the inhibition of Hes1 transcription, is
crucial. Although these studies dealt with parameter estimation and stability
analysis, the cooperativity coefficient h was taken as a fixed parameter with a
value between 2 and 4. The complexity of transcription regulation does not allow
for direct evaluation of the cooperativity coefficient, so we analysed a self-
repression to find plausible ranges of the value of h.

A two-compartment model for Hes1–mRNA self-repression with delay can be
written as (Jensen et al. 2003; Monk 2003; Lewis 2003)

dmRNAðtÞ
dt

Z
f0k

h

kh CHes1ðtKtÞh
KdmRNAðtÞ; ð2:1Þ

dHes1ðtÞ
dt

ZbmRNAðtÞKaHes1ðtÞ: ð2:2Þ

Equations (2.1) and (2.2) will be referred to as Model A. The first equation
describes the cellular concentration of Hes1 mRNA (mRNA) at time t and the
second equation describes the cellular concentration of Hes1 protein (Hes1) at
time t. The respective degradation rates (d of Hes1 and a of mRNA) and
translation rate (b) all have units of minK1. The nonlinearity comes from the
transcriptional repression activity of Hes1. The parameters in the feedback loop
are the maximum mRNA transcription rate f0 (conc minK1), a DNA dissociation
constant k (same units as Hes1) and a Hill coefficient h representing the degree of
cooperativity between different factors intervening in the repression of Hes1 gene
Phil. Trans. R. Soc. A (2006)



Table 1. List of parameters. (Parameters used for simulations and analysis. The letter ‘m’ indicates
that the parameter was estimated from model analysis. References are: 1, Hirata et al. (2002); 2,
Jensen et al. (2003) and Monk (2003); 3, Bolouri & Davidson (2003).)

parameter value units ref. description

a 0.03 minK1 (1) Hes1 degradation rate
d 0.03 minK1 (1) mRNA degradation rate
s 0.03 minK1 m GroH deactivation rate
k, [ — conc. (2) see appendix A
h 2–4 — (2),m Hes1 repression cooperativity; lower bound
u 2–4 — m GroH activation cooperativity; lower bound
THopf 90–150 min (1) period of oscillation of Hes1

t 10–30 min (2),m total delay due to transcription, translation and
transport; upper bound

f0 1 conc. minK1 (3) maximal transcription/translation rate
see appendix A

g0 1 minK1 — maximal phosphorylation rate
b 1 minK1 (3) Hes1 translation rate
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by Hes1 protein. The delay t accounts for the delay due to Hes1 modification,
complex formation and nucleocytoplasmic molecular transport.

Table 1 gives the values of parameters used for the analysis and simulations.
The experimentally measured parameters are the decay rates a and d, and the
period of oscillation THopf . The deactivation rate s was assumed to be of the same
order as the degradation rates. We have performed a numerical sensitivity
analysis by varying every parameter from 0.1 to 10 times their default value. We
looked at the presence of oscillations and the period of oscillation. We found that
the oscillations were present for most of the parameter values and that the period
changed by less than 15% with respect to f0, g0, k, [ and b (results not shown).
Degradation rates had a marked influence on the behaviour of the system, but
they have been measured accurately (Hirata et al. 2002). Therefore, the following
analysis mainly focuses on the effect of the Hill coefficients h and u and the
explicit delay t. The details of the computations and analysis are given in
appendices A–C.

The bifurcation diagram with respect to h (figure 1a) indicates the two
possible behaviours of Hes1 activity: damping to a steady state or sustained
oscillations, with an increasing period (figure 1c). Experimental levels of Hes1
mRNA and protein oscillate with a relatively constant amplitude and a 2 h
period (figure 1b).

In this model, a stability analysis (cf. appendix A) leads to analytical formulae
for local stability connecting the Hill coefficient, Hopf (oscillation) period and
rate constants. Namely, the steady state is unstable and a limit cycle is obtained
whenever h is larger than

hAcrit Z
4p2

adT2
Hopf

C
d

a

 !
4p2

adT2
Hopf

C
a

d

 !" #1=2
: ð2:3Þ
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Figure 1. (a) Numerically computed bifurcation diagram of Model A as a function of h. The main
panel shows the stable steady state and limit cycle (solid line) and unstable steady state (dashed
line). For hZ3, mRNA and protein levels converge to a steady state (panel (i)). For hZ5, the
solution converges to a stable limit cycle (panel (ii)). A Hopf bifurcation occurs at hZ4:5. (b)
Experimental time-series of Hes1 mRNA and protein levels (Hirata et al. 2002). (c) Period of
oscillation of the limit cycle as a function of h. Parameters as in table 1, with tZ18 min.
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Note that this critical value of h does not depend on the delay t. Rather, we use
the Hopf period THopf as a parameter and let t depend on THopf . This allows us to
place bounds on h and t. Assuming a period THopfZ120 min, we obtain a lower
bound on the cooperativity coefficient hAcritx4:1. For a given cooperativity
coefficient h and Hopf period THopf , the associated critical delay tAcrit can be
expressed as

tAcrit Z
1

u
arccos

u2

adh
K

1

h

� �
; ð2:4Þ
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Figure 2. Model for Gro/TLE1-mediated Hes1 repression.

S. Bernard and others1160
where u is the oscillatory angular frequency, uZ2p=THopf . The critical delay
defines the boundary between stable (t!tAcrit) and oscillatory (tOtAcrit) mRNA
and protein levels. This leads to a value of the maximal tAcrit, tAx19:7 min.

When Model A has no explicit delay (tZ0), its characteristic time-scale
(CTS), defined as 1=jReðlÞj with l the eigenvalue of Model A, is determined
by the decay rates a and d (Murray 1993; Strogatz 1994). Explicitly, CTSZ
2ðaCdÞK1Z33:3 min. Added to tAZ19:7 min, it gives a characteristic turn-
around duration (CTD) of CTDZCTSCtAZ53 min. The turnaround duration
is the time required to have an effective repression after transcription initiation
(see appendix B for a derivation of these results).

The value tA constitutes an upper bound on the delay and hAcrit is a lower
bound on the cooperativity coefficient. To have large amplitude oscillations (i.e.
to move away from the bifurcation point), it is necessary to have a somewhat
smaller t and/or larger h.
3. Gro/TLE1-mediated repression allows tuned response

(a ) Gro/TLE1–Hes1 repression model

We now consider the influence of an additional factor known to be involved in the
Hes1 repression loop, namely Gro/TLE1. Protein Gro/TLE1 is activated through
Hes1-induced hyper-phosphorylation. This activation is described by a Hill
function that is a monotonically increasing function of Hes1 with Hill coefficient
u. Moreover, the active form of Gro/TLE1 forms a complex with Hes1, denoted
GroH, to mediate repression through a negative feedback loop (cf. figure 2).
The variable GroH represents the repression complex of hyper-phosphorylated
Gro/TLE1 with Hes1 protein. The associated equations are written as

dHes1ðtÞ
dt

Z
f0k

h

kh CGroHðtKtÞh
KaHes1ðtÞ; ð3:1Þ

dGroHðtÞ
dt

Z
g0Hes1ðtÞu

[u CHes1ðtÞuKsGroHðtÞ: ð3:2Þ

These equations constitute what we call Model B. As with the other model, local
stability considerations establish relationships between the Hill coefficient,
Phil. Trans. R. Soc. A (2006)
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Figure 3. Comparison between numerical bifurcation analysis of Model A (dashed lines) and Model
B (solid lines). Note that the small Hill coefficient needed in case of Model B comes from the fact
that the total cooperativity coefficient is h!u. (a) The bifurcation curves give the delay t required
to induce a Hopf bifurcation for a given h. Crossing the lines from left to right (or from below) due
to parameter variation induces oscillations (e.g. figure 1). (b) Associated periods for each
bifurcation curve are shown. The grey area indicates the period interval from 90 to 150 min,
delineating a corresponding range of Hill coefficients.
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period, kinetic constants and delay. Following the same analytical development
as for Model A, we found that the quantity playing the role of the Hill coefficient
was now the product of h and u. Denoting this quantity total cooperativity,
cZuh, we obtain an expression similar to equation (2.3):

ccrit Z
4p2

asT2
Hopf

C
s

a

 !
4p2

asT2
Hopf

C
a

s

 !" #1=2
: ð3:3Þ

Again, we can calculate the associated critical delay tBcrit,

tBcrit Z
1

u
arccos

u2

asc
K

1

c

� �
: ð3:4Þ

As in Model A, a threshold value tBcrit of the total cooperativity also defines the
boundary between stable steady state (t!tBcrit) and limit cycle (tOtBcrit). The
introduction of another nonlinearity does not change the linear stability analysis
performed for Model A. It should be noted, however, that this analysis is an
approximation and a more detailed numerical analysis shows that the Hill
coefficient threshold is slightly higher than predicted (2.5 instead of 2.0 for fixed
uZ2:0). The CTD has, as for Model A, a value of CTDZ53 min.

Figure 3 shows the stability boundary in ðh; tÞ space for Models A and B
(figure 3a), and the corresponding Hopf period (figure 3b). The region of
Phil. Trans. R. Soc. A (2006)
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oscillatory expression is above and to the right of the ðh; tÞ curves. For Model B,
only the Hill coefficient h is shown. With uZ2, the total cooperativity coefficient
is doubled, leading to almost the same result as for Model B. Thus, for a 120 min
period oscillation, the corresponding values of h and t can be uniquely
determined. For Model B, the Hill coefficient required for 120 min period
oscillations is greater than 2.5 and the delay smaller than maxhO2:5ðtBcritÞhtBZ
20 min. If an interval between 90 and 150 min for the period is considered, a
range for h and t can be defined as:

— for Model A, 3!h!7 and 15 min!tA!30 min;
— for Model B, 4!c!8, and 10 min!tB!30 min.

These results show that introducing a new mechanism does not affect the basic
properties of these models with respect to the Hopf bifurcation. Interestingly, the
model considered by Hirata et al. (2002) consists of three ODEs with two
feedback loops, each with a Hill coefficient of 2 that would give a total
cooperativity coefficient of 4. Our comparison of these models reveals general
properties of the Hes1 oscillation that are not yet measured experimentally. In
particular, strong cooperativity of Hes1 repression (h between 3 and 8) and a
turnaround duration between 40 and 60 min are predicted.
(b ) The second nonlinearity increases adaptativity

The stability results of the previous sections show that oscillation onset of the
systems depends on model independent quantities, such as degradation rates,
cooperativity coefficients (or the product thereof) and the CTD, including delays
due to auxiliary variables. The CTD takes into account both the time-scale
introduced by the dynamics of the non-delayed system and the explicit delay t.
However, the behaviour of the solution away from the steady state can be quite
different from model to model.

Experimental data on Hes1 expression level in cultured cells after a serum
shock show no sign of overshoot in the first cycle of mRNA transcription and
Hes1 synthesis (Hirata et al. 2002). On the contrary, the expression levels of both
mRNA and Hes1 rapidly settle down to an oscillatory regime of approximately
constant amplitude. Systems with only one nonlinearity often display a large
overshoot before solutions converge to their attractor. A second nonlinearity is
then needed to fine-tune the dynamics of the systems when away from
equilibrium. In appendix C, using Model A, we compute a lower bound for the
value of the Hes1 expression overshoot with respect to the steady-state value.

From the results of a full numerical simulation of Models A and B, we
compared the initiation of Hes1 synthesis after a serum shock (figure 4). The
serum shock triggers Hes1 transcription and is modelled by setting Hes1, mRNA
and GroH initial levels to values close to zero at time 0. In Model A, there is an
overshoot due to the lack of repression mechanisms in the first minutes. In the
case of Gro/TLE1-mediated repression (Model B), it is assumed that Gro/TLE1
is already active at a low level, and the fast activation rate of Gro/TLE1 supports
the rapid convergence of Hes1 expression to the stable oscillatory pattern.

It is possible to give a formal bound for the overshoot. The following
calculation shows that the large overshoot (figure 4) is a characteristic feature of
Phil. Trans. R. Soc. A (2006)
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1163The role of Gro/TLE1 in Hes1 oscillations
Model A. We assume that before initiation the Hes1 gene is practically silent, so
the initial conditions for mRNA and Hes1 are set to zero. Moreover, to simplify
the computations, we set aZd. To obtain a simple expression for the overshoot,
we set the transcriptional delay t equal to the half-lives of Hes1 mRNA and
protein, so tZ ln 2=dx23 min. Calculations of a bound of the overshoot in Hes1
lead to Hes1overshootRð1Kln 2Þbf0=ð2d2Þ (see appendix C). With a steady state of
Hes1�Zb=a, the ratio between the maximal protein level and the steady-state
level is

Hes1overshoot
Hes1�

Z ð1Kln 2Þ f0
2d

: ð3:5Þ

The ratio of maximal transcription to degradation rates, f0=d, is large. For
instance, f0=dZ30 gives an overshoot about five times the steady-state value. It
is likely that the ratio f0=d is even higher since estimates of 11 initiations per
second have been reported (Bolouri & Davidson 2003). It is possible to reduce the
overshoot considerably by setting some parameters to unrealistic values. For
example, a translation rate b of one translation every 33 min (0.03 minK1) leads
to a smaller overshoot, comparable to Model B simulations. It is likely, however,
that b is much larger, ranging from 1.0 to 100 minK1 (Ghaemmaghami et al.
2003; Bolouri & Davidson 2003). Even though b has no effect on the stability
properties of these models, initially it is of crucial importance after serum shock.

In principle, one could replace b in Model A by a nonlinear function without
having to take Gro/TLE1–Hes1 interactions into consideration. However, the
introduction of this nonlinearity is not motivated by any experimental data and
would be artificial.

Compared to Model A, Model B shows a more realistic activation curve. This is
due to two factors. First, since Gro/TLE1 is a general corepressor, there may exist
a baseline level of phosphorylated protein in the cell before initiation of Hes1
synthesis. This would have an attenuating effect on Hes1 transcription. Second,
numerical simulations show that in Model B a smaller delay t is needed to
generate 120 min period oscillations due to the introduction of a second
nonlinearity. Consequently, the speed of the response after activation is increased.
Phil. Trans. R. Soc. A (2006)
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4. Discussion

Numerical simulations and analytical results from two models of Hes1 self-
regulation show interesting model-independent features. Encouragingly, the
most important characteristics of the models all lie in the same range. More
precisely, to be consistent with the experimental data the cooperativity
coefficient associated with Hes1 repression must be higher than 2, and is likely
to be around 4. Further, the explicit delay included in the model should range
from 10 to 30 min. These results are in agreement with previous studies (Hirata
et al. 2002; Jensen et al. 2003; Monk 2003; Lewis 2003). Given the complex
nature of transcription regulation, it is likely that this parameter plays an
important role in the control of protein expression.

A central quantity introduced in this study is the CTD, defined as the CTSCthe
delay, as a measure of the lag between transcription initiation and repression. In
both model versions, a CTD of about 40–60 min is predicted. The model-
independent estimation of CTDx50 min is a central result based only on partial
knowledge of kinetic data. A sufficiently large delay is needed to induce
oscillations, so the CTS needs to be small. Since the CTS is 2=ðaCdÞ, only
protein andmRNAwith short half-lives can display these short oscillation periods.

Using linear stability analysis, we estimated the values of the cooperativity
coefficients and delays from measured kinetic data, such as Hes1 protein and
mRNA degradation rates. Constrained by the period of oscillation, it is possible
to define a lower bound for the cooperativity coefficient and an upper bound for
the delay. For example, a cooperativity coefficient lower than 4 or a delay longer
than 20 min always yield periods longer than 120 min. If the system is near the
Hopf bifurcation, these values should be good estimates.

Interaction of Hes1 with Gro/TLE1 is necessary for transcriptional repression
by Hes1 (McLarren et al. 2001). The fact that Hes1 itself activates hyperpho-
sphorylation of Gro/TLEs suggests a dynamic link between the two proteins.
Introduction of Gro/TLE-mediated repression in a model allows a faster
physiological adaptation after a serum shock and/or Hes1 induction from the
Notch pathway. In feedback loop systems with a single nonlinearity, a large
overshoot is seen after initiation, resulting in an initial strong response followed by
small amplitude oscillations. When the corepressor Gro/TLE1 is introduced, the
overshoot is greatly reduced, and steady oscillatory protein expression levels are
observed. Gro/TLE1 is known to be expressed in a variety of cell lines and acts as
a general corepressor (Jimenez et al. 1997). We suggest that the kinetic role of
Gro/TLE1 is to fine-tune expression levels after initiation of protein synthesis.
Editors’ note

Please see also related communications in this focussed issue by Benson et al.
(2006) and Terashima et al. (2006).
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Appendix A. Linear stability analysis

In this section, we present a detailed linear stability analysis for Model A. The
linear analysis for Model B follows the same scheme.

Equations (2.1) and (2.2) are nonlinear differential delay equations with
negative feedback. (For a general introduction to delay differential equations and
their applications, see Hale & Verduyn-Lunel (1993) and Beuter et al. (2003).)
The first step of the linear stability analysis is the calculation of the steady
states. The equations defining the steady state are

dmRNA� Z
f0k

h

kh CHes1h�
; ðA 1Þ

aHes1� ZbmRNA�: ðA 2Þ

We note that f0 and k have only a minor effect on the bifurcation analysis. Even
changes of one order of magnitude do not substantially affect the bifurcation
analysis (figure 5). For example, a change of k from 0.01 to 1 leads to a change of
the bifurcation parameter h from 4.0 to 4.1, at a delay of tZ20 min. As long as k
takes small values, the parameter k can be freely chosen without perturbing the
bifurcation analysis of Model A. An appropriate scaling is

ka

b

� �h

Z
d

f0Kd
: ðA 3Þ

With this scaling, the steady-state values are mRNA�Z1 and Hes1�Zb=a. This
is a reasonable assumption since f0[d (see table 1), at least for larger h, as
shown in figure 6. There is an excellent agreement between the theoretical
bifurcation analysis using the choice of k discussed earlier and numerical
bifurcation analysis (figure 6).

Linearization of equations (2.1) and (2.2) around this steady state yields the
following equations for the deviations from the steady states xZmRNAK1 and
Phil. Trans. R. Soc. A (2006)
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numerically computed bifurcation curve (dashed line) shows the value t at which a Hopf
bifurcation occurs when h is varied. The theoretical bifurcation curve (solid line) was drawn using
equation (3.4). (b) The corresponding period of oscillation (THopf) is shown. The numerically
computed period (dashed line) is compared to the theoretically computed period (solid line) using
THopfZ2p=u with u defined in equation (A 11).
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yZHes1Kb=a:

dx

dt
ZKdxC f 0�yt; ðA 4Þ

dy

dt
Z bxKay: ðA 5Þ

Here f is the nonlinear function on the right-hand side of equation (2.1) defined by

f Z f0
kh

kh CHes1h
: ðA 6Þ

Its derivative, evaluated at the steady state f 0�, is given by

f 0� ZK
adh

b
1K

d

f0

� �
: ðA 7Þ

The characteristic (eigenvalue) equation associated with this system of
equations depends on the delay t,

ðlCdÞðlCaÞCadh 1K
d

f0

� �
expðKltÞZ 0: ðA 8Þ

There is a critical value for the delay t, denoted by tAcrit, at which the system is
destabilized and undergoes a Hopf bifurcation. At this Hopf bifurcation point, a
pair of eigenvalues l has a zero real part, i.e. lZGiu. The value u gives the
Phil. Trans. R. Soc. A (2006)
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frequency of oscillation at the Hopf bifurcation point. In Model A, the frequency
is given by

uZ
1ffiffiffi
2

p Kðd2 Ca2ÞC ðd2Ka2Þ2C4a2d2h2 1K
d

f0

� �2� �1=2" #1=2
: ðA 9Þ

The assumption f0[d allows us to simplify the expression for hAcrit (2.3), which is
found by solving equation (A 9) with uZ2p=THopf . The oscillation onset (Hopf
bifurcation) is given by a sign change of the real part of l in the characteristic
equation for lZGiu. Then, by solving the characteristic equation of Model A
(A 8) for t, we find the relation given in equation (2.4).

A similar analysis for Model B, with the scaling khZa=ðf0KbÞ and
[uZs=ðg0KsÞ, leads to the characteristic equation,

ðlCaÞðlCsÞCG expðKltÞZ 0; with GZahsu 1K
a

f0

� �
1K

s

g0

� �
: ðA 10Þ

At the Hopf bifurcation, lZ iu gives

uZ 1ffiffiffi
2

p ½Kða2Cs2ÞC ½ða2Ks2Þ2C4G2�1=2�1=2: ðA 11Þ

By making the approximation that Gxhuas, equation (3.3) and, subsequently,
equation (3.4) are obtained.
Appendix B. Characteristic turnaround duration

When tZ0, Model A reduces to a system of ODEs with a stable steady state.
The linearized equations of Model A become linear ODEs, and the eigenvalues
l are given by equation (A 8) with tZ0. That is,

ðlCdÞðlCaÞCadh 1K
d

f0

� �
Z 0: ðB 1Þ

Hence, lZ ½KðaCdÞG
ffiffiffiffi
D

p
�=2, with a negative discriminant D!0 when dZa.

Thus, the real part of l isKðaCdÞ=2. The turnaround time jljK1Ct gives an
estimation of the time required from mRNA synthesis to repression of
transcription, i.e. a complete turnaround.

The CTD of Models A and B as a function of the cooperativity coefficient
(h for Model A and c for Model B) are very similar and vary very weakly (figure 7).
When h varies from 4 to 10, the CTD only decreases from 53 to 44 min.
Appendix C. Overshoot and adaptativity

We discuss here the maximal value that solutions of Model A can achieve for
initially vanishing Hes1 mRNA. Numerical simulations show that this maximal
value is reached around tZt. This will restrict our search to the interval t2ð0;t�
leading to a lower bound of the maximal value of Hes1 concentration.

Since the non-delayed terms are linear, Model A can be solved directly with
initial conditions given on the interval ½Kt;0�. Setting the initial conditions to
Phil. Trans. R. Soc. A (2006)
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plotting these curves, a period of 120 min was assumed. That is, for a given h, t was determined to
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zero yields the following system of linear differential equations:

dmRNAðtÞ
dt

Z f0KdmRNAðtÞ; ðC 1Þ

dHes1ðtÞ
dt

Z bmRNAðtÞKaHes1ðtÞ; ðC 2Þ

with the solutions

mRNAðtÞZ f0
d
ð1KeKdtÞ; ðC 3Þ

Hes1ðtÞZ bf0
ad

1C
d eKatKa eKdt

aKd

� �
: ðC 4Þ

These solutions are exact for 0% t%t for zero initial conditions. The solution
for Hes1 is a not a convenient expression, but by letting a/d, and evaluating at
tZt, we have

Hes1ðtÞZ bf0
d2

ð1KeKdtð1CtdÞÞ: ðC 5Þ

The term in parentheses is a constant of the order of 1. Because estimated values
for t are of the same order as the Hes1 protein and mRNA half-lives, we take the
delay t to be equal to the mRNA half-life, tZ ln 2=d, and we obtain

Hes1ðtÞZ bf0
2d2

ð1Kln 2Þ: ðC 6Þ

If we assume that the steady-state Hes1 level is Hes1�Zb=aZb=d, the ratio
between Hes1ðtÞ and the steady-state Hes1 level can be computed as given in
equation (3.5).
References

Benson, A. P., Clayton, R. H., Holden, A. V., Kharche, S. & Tong, W. C. 2006 Endogenous driving
and synchronization in cardiac and uterine virtual tissues: bifurcations and local coupling. Phil.
Trans. R. Soc. A 364, 1313–1327. (doi:10.1098/rsta.2006.1772)
Phil. Trans. R. Soc. A (2006)

http://dx.doi.org/doi:10.1098/rsta.2006.1772


1169The role of Gro/TLE1 in Hes1 oscillations
Beuter, A., Glass, L., Mackey, M. C. & Titcombe, M. S. (eds) 2003. Nonlinear dynamics in

physiology and medicine. Interdisciplinary applied mathematics, vol. 25. New York: Springer.

Bolouri, H. & Davidson, E. H. 2003 Transcriptional regulatory cascades in development: initial

rates, not steady state, determine network kinetics. Proc. Natl Acad. Sci. USA 100, 9371–9376.

(doi:10.1073/pnas.1533293100)

Christ, B. & Ordahl, C. P. 1995 Early stage of chick somite development. Anat. Embryo. (Berl.)

191, 381–396. (doi:10.1007/BF00304424)

Ferrell, J. E. J. 1996 Tripping the switch fantastic: how a protein kinase can convert graded inputs

into switch-like outputs.TrendsBiochem.Sci.21, 460–466. (doi:10.1016/S0968-0004(96)20026-X)

Gao, X., Chandra, T., Gratton, M. O., Quelo, I., Prud’homme, J., Stifani, S. & St-Arnaud, R. 2001

Hes6 acts as a transcriptional repressor in myoblasts and can induce the myogenic

differentiation program. J. Cell Biol. 154, 1161–1171. (doi:10.1083/jcb.200104058)

Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O’Shea,

E. K. & Weissman, J. S. 2003 Global analysis of protein expression in yeast. Nature 425,

737–741. (doi:10.1038/nature02046)

Goodwin, B. C. 1965 Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3,

425–438. (doi:10.1016/0065-2571(65)90067-1)

Griffith, J. S. 1968 Mathematics of cellular control processes. I. Negative feedback to one gene.

J. Theor. Biol. 20, 202–208. (doi:10.1016/0022-5193(68)90189-6)

Hale, J. K. & Verduyn-Lunel, S. M. 1993 Introduction to functional differential equations. Applied

mathematical sciences, vol. 99. New York: Springer.

Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K. & Kageyama, R.

2002 Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop.

Science 298, 840–843. (doi:10.1126/science.1074560)

Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. 2002 The Ikappa B-NF-kappa B

signaling module: temporal control and selective gene activation. Science 298, 1241–1245.

(doi:10.1126/science.1071914)

Ishibashi, M., Ang, S. L., Shiota, K., Nakanishi, S., Kageyama, R. & Guillemot, F. 1995 Targeted

disruption of mammalian hairy and enhancer of split homolog-1 (hes-1) leads to up-regulation of

neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes

Dev. 24, 3136–3148.

Jensen, M. H., Sneppen, K. & Tiana, G. 2003 Sustained oscillations and time delays in gene

expression of protein Hes1. FEBS Lett. 541, 176–177. (doi:10.1016/S0014-5793(03)00279-5)

Jimenez, G., Paroush, Z. & Ish-Horowicz, D. 1997 Groucho acts as a corepressor for a subset of

negative regulators, including hairy and engrailed. Genes Dev. 15, 3072–3082.

Lev Bar-Or, R., Maya, R., Segel, L. A., Alon, U., Levine, A. J. & Oren, M. 2000 Generation of

oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc. Natl

Acad. Sci. USA 97, 11 250–11 255. (doi:10.1073/pnas.210171597)

Lewis, J. 2003 Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish

somitogenesis oscillator. Curr. Biol. 13, 1398–1408. (doi:10.1016/S0960-9822(03)00534-7)

McLarren, K. W., Thériault, F. M. & Stifani, S. 2001 Association with the nuclear matrix and

interaction with Groucho and RUNX proteins regulate the transcription repression activity of

the basic helix loop helix factor Hes1. J. Biol. Chem. 276, 1578–1584. (doi:10.1074/jbc.

M007629200)

Monk, N. A. M. 2003 Oscillatory expression of Hes1, p53, and NF-kB driven by transcriptional

time delays. Curr. Biol. 13, 1409–1413. (doi:10.1016/S0960-9822(03)00494-9)

Murray, J. D. 1993 Mathematical biology. Biomathematics texts, vol. 19, 2nd edn. Berlin: Springer.

Nuthall, H. N., Husain, J., McLarren, K. W. & Stifani, S. 2002 Role for Hes1-induced

phosphorylation in groucho-mediated transcriptional repression. Mol. Cell. Biol. 22, 389–399.

(doi:10.1128/MCB.22.2.389-399.2002)

Ohsako, S., Hyer, J., Panganiban, G., Oliver, I. & Caudy, M. 1994 Hairy function as a DNA-binding

helix-loop-helix repressor of Drosophila sensory organ formation. Genes Dev. 8, 2743–2755.
Phil. Trans. R. Soc. A (2006)

http://dx.doi.org/doi:10.1073/pnas.1533293100
http://dx.doi.org/doi:10.1007/BF00304424
http://dx.doi.org/doi:10.1016/S0968-0004(96)20026-X
http://dx.doi.org/doi:10.1083/jcb.200104058
http://dx.doi.org/doi:10.1038/nature02046
http://dx.doi.org/doi:10.1016/0065-2571(65)90067-1
http://dx.doi.org/doi:10.1016/0022-5193(68)90189-6
http://dx.doi.org/doi:10.1126/science.1074560
http://dx.doi.org/doi:10.1126/science.1071914
http://dx.doi.org/doi:10.1016/S0014-5793(03)00279-5
http://dx.doi.org/doi:10.1073/pnas.210171597
http://dx.doi.org/doi:10.1016/S0960-9822(03)00534-7
http://dx.doi.org/doi:10.1074/jbc.M007629200
http://dx.doi.org/doi:10.1074/jbc.M007629200
http://dx.doi.org/doi:10.1016/S0960-9822(03)00494-9
http://dx.doi.org/doi:10.1128/MCB.22.2.389-399.2002


S. Bernard and others1170
Proush, Z., Finley, R. L. J., Kidd, T.,Wainwright, S.M., Ingham, P.W., Brent, R. & Ish-Horowicz, D.
1994 Groucho is required for drosophila neurogenesis, segmentation, and sex determination and
interacts directly with hairy-related bHLH proteins. Cell 79, 805–815. (doi:10.1016/0092-8674(94)
90070-1)

Schnell, S., Maini, P. K., McInerney, D., Gavaghan, D. J. & Houston, P. 2002 Models for pattern
formation in somitogenesis: a marriage of cellular and molecular biology. C. R. Biol. 325, 179–189.

Strogatz, S. H. 1994 Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering. Studies in nonlinearity. Reading, MA: Perseus Books.

Terashima, K., Takeuchi, A., Sarai, N., Matsuoka, S., Shim, E. B., Leem, C. H. & Noma, A. 2006
Modelling Cl- homeostasis and volume regulation of the cardiac cell. Phil. Trans. R. Soc. A 364.
(doi:10.1098/rsta.2006.1782)

Tyson, J. J. & Othmer, H. G. 1978 The dynamics of feedback control circuits in biochemical
pathways. Prog. Theor. Biol. 5, 1–62.
Phil. Trans. R. Soc. A (2006)

http://dx.doi.org/doi:10.1016/0092-8674(94)90070-1
http://dx.doi.org/doi:10.1016/0092-8674(94)90070-1
http://dx.doi.org/doi:10.1098/rsta.2006.1782

	Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations
	Introduction
	Two-dimensional Hes1-mRNA repression model
	Gro/TLE1-mediated repression allows tuned response
	Gro/TLE1-Hes1 repression model
	The second nonlinearity increases adaptativity

	Discussion
	Editors note
	This work was supported by MITACS (Canada) and the Natural Sciences and Engineering Research Council (NSERC grant OGP-0036920, Canada). We especially thank Drs M. Santillán, S. Stifani and R. Kageyama for helpful discussions and comments. This work was...
	Linear stability analysis
	Characteristic turnaround duration
	Overshoot and adaptativity
	References


