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Abstract. We analyze the existence of oscillating solutions and the asymp-

totic convergence for a nonlinear delay differential equation arising from the

modeling of platelet production. We consider four different cell compartments
corresponding to different cell maturity levels: stem cells, megakaryocytic pro-

genitors, megakaryocytes, and platelets compartments, and the quantity of
circulating thrombopoietin (TPO), a platelet regulation cytokine.

Our initial model consists in a nonlinear age-structured partial differen-

tial equation system, where each equation describes the dynamics of a single
compartment. This system is reduced to a single nonlinear delay differential

equation describing the dynamics of the platelet population, in which the delay

accounts for a differentiation time.
After introducing the model, we prove the existence of a unique steady state

for the delay differential equation. Then we determine necessary and sufficient

conditions for the existence of oscillating solutions. Next we set up conditions
to get local asymptotic stability and asymptotic convergence of this steady

state. Finally we present a short analysis of the influence of the conditions at

t < 0 on the proof for asymptotic convergence.
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1. Introduction. Megakaryopoiesis, also known as thrombopoiesis or thrombocy-
topoiesis, is the process of production and regulation of platelets, the blood elements
in charge of hemostasis [35]. All platelets originate from hematopoietic stem cells
(HSC), like other blood cells (white cells, red blood cells), and differentiate through
successive divisions into progenitor cells, a large class of undifferentiated immature
cells. Megakaryocytic progenitors differentiate then into megakaryocytic precur-
sors, called megakaryocytes. They are considered as the last stage of differentiation
before producing mature differentiated cells. Megakaryocytes are very large cells
of about 40 to 100 µ m of diameter, which corresponds to approximately 10 to 15
times the size of an average red blood cell. This large size is due to the fact that
they perform endomitosis (division of the nucleus without cell division) and become
polyploid (with a nucleus containing multiple pairs of DNA), before finally produc-
ing platelets through a fragmentation process [8]. Each megakaryocyte produces,
in average, between 2,000 and 5,000 platelets [27, 28].

Platelets, which are enucleated cells, enter the bloodstream after production.
The platelet lifespan in circulating blood is about 7 to 10 days in humans, and 4
days in mice [30]. The density of platelets is stable in every individual (150–400
×109 cells.L−1 in the healthy human adult, compared to 1,000-1,500 ×109 cells.L−1

in normal mice), but it may vary between individuals [16], in particular in clinically
significant disorders. The two main ones are thrombocytopenia and thrombocytosis.
Thrombocytosis, characterized in humans by platelet counts greater than 600×109

cells.L−1, can increase the risk for thrombotic events, including stroke, peripheral
ischemia, and myocardial infarction [28]. Thrombocytopenia, also known as throm-
bopenia, corresponds to platelet counts less than 150×109 cells.L−1, and can lead to
inadequate clot formation and increased risk of bleeding. Cyclical thrombocytope-
nia (CT), a rare form of thrombocytopenia, is a disease characterized by oscillations
of platelet counts with periods between 20 and 40 days [32] in humans, whose origin
is currently unknown.

Several cytokines regulate platelet production, at various stages of differentiation
[7, 37]. The main cytokine involved in megakaryopoiesis is thrombopoietin, or TPO:
it has been shown to stimulate HSC differentiation [7], megakaryocytic progenitor
proliferation and differentiation into megakaryocytes [27], and megakaryocyte pro-
duction [27], and to induce megakaryocyte endomitosis, cytoplasmic expansion,
membrane maturation and platelet release [17, 28].

TPO is constitutively produced by the liver [31] (and partially by kidneys and
bone marrow). This means that production of TPO is not directly controlled by the
platelet count. Nevertheless, the level of circulating TPO depends on the platelet
count: these latter fix TPO on their surface through the protein c-Mpl. Conse-
quently, the more circulating platelets the less circulating TPO [16], implying a
decrease in platelet production, resulting in less in circulating platelets.

Mathematical modeling of thrombopoiesis has not attracted so much attention
so far. Over the past thirty years, to our knowledge, five attempts to model platelet
dynamics can be found, mostly focused on the description of CT.

Following early works by Wichmann et al. [36] and Eller et al. [9], in 2000
Santillan et al. [29] proposed an age-structured model for the regulation of platelet
production, which is compared to both normal and pathological platelet production.
The model is based on previous works by Bélair et al. [2] on erythropoiesis, and con-
siders explicitly ploidy classes for megakaryocytes: three different classes (low, aver-
age and high ploidy) are described, and the recruitment of megakaryocytes depends
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linearly on the TPO concentration. Santillan et al. [29] investigated the existence
of steady states and estimated parameters from data on thrombocytopenic sheep,
healthy human adults, and mice. They studied, in particular, numerical description
of CT, and showed that data can be reproduced for large platelet destruction rates.

In 2008, Apostu and Mackey [1], inspired by a model of hematopoiesis dynamics
describing the three main hematopoietic lineages [4, 5], focused on the causes of
CT. Parameters were estimated and comparison to data indicated that the platelet
destruction rate, the effective growth rate of megakaryocytes, the minimal number
of platelets released per megakaryocyte, and the megakaryocyte maturation time
played key roles in the onset of oscillations in platelet production.

Most recently, Langlois et al. [21] investigated the normal and pathological dy-
namics of platelets in humans, observing the dynamics in the amounts of megakary-
ocytes, of platelets and of TPO, with an up-regulation by TPO of the proliferation
rate of progenitors and of the growth rate of megakaryocytes. The result is a sys-
tem of two differential equations with a distributed delay, for which they estimated
parameter values using clinical data and model fits.

Similarly to Santillan et al. [29] and Apostu and Mackey [1], Langlois et al.
[21] used numerical tools to find parameters associated with oscillatory behaviors,
and generated simulations matching the oscillating platelet counts observed in CT
patients. However, powerful analytical results can be found in the mathematical
literature concerning the long term behavior of delay differential equations like
the ones describing megakaryopoiesis. For example, results regarding oscillation
properties of hematopoiesis models have been obtained. Gopalsamy et al. [10]
found a sufficient condition for oscillating solutions for the Mackey-Glass equation
[23]

ẋ(t) = −γx(t) +
B

1 + [x(t− r)]n
, (1)

where γ,B, r, n > 0, as well as a criterion that makes it a necessary condition ; and
Kulenovic and Ladas [20] found a necessary and sufficient condition for oscillating
solutions for the Lasota-Wazewska model of the red blood cell supply in an animal
[34]

x′(t) = −γx(t) + ρe−µx(t−r), (2)

where µ, ρ, γ, r > 0.
Results can also be found regarding global stability for the general case

x′(t) = F (t, xt), (3)

using so-called “Yorke functional” (see [26] for a review). A framework has also
been built for a more restricted family of equations

x′(t) = f1(x(t− r))g2(x(t))− f2(x(t− r))g1(x(t)). (4)

In particular, Ivanov et al. [15] obtained two results on global stability, one delay-
independent and the other delay-dependent. They successfully applied the second
one to the two equations

x′(t) = −x(t)φ(x(t− h)) + 1,

with φ increasing positive, and

x′(t) = −g(x(t)) + f(x(t− h)),

with g positive increasing and f positive.
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In this paper, we explore the potential of such analytical tools by proposing
a new age-structured model of megakaryopoiesis, focusing on the differentiation
pathway (from HSC to progenitors to megakaryocytes) and including the role of
TPO. Despite the various influences of TPO on the differentiation process, we will
only consider in this work its influence on the initiation of the differentiation pro-
cess (stimulation of HSC differentiation) and its termination (up-regulation of the
amount of platelets obtained through fragmentation) in order to retain most of
TPO influence on platelet production and to facilitate the model’s analysis. Com-
plexifications of the current model could be considered in further analyses. Under
these assumptions the age-structured model reduces to a scalar nonlinear delay
differential equation on the platelet count which can be expressed as

x′(t) = −γx(t) + f(x(t))g(x(t− r)), (5)

with γ, r > 0 and f, g two decreasing positive functions. We notice that (5) is a
generalization of (1) and (2), which motivates the search for a new criterion for the
existence of oscillating solutions that would encompass the pre-existing results on
these two subcases. We also notice that (5) is a subcase of both (3) and (4), but
neither the “Yorke functional” nor the condition given in the result from Ivanov et
al. can be applied to (5).

Unlike Ivanov et al. [15], we decided to study the equilibrium as an attractor
for solutions on R+ rather than on R: this requires to introduce a limitation on
the initial behavior of the solution that we named the low initial slope condition,
which depends heavily on the conditions at t = 0. Therefore we focus on asymptotic
convergence rather than on global asymptotic stability. Finally, while the existence
of periodic solutions have been addressed both for generalizations [25] and subcases
[3, 33] of (5), these questions are out of the scope of this paper.

The paper goes as follows. In Section 2, we present the new age-structured model.
In Section 3 we reduce this model to a delay differential equation on the platelet
count and prove that it has a unique steady state, which is locally asymptotically
stable. We also give a result on the boundedness of the solutions. Section 4 is
dedicated to determining a sufficient and necessary condition for the existence of
oscillating solutions. We show that this condition is equivalent to those given in [10]
and in [20]. In Section 5 we define what we mean by low initial slope and we give the
proof for a new delay-dependent condition for asymptotic convergence. Finally, in
Section 6, we return to the biological premises of our model used to obtain (5): using
a simplified version of the age-structured model, we give sufficient conditions on the
initial conditions implying the low initial slope needed for asymptotic convergence.

2. An age-structured model of megakaryopoiesis. In order to model mega-
karyopoiesis, we consider 4 different cell populations: hematopoietic stem cells
(HSC), megakaryocytic progenitors, megakaryocytes, and platelets, and the quan-
tity of circulating thrombopoietin (TPO). They are represented in Figure 1.

Hematopoietic stem cells partly differentiate in megakaryocytic progenitors under
the action of TPO [7]. Megakaryocytic progenitors differentiate through successive
divisions, and produce megakaryocytes. Megakaryocytes no longer differentiate,
they only mature, without dividing. They perform endomitosis, increase their size
(the size of their nucleus as well as the size of their cytoplasm), and finally pro-
duce platelets through a particular process of fragmentation [8]. The production of
platelets, through the fragmentation of megakaryocytes, is also positively mediated
by TPO [37].
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Figure 1. Model of Megakaryopoiesis. The linear differen-
tiation process, starting from HSC and ending with platelets, is
positively regulated by TPO. The quantity of TPO is in turn mod-
ulated by the number of platelets: the more platelets, the less
circulating TPO.

TPO is constitutively produced by the liver [31]. However, the quantity of cir-
culating TPO depends on the number of platelets which fix TPO on their surface
and then negatively control the quantity of circulating TPO [16].

In order to model megakaryopoiesis and to analyze the resulting model, we give
some biological assumptions, based on the above-mentioned remarks:

(H1) The number of HSC is constant over time, denoted by HSC;
(H2) The megakaryocytic progenitor cell cycle duration is assumed to be constant,

equal to τ days;
(H3) The total quantity of TPO is constant, denoted by TTPO;
(H4) Circulating TPO positively mediates HSC differentiation in megakaryocytic

progenitors, and fragmentation of megakaryocytes in platelets.

Assumption (H1) implies that we do not focus on HSC dynamics and regulation,
we only consider that the platelet production process originates from the HSC
compartment. Assumption (H4) allows us to focus on some specific roles of TPO
in megakaryopoiesis.

In the following, we denote by MP (t) the number of megakaryocytic progenitors,
by Mk(t) the number of megakaryocytes, by P (t) the number of platelets in blood,
and by TPO(t) the quantity of circulating TPO, at time t.

2.1. Megakaryocytic progenitor dynamics. Let us focus on the progenitor cell
population behavior. We suppose that megakaryocytic progenitors differentiate
throughout n divisions, where n ≥ 1 is fixed. We also assume that in each genera-
tion, progenitor cells either die with the same apoptosis rate δ > 0, or divide after a



6 L. BOULLU, M. ADIMY, F. CRAUSTE AND L. PUJO-MENJOUET

given fixed time τ > 0. After division, progenitor cells immediately enter the next
generation.

We denote by mpi(t, a) the number of megakaryocytic progenitors in the i-th
generation, 1 ≤ i ≤ n, with age a ∈ [0, τ ] at time t > 0. Then, we assume
that a TPO-dependent proportion κ(TPO) of HSC differentiate in megakaryocytic
progenitors and can be formulated as a standard feedback function as explained in
[24]:

κ(TPO) =
ακTPO

Qκ

θQκκ + TPOQκ
, (6)

such that 0 < ακ < 1 is the maximum proportion of HSC differentiating in
megakaryocytes, θκ the quantity of TPO needed to bring this proportion to ακ/2
and Qκ a parameter controlling the sharpness of the change from low state to high
state.

Hence, the following equations describe the megakaryocytic progenitor popula-
tion dynamics:

∂

∂t
mpi(t, a) +

∂

∂a
mpi(t, a) = −δmpi(t, a),

mp1(t, 0) = κ(TPO(t))HSC,

mpi(t, 0) = 2mpi−1(t, τ), 2 ≤ i ≤ n,
mpi(0, a) = Impi(a), 1 ≤ i ≤ n.

(7)

Impi : R+ → R+ is a continuous function representing the initial amount of pro-
genitors of age a in the i-th generation. Denoting by MPi(t) the total number of
megakaryocytic progenitors in the i-th generation, then

MPi(t) :=

∫ τ

0

mpi(t, a)da.

Integrating the age structured partial differential equations in (7) with respect to
age, and using the method of characteristics (given here by the lines a(t) = t+ a0),
one can easily obtain, for 1 ≤ i ≤ n and t ≥ nτ ,

d

dt
MPi(t) =− δMPi(t)+

2i−1e−δ(i−1)τ
[
κ(TPO(t− (i− 1)τ))− e−δτκ(TPO(t− iτ))

]
HSC,

(8)
and mpi(t, τ) = 2i−1e−δiτκ(TPO(t− iτ))HSC. In particular, the population of the
last generation of progenitors at the end of its cycle is given by

mpn(t, τ) = 2n−1e−δnτκ(TPO(t− nτ))HSC, t ≥ nτ. (9)

This quantity is the cell population that leaves the progenitor compartment and
reaches the megakaryocyte one. This population corresponds then to the boundary
condition of the equation in the next section when age is equal to 0.

2.2. Megakaryocyte dynamics. Let us now focus on the dynamics of megakary-
ocytes. Contrary to progenitor cells, megakaryocytes only mature without dividing.
We assume that this population dies with a rate δMk. The maturation time is de-
noted by τMk (days). The megakaryocyte population is supplied with progenitor
cells from the n-th generation (see the previous section), that has differentiated in
megakaryocytes.
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Denote by mk(t, a) the number of megakaryocytes with age a ∈ [0, τMk] at time
t. Then mk(t, a) satisfies the following age-structured system,

∂

∂t
mk(t, a) +

∂

∂a
mk(t, a) = −δMkmk(t, a),

mk(t, 0) = 2mpn(t, τ),
mk(0, a) = Imk(a).

(10)

Imk : R+ → R+ is a continuous function representing the initial amount of megakary-
ocytes of age a at t = 0. With the total number of megakaryocytes given by

Mk(t) :=

∫ τMk

0

mk(t, a)da,

then using (9) and integrating (10) over the age variable a and using the method
of characteristics, it is straightforward to get, for t ≥ τMk + nτ ,

d

dt
Mk(t) =− δMkMk(t) + 2ne−δnτ

[
κ(TPO(t− nτ))

− e−δMkτMkκ(TPO(t− rMk − nτ))
]
HSC,

(11)

and

mk(t, τMk) = 2ne−δnτe−δMkτMkκ(TPO(t− rMk−nτ))HSC, t ≥ τMk +nτ. (12)

This last equality is used as the boundary condition for the next equation.

2.3. Platelet dynamics. Let us now concentrate on the platelet population. We
denote by p(t, a) the number of platelets of age a ≥ 0 at time t, with the total
number of platelets at time t given by

P (t) =

∫ +∞

0

p(t, a)da.

We denote by γ the mortality rate of platelets. Then we assume that the TPO-
dependent amplification factor describing the average number of platelets obtained
from the fragmentation of a single megakaryocyte A(TPO) can be formulated as a
standard feedback function as explained in [24],

A(TPO) =
αATPO

QA

θQAA + TPOQA
, (13)

such that αA is the maximum amount of platelets that can be produced by a
megakaryocyte, θA the quantity of TPO needed to bring this quantity to αA/2 and
QA a sensitivity parameter.

Hence, we write the following system,

∂

∂t
p(t, a) +

∂

∂a
p(t, a) = −γp(t, a),

p(t, 0) = A(TPO(t))mk(t, τMk),

lima→+∞ p(t, a) = 0,
p(0, a) = Ip(a).

(14)

The function Ip(a) represents the initial amount of platelets of age a. Using (12),
this system reduces to an equation for P (t), given for t ≥ τMk + nτ by

d

dt
P (t) = −γP (t)+2ne−δnτe−δMkτMkκ(TPO(t−rMk−nτ))A(TPO(t))HSC. (15)
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This platelet population is the one released in the blood stream that regulates the
circulating TPO level. This is described in the next section.

2.4. Circulating TPO regulation. Finally, let us focus on the evolution of the
quantity of TPO. The circulating TPO quantity, denoted by TPO(t), is proportional
to the total quantity of TPO, TTPO, and the proportionality coefficient depends
on the total number of platelets P (t): the more platelets, the less circulating TPO
[16]. We define

TPO(t) = α(P (t))TTPO, (16)

where α is a decreasing function, that could be chosen as a Hill function, as a
standard feedback function as explained in [24],

α(P ) =
θQTT

θQTT + PQT
, θT , QT > 0. (17)

The TPO function can then be seen as a function of P (t), and we write TPO(t) =
TPO(P (t)).

Remark 1. In the following sections, we present simulations to illustrate analytical
results. Hence, we use the formulations of κ(TPO), A(TPO) and α(P ) respectively
given in Equations (6), (13) and (17). However, determining the correct parameters
for these functions is not the object of this paper. We use biologically relevant
parameters and plan to perform an estimation of these parameters in a later work.

The system formed with equations (7), (10), (14) and (16) is our age-structured
system of thrombopoiesis dynamics. In the next section, we show that this sys-
tem reduces to a delay differential equation describing evolution of the number of
platelets P (t), that it has a unique steady state. We also show that solutions are
bounded.

3. A delay differential equation describing platelet dynamics. The age-
structured system made of equations (7), (10), (14) and (16) is reduced to the
nonlinear ordinary differential system of threshold-type made of equations (8), (11),
(15) and (16), with initial conditions corresponding to the integration of the age-
structured system on the corresponding time interval. Using (16) in Equation (15),
the system of equations (8), (11), (15) and (16) is in turn equivalent, for t ≥ r :=
τMk + nτ , to the following delay differential equation,

d

dt
x(t) = −γx(t) + f(x(t))g(x(t− r)), (18)

where

f := A ◦ TPO and g := 2ne−δnτe−δMkτMkHSCκ ◦ TPO. (19)

Functions TPO 7→ κ(TPO) and TPO 7→ A(TPO) are supposed to be increasing,
since a lack of TPO decreases the differentiation of HSC in megakaryocytic progen-
itors as well as the production of platelets by megakaryocyte fragmentation. The
function TPO is supposed to be a decreasing function of the amount of platelets,
see (16) and (17). Consequently, functions f and g are assumed to be positive
decreasing functions.

Equation (18) is a nonlinear delay differential equation, existence and uniqueness
of solutions are straightforwardly obtained from Hale and Verduyn Lunel [14] under
classical smoothness assumptions on the functions f and g. In addition, for every
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nonnegative initial condition ϕ defined on [0, r], the associated solution x(ϕ, t) is
nonnegative. Indeed, this result can be proven using the non-negativity of f and g.

We denote by x∗ a steady state of (18), which is a solution satisfying dx∗/dt = 0.
Then x∗ satisfies

χ(x∗) = 0, with χ(x) = g(x)f(x)− γx. (20)

Since f and g are non-negative and decreasing continuously differentiable functions,
then χ is decreasing, with

χ′(x) = g′(x)f(x) + g(x)f ′(x)− γ < 0.

Moreover,

χ(0) = g(0)f(0) > 0 and lim
x→+∞

χ(x) = −∞.

Consequently, there exists a unique x∗ > 0 solution of (20) and we can claim the
following result.

Proposition 1. Equation (18) has a unique steady state, denoted by x∗, positive,
and satisfying

g(x∗)f(x∗) = γx∗. (21)

In order to study the local asymptotic stability of x∗, Equation (18) is linearized
about its unique steady state x∗, leading to

dx

dt
(t) = [g(x∗)f ′(x∗)− γ]x(t) + g′(x∗)f(x∗)x(t− r).

Thus, the associated characteristic equation is

λ+ γ − g(x∗)f ′(x∗)− g′(x∗)f(x∗)e−λr = 0. (22)

Proposition 2. If

r <
1

−g′(x∗)f(x∗)
, (23)

then the steady state x∗ of (18) is locally asymptotically stable.

Proof. Equation (22) can be written as

λ+A+Be−rλ = 0,

where {
A = γ − g(x∗)f ′(x∗) > 0,
B = −g′(x∗)f(x∗) > 0.

If B > A, (23) implies

r <
1

B
<
π/2

B
<

arccos(−A/B)√
B2 −A2

.

Therefore, condition (23) implies that either A > B or

B > A and r <
arccos(−A/B)√

B2 −A2
,

We use Theorem 8.6 of [6] to conclude the local stability of x∗.

Boundedness of the solutions of Equation (18) is straightforwardly obtained, we
mention it in the next proposition.

Proposition 3. The solutions of (18) are eventually bounded by xmax = f(0)g(0)/γ.
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The result of Proposition 3, establishing the boundedness of solutions of (18),
together with the local asymptotic stability of the unique steady state of (18) given
by proposition 2, indicate that under reasonable assumptions on the parameters of
(18), asymptotic convergence should be obtained. Before that, we investigate the
existence of oscillating solutions.

4. Oscillating solutions. Our aim in this part is to show that under appropri-
ate hypotheses every positive solution of Equation (18) oscillates about its positive
steady state x∗, with damped oscillations. Recall that a solution x of (18) is said
to oscillate (or to be oscillatory) about x∗ if t 7→ x(t) − x∗ has arbitrarily large
zeros. That is, for every t > r there exists s > t such that x(s) = x∗. Otherwise,
x is called non-oscillatory about x∗. As mentioned in the introduction, oscillations
of platelet counts can sometimes be associated to hematological diseases, such as
cyclical thrombocytopenia, and therefore existence of oscillations in platelet num-
bers are biologically relevant. We establish a link between the oscillatory character
of (18) and that of its associated linearized equation about the steady state x∗

d

dt
u(t) + (γ + p)u(t) + qu(t− r) = 0, (24)

where {
p = −f ′ (x∗) g (x∗) > 0,
q = −f (x∗) g′ (x∗) > 0.

(25)

The characteristic equation associated to (24) is

∆(λ) := λ+ (γ + p) + qe−λr = 0. (26)

We begin with a basic result on the existence of oscillations of the linear delay
differential equation (24).

Proposition 4. Every solution of Equation (24) oscillates if and only if

rqe(γ+p)r >
1

e
. (27)

Proof. In the theory of oscillations of linear delay differential equations with con-
stant coefficients (see [12]), every solution of (24) oscillates if and only if the char-
acteristic equation (26) has no real root. Consider ∆ : R→ R as a real function.
Then, we have

d

dλ
∆ (λ) = 1− rqe−λr and lim

λ→±∞
∆ (λ) = +∞.

Then, the minimum of ∆ is given by

∆

(
1

r
ln (rq)

)
=

1

r
(ln(rq) + r(γ + p) + 1) .

Hence
1

r
(ln(rq) + r(γ + p) + 1) > 0

is a necessary and sufficient condition for the oscillation of all solutions of Equation
(24), and it is equivalent to (27).

Now we can state and prove the next result.

Theorem 4.1. Assume that

rqe(γ+p)r >
1

e
. (28)

Then, every positive solution of Equation (18) oscillates about the steady state x∗.
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Proof. Suppose by contradiction that Equation (18) has a non-oscillatory solution x.
Then, there exists T > 0 such that x(t) > x∗ (or x(t) < x∗), for all t ≥ T . See in the
proof of Theorem 5.1 that x is decreasing (or x is increasing) and limt→+∞ x(t) = x∗.
We focus on the case x(t) > x∗. The proof in the case x(t) < x∗ is similar. We set

y(t) = x(t)− x∗.
Then, the function y is positive and decreasing on [T,+∞) with lim

t→+∞
y(t) = 0. On

the other hand, y satisfies the delay differential equation

d

dt
y(t) = −γ(y(t) + x∗) + f (y(t) + x∗) g (y(t− r) + x∗) ,

= −γy(t) + [f (y(t) + x∗)− f (x∗)] g (y(t− r) + x∗)
+f (x∗) [g (y(t− r) + x∗)− g (x∗)] .

Remark that

lim
t→+∞

[
f (y(t) + x∗)− f (x∗)

y(t)

]
g (y(t− r) + x∗) = f ′ (x∗) g (x∗) < 0,

and

lim
t→+∞

g (y(t− r) + x∗)− g (x∗)

y(t− r)
= g′ (x∗) < 0.

Let ε ∈ (0, 1) . We have{
f ′ (x∗) g (x∗) < (1− ε) f ′ (x∗) g (x∗) < 0,

g′ (x∗) < (1− ε) g′ (x∗) < 0.

The function y is positive, then there exists tε > T + r such that, for t ≥ tε,{
[f (y(t) + x∗)− f (x∗)] g (y(t− r) + x∗) ≤ (1− ε) f ′ (x∗) g (x∗) y(t),

[g (y(t− r) + x∗)− g (x∗)] ≤ (1− ε) g′ (x∗) y(t− r).
Summing these inequalities we obtain for t ≥ tε,

[f (y(t) + x∗)− f (x∗)] g (y(t− r) + x∗) + f (x∗) [g (y(t− r) + x∗)− g (x∗)]

≤ (1− ε) [f ′ (x∗) g (x∗) y(t) + f (x∗) g′ (x∗) y(t− r)] .
We conclude that y is a positive solution of the following delay

differential inequality

y′(t) + (γ + (1− ε) p) y(t) + (1− ε) qy(t− r) ≤ 0, t ≥ tε,
where p and q are given by (25).

We use the transformation

z(t) = eγty(t),

to obtain

z′(t) + (1− ε) [pz(t) + eγrqz(t− r)] ≤ 0, t ≥ tε. (29)

From [12], we know that the delay differential inequality (29) has positive solution
if and only if the delay differential equation

u′(t) + pu(t) + eγrqu(t− r) = 0, t ≥ tε, (30)

has a positive solution.
We use the transformation

v(t) = eptu(t),

to write Equation (30) in the following form

v′(t) + e(γ+p)rqv(t− r) = 0, t ≥ tε. (31)
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From [12] (Theorem 2.2.3), we know that there exists positive solutions of Equa-
tion (31) if and only if re(γ+p)rq ≤ 1/e. Therefore if (28) is verified, none of the
solutions of (30), neither of (31), are positive, hence (29) has no positive solution:
y is not positive. By contradiction, it implies that x is oscillatory.

Using the formulations of f and g as given in Equation (19), we present in Figure
2 an example of the onset of oscillations as the value rqer(γ+p)− 1

e goes from negative
to positive along with a change in parameters.

To prove that condition (28) is a necessary condition for the oscillation of every
positive solution of (18), we add the following assumption: There exists η > 0 such
that 

f (x∗ + h)− f (x∗) ≥ f ′ (x∗)h, for 0 < h ≤ η,
g (x∗ + h)− g (x∗) ≥ g′ (x∗)h, for 0 < h ≤ η,
f (x∗ + h)− f (x∗) ≤ f ′ (x∗)h, for − η ≤ h < 0,
g (x∗ + h)− g (x∗) ≤ g′ (x∗)h, for − η ≤ h < 0.

(32)

We need the following comparison results for positive solutions of delay differential
inequalities.

Lemma 4.2. [12] Let ai ≥ 0, bi ≥ 0, ci ≥ 0, ri ≥ 0 for i = 1, ..., n, and 0 ≤ t0 <
T ≤ +∞. Suppose that

ai ≥ bi ≥ ci, i = 1, ..., n.

Assume that x(t), y(t), and z(t) are solutions of

x′(t) +
n∑
i=1

aix(t− ri) ≤ 0, t0 ≤ t < T,

x(t) > 0, t0 ≤ t < T,

y′(t) +
n∑
i=1

biy(t− ri) = 0, t0 ≤ t < T,

z′(t) +
n∑
i=1

ciz(t− ri) ≥ 0, t0 ≤ t < T,

with initial conditions on [t0 − r, t0] such that
z(t0) ≥ y(t0) ≥ x(t0),

x(t)

x(t0)
≥ y(t)

y(t0)
≥ z(t)

z(t0)
≥ 0, t0 − r ≤ t ≤ t0.

Then,

z(t) ≥ y(t) ≥ x(t), t0 ≤ t < T.

Proposition 5. Assume that (32) is satisfied. Then, every positive solution of
Equation (18) oscillates about the steady state x∗ if and only if

rqer(γ+p) >
1

e
.

Proof. We need to prove that if rqer(γ+p) ≤ 1
e then (18) has a non-oscillatory

solution. Proposition 4 implies that if rqer(γ+p) ≤ 1
e then the linearized Equation

(24) has a non-oscillatory solution. It means that it is enough to prove that if
(24) has a non-oscillatory solution then (18) has a non-oscillatory positive solution.
Suppose that Equation (24) has a positive solution t 7→ u(t) for t ≥ T (the proof
for a negative solution follows the same steps). Then, u is decreasing for t ≥ T and

lim
t→+∞

u(t) = 0. This means that there exists t0 ≥ T such that 0 < u(t) < η, t ≥ t0.
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Figure 2. Oscillations appear when αA increases. As αA
(the maximum number of platelets that a megakaryocyte can shed,
see Equation (6)) increases, R = rqer(γ+p)− 1

e becomes positive and
x (blue) starts to oscillate around x∗ (dashed red). Black marks are
placed where x(t) goes through x∗. (A) αA = 5000, R = −0.0492
and there are no oscillations. (C) αA = 10000, R = 7.6863 and
there are oscillations. (B) αA = 20000, R = 83 and there are
oscillations.
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Let x be the solution of (18) with initial condition equal to t 7→ u(t) + x∗ for
t0 − r ≤ t ≤ t0. We introduce t 7→ y(t) := x(t) − x∗, and we notice that for t ≥ t0
we have

0 = y′(t)− x′(t) = y′(t) + γx(t)− f(x(t))g(x(t− r))
= y′(t) + γ(y(t) + x∗)− f(y(t) + x∗)g(y(t− r) + x∗)

= y′(t) + γy(t) + f(x∗)g(x∗)− f(y(t) + x∗)g(y(t− r) + x∗).

Then, the function y is the solution of{
0 = y′(t) + γy(t) + f(x∗)g(x∗)− f(y(t) + x∗)g(y(t− r) + x∗), for t ≥ t0,

y(t) = u(t), t0 − r ≤ t ≤ t0,
with

0 < y(t) = u(t) < η, t0 − r ≤ t ≤ t0.
Assumption (32) implies

f (x∗ + h) g (x∗ + h) ≥
(
f ′ (x∗)h+ f (x∗)

)(
g′ (x∗) + g (x∗)), for 0 < h ≤ η,

such that

f(x∗)g(x∗)− f(y(t) + x∗)f(y(t− r) + x∗)

≤f(x∗)g(x∗)−
[
g′(x∗)y(t) + f(x∗)

][
g′(x∗)y(t− r) + g(x∗)

]
≤− f ′(x∗)g′(x∗)y(t− r)y(t)− f ′(x∗)g(x∗)y(t)− f(x∗)g′(x∗)y(t− r)

≤eδr
(
py(t) + qy(t− r)

)
.

It means that for t < t0 + ε,

y′(t)+(γ + p) y(t)+qy(t−r) ≥ y′(t)+γy(t)+f(x∗)g(x∗)−f(y(t)+x∗)g(y(t−r)+x∗),

implying
y′(t) + (γ + p) y(t) + qy(t− r) ≥ 0,

with
0 < y(t) = u(t) < η, t0 − r ≤ t ≤ t0.

Thanks to Lemma 4.2,

0 < u(t) ≤ y(t) < η, for t0 ≤ t < t0 + ε.

As f and g are decreasing, y is also decreasing on [t0, t0 + ε) . So,

0 < u(t+ ε) ≤ y(t0 + ε) < η.

By steps, we conclude that

0 < y(t) < η, for all t ≥ t0.
It follows from Lemma 4.2, that

0 < u(t) ≤ y(t) < η, for t ≥ t0.
Therefore, x is a non-oscillatory positive solution of Equation (18) and the proof is
complete.

Remark 2. We apply Theorem 4.1 to the Mackey-Glass equation [10]

ẋ(t) = −γx(t) +
B

1 + [x(t− r)]n
, (33)

which is a specific case of (18) with the functions x 7→ f(x) = 1 and x 7→ g(x) =
B/(1 + xn). The fixed point x∗ is the solution of B/(1 + x∗n) = γx∗, and satisfies

g′(x∗) = −(nBx∗n−1)/((1 + x∗n)2) = −(γ2x∗n+1n)/B.
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From (25)

p = 0 and q =
γ2x∗n+1n

B
,

such that the sufficient condition for the oscillation of every positive solution of (33)
is

τ
γ2x∗n+1n

B
eτγ >

1

e
,

that is

x∗ >
( B

eγ2nτeγτ

)1/(n+1)

.

Furthermore, condition (32) for h > 0 can be written

B

1 + (x∗ + h)n
− B

1 + x∗n
≥ −h nBx

∗n−1

(1 + x∗n)2
,

which is equivalent to

σ(h) :=
(
(x∗ + h)n − x∗n

)(
1 + x∗n

)
−
(
1 + (x∗ + h)n

)(
nhx∗n−1

)
≤ 0.

Notice that σ(0) = 0 and

σ′(h) = n(x∗ + h)n−1 − [n(x∗ + h)n−1nhx∗n−1 + (1 + (x∗ + h)n)nx∗n−1],

hence σ′(0) = nx∗n−1(1 − x∗n) for h = 0. If x∗ > 1, σ′(0) is negative, which
implies that there exists η > 0 such that (2) is satisfied for 0 < h < η. The same
result can be found for the condition (32) for h < 0. Therefore, from Theorem

4.1, if x∗ >
(
B/(eγ2nτeγτ )

)1/(n+1)

then every solution of (33) oscillates about its

positive equilibrium x∗, and from Proposition 5 x∗ > 1 implies that this condition
is necessary.

Consequently, in the case of the Mackey-Glass equation (33), Theorem 4.1 and
Proposition 5 are equivalent to Theorems 2.1 (a) and 2.1 (b) of Gopalsamy et al.
[10].

Remark 3. We apply Theorem 4.1 to the Lasota-Wazewska equation [20]

x′(t) = −γx(t) + ρe−µx(t−r), (34)

which is a specific case of (18) with x 7→ f(x) = 1 and x 7→ g(x) = ρe−µx such that

g′(N∗) = −µρe−µN
∗

= −γµN∗,

where N∗ = ρ
γ e
−µN∗

. From (25),

p = 0 and q = γµN∗,

such that the sufficient condition for the oscillation of every positive solution of (34)
is

rqe(γ+p)r = µrγN∗eγr >
1

e
.

Furthermore, condition (32) for h > 0 can be written

ρe−µ(N
∗+h) − ρe−µN

∗
≥ −µρe−µN

∗
h, (35)

which is equivalent to

e−µh − 1 ≥ −µh.
Using Taylor expansion of ex for x > 0 near 0, we find that there exists η such that
(35) is satisfied for 0 < h < η. The same way we can show that condition (32) for
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h < 0 is verified. Therefore, from Theorem 4.1 and Proposition 5, the solution N(t)
of (34) oscillates about N∗ if and only if µrγN∗eγr > 1

e .
Consequently, in the case of the Lasota-Wazewska model, Theorem 4.1 and

Proposition 5 are equivalent to Theorem 3 of Kulenovic and Ladas [20].

Condition (28) needed for solutions to oscillate holds for large values of r and γ.
This means that oscillating solutions are obtained for large immature cell mortality
rates and/or with short (resp. long) differentiation times. Furthermore, tedious
computations reveal that parameters from the function describing the interaction
between TPO and platelets have an impact on this sufficient condition: sufficiently
increasing q (representing the strength of the feedback on TPO from platelets), de-
creasing TTPO (the total amount of TPO in the blood) or decreasing θ (a sensitivity
parameter) will lead to condition (28). Similarly, as shown in Figure 2, there exists
a set of parameters for which the condition rqe(γ+p)r > 1/e can be reached simply
by increasing αA, a parameter from the fragmentation function A representing the
maximum number of platelets that can be shed by one megakaryocyte.

In the next section we will obtain a sufficient condition for asymptotic conver-
gence.

5. Asymptotic convergence. In order to study the asymptotic convergence of
the unique steady state x∗ of (18), it is worthwhile to discuss whether solutions of
(18) are oscillatory or not.

Theorem 5.1. If x is non-oscillatory about x∗ then, limt→+∞ x(t) = x∗.

Proof. Let x be a non-oscillatory solution of Equation (18). Then, there exists
t0 ≥ r such that x(t) − x∗ is either negative or positive for all t ≥ t0. These two
cases can be treated in the same manner, then we study only one case.

Assume that there exists t0 ≥ r such that 0 ≤ x(t) ≤ x∗, for every t ≥ t0. Let
t ≥ t0 + r. Then,

0 ≤ x(t− r) ≤ x∗ and 0 ≤ x(t) ≤ x∗.

The functions f and g are decreasing, then for t ≥ t0 + r,

g (x∗) ≤ g (x(t− r)) , f (x∗) ≤ f (x(t)) and − γx∗ ≤ −γx(t).

So, from (21)

x′(t) ≥ −γx∗ + f (x∗) g (x∗) = 0, for t ≥ t0 + r.

Consequently, the solution x is increasing for t ≥ t0 + r. As x is bounded (Propo-
sition 3), we get

lim
t→+∞

x(t) = x∗.

The next theorem deals with the asymptotic convergence of the unique steady
state x∗ of (18) in the case of oscillating initial conditions.

Definition 5.2. Let x(t), t > 0, be a solution of Equation (18) such that there
exists a first time t0 > 0 such that x(t0) = x∗. Then we will say that x(t) has a low
initial slope if t0 ≥ r.

Figure 3 represents solutions of the same equation with different initial values,
one with low initial slope, the other without low initial slope.



OSCILLATIONS AND CONVERGENCE FOR A MODEL OF PLATELET PRODUCTION 17

 0  r 2r 3r 4r 5r

0.6x*

0.8x*

   x*

 x
(t

)

 Time

 x(t)=x*

 0  r 2r 3r 4r 5r

0.6x*

0.8x*

   x*

 x
(t

)

 Time

 x(t)=x*

Figure 3. Solutions of (18) with or without low initial
slope. (Top) The solution goes through x(t) = x∗ after t = r,
it meets the low initial slope criterion. (Bottom) The solution goes
through x(t) = x∗ before t = r, it does not meet the low initial
slope criterion.

Theorem 5.3. Let assume that

γr ≤ 1 and rf(x∗) sup
x∈R+

|g′(x)| < 1. (36)

Let x be a solution of system (18) on R+. If x oscillates about x∗ and satisfies the
low initial slope condition, then limt→+∞ x(t) = x∗.
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Proof. Let x be an oscillatory solution of Equation (18) about x∗. Then, there
exists a sequence (tn)n∈N , t0 < t1 < ... < tn < ..., limn→+∞ tn = +∞, such that
x(tn) = x∗ for all n ∈ N. Suppose indeed that t0 ≥ 0 is the first point such that
x(t0) = x∗ and x(t) > x∗, for t ∈ (t0, t1). Then there exists t∗0 ∈ (t0, t1) such that
the function x reaches its maximum at t = t∗0, i.e. x′(t∗0) = 0.

Because of the low initial slope hypothesis and as t∗0 > t0, we know that t∗0 > r,
hence we can apply the differential equation (18):

−γx(t∗0) + f (x(t∗0)) g (x(t∗0 − r)) = 0.

Consequently,

g (x(t∗0 − r)) =
γx(t∗0)

f (x(t∗0))
. (37)

Note that, since f is decreasing, the function x 7→ γx/f (x) is increasing. Moreover,
x(t∗0) > x∗. Then, from (21) and (37),

g (x(t∗0 − r)) >
γx∗

f (x∗)
= g(x∗).

The function g being decreasing, this yields x(t∗0−r) < x∗ = x(t0), and consequently

t∗0 − r < t0 < t∗0.

On the other hand, x(t1) = x∗ and x′(t1) ≤ 0, so from (18),

−γx∗ + f (x∗) g (x(t1 − r)) ≤ 0.

Similarly, we get

t1 − r ≥ t0.
We then obtain

t∗0 − t0 < r ≤ t1 − t0.
Using the same arguments, we prove

t∗n − tn < r ≤ tn+1 − tn, for all n ∈ N, (38)

with t∗n ∈ (tn, tn+1) defined by x′(t∗n) = 0.
Next, we build a sequence (xn)n∈N from which we extract two subsequences

(yn)n∈N and (zn)n∈N converging towards x∗ with

yn ≤ x(t∗2n+1) < x∗ < x(t∗2n) ≤ zn, for n ∈ N.

Because of the low initial slope hypothesis, we can integrate Equation (18) from t0
to t∗0, such that we obtain

x(t∗0) ≤ x∗ − γ
∫ t∗0

t0

x(s)ds+ g (0)

∫ t∗0

t0

f (x(s)) ds.

For s ∈ (t0, t
∗
0], x(s) > x∗. Then, as the function f is decreasing and from (21) and

the above inequality, we get

x∗ < x(t∗0) ≤ x1 := x∗ + rf (x∗) [g (0)− g (x∗)] . (39)

Let s ∈ (t1, t
∗
1]. Then 0 ≤ x(s) < x∗, and thanks to (38), we obtain s − r ∈

(t1 − r, t∗1 − r] ⊆ (t0, t1), so x(s − r) ≤ x(t∗0) ≤ x1. Therefore, by integrating (18)
from t1 to t∗1, we get

x(t∗1) ≥ x∗ − γ
∫ t∗1

t1

x(s)ds+ g (x1)

∫ t∗1

t1

f (x(s)) ds.
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Figure 4. An example of sequences (yn)n∈N and (zn)n∈N.
The decreasing (resp. increasing) sequence (zn)n∈N (resp. (yn)n∈N)
bounds x(t) for t > t∗2n (resp. for t > t2n−1).

It follows that

x∗ > x(t∗1) ≥ x2 := x∗ + rf (x∗) [g (x1)− g (x∗)] . (40)

Then, we build a sequence (xn)n∈N defined by{
xn+1 = x∗ + rf (x∗) [g (xn)− g (x∗)] ,
x0 = 0.

Consider the function K defined, for x ≥ 0, by

K(x) = x∗ + rf (x∗) [g (x)− g (x∗)] .

We need to prove that K([0,+∞)) ⊆ [0,+∞) in order to build a positive sequence
(xn)n∈N. From (21), it follows that, for x ≥ 0

K(x) = (1− rγ)x∗ + rf (x∗) g (x) .

Then, the positivity of K(x), for x ≥ 0, is equivalent to

rf (x∗) g (x) ≥ (rγ − 1)x∗. (41)

As we assumed rγ ≤ 1, then (41) is satisfied. On the other hand, from (39), (40)
and (41), one can prove by induction that

0 ≤ x2n+2 ≤ x(t∗2n+1) < x∗ < x(t∗2n) ≤ xn+1.

Let now define the following two subsequences of (xn)n∈N,{
yn = x2n,
y0 = 0,

and

{
zn = x2n+1,
z0 = K(0).

These sequences are illustrated in Figure 4. In fact, we have

yn+1 = H(yn), zn+1 = H(zn) with y0 = 0, z0 = K(0),

where H is the function defined for x ≥ 0 by H(x) = K2(x) := K(K(x)).
Now, using

K(x) = x∗ + rf(x∗)[g(x)− g(x∗)],
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the second inequality of (36) implies

|K ′(x)| = rf(x∗)|g′(x)| < 1.

Then, |H ′(x)| = |K ′(K(x))K ′(x)| < 1 so x∗ is the unique fixed point of H: both
yn and zn converge to x∗. Since yn and zn are respectively lower bound of x2n and
upper bound of x2n+1, we proved that

lim
n→+∞

x(t∗2n) = lim
n→+∞

x(t∗2n+1) = x∗.

Then, lim
t→+∞

x(t) = x∗.

While the condition (28) for oscillating solutions holds for large values of γ and
r, condition (36) for asymptotic convergence holds for small values of rγ. This
means that asymptotic convergence is obtained for large (resp. small) immature
cell mortality rates associated with short (resp. long) differentiation times, or, of
course, for small mortality rates associated with short differentiation times.

If (36) is not satisfied, that is if r is too big in comparison with the average
cell lifespan or the inertia of the differentiation feedback 1/|g′(x)|, our theorem can
not guarantee asymptotic convergence, which in the case of an oscillatory solution
could imply the existence of sustained oscillations or even periodic solution. The
body of work currently existing on the existence of periodic solutions [3, 25, 33]
could serve as a basis to complete our description with results on periodic behavior.
On the other hand, in the case where t0 < r we would need to take into account
the influence of the initial condition on the dynamics for t > r which is out of the
scope of this paper. However, we can study the influence of the conditions at t = 0
on the behavior of the solution for 0 < t < r: in the next section, we study the
effect of the initial conditions Impi(a), Imk(a), a > 0 and P (0) from the model of
megakaryopoiesis on the initial slope of the solution.

6. Influence of initial conditions on the onset of fast initial oscillations.
As explained in Section 5, the result for asymptotic convergence is restricted to
solutions that satisfy the low initial slope criterion, given in Definition 5.2.

Because this feature concerns P (t) for 0 < t < r, it can not be assessed using
only Equation (18): it depends heavily on the initial conditions given for t < 0, and
we use the model for megakaryopoiesis presented in Section 2 as an example to give
a description of this dependence.

6.1. A simplified model to study P for t ∈ [0, r]. If we use the original model
with n compartments where mpi(t, a) describes the number of progenitors in the i-
th generation and Impi(a) = mpi(0, a) represents the initial amount of progenitors
at age a in the i-th generation, the method of characteristics gives the following
results for t ∈ [0, r] and i = 1, 2:

mp1(t, τ) =

{
e−δτκ(TPO(t− r))HSC, t ≥ τ,
Imp1(τ − t)e−δt, 0 < t < τ,

mp2(t, τ) =


2e−δ2τκ(TPO(t− 2τ))HSC, t ≥ 2τ,
e−δτImp1(2τ − t)e−δ(t−r), τ ≤ t ≤ 2τ,
Imp2(τ − t)e−δt, 0 < t < τ.

(42)

From Equation (42) we can guess that the final expression of P ′(t), 0 < t < r
is defined differently on each interval [0, τ ], [τ, 2τ ], . . . , [(n − 1)τ, nτ ]: for the sake
of simplicity, in this section we then use a simplified version of the original model
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Figure 5. Simplified model of Megakaryopoiesis.

with only one equality for t ∈ [0, nτ ]. In this model, megakaryocytic progeni-
tors are represented with a single compartment supplied by HSC, and release 2n−1

megakaryocytes after a time nτ (see Figure 5).
This hypothesis transforms the system (7) into the following one:

∂

∂t
mp(t, a) +

∂

∂a
mp(t, a) = −δmp(t, a), 0 < a < τn, t > 0,

mp(t, 0) = 2n−1κ(TPO(t))HSC, t > 0,

mp(0, a) = Imp(a), 0 < a < τn.
(43)

Therefore, applying the method of characteristics on the new set of equations
(43), (10), (14) allows us to obtain a differential equation for the total number of
platelets P ′(t) when t ≤ r, divided into two parts:

P ′(t) =

{
−γP (t) + 2ne−δtImp(r − t)f(P (t)), τMk ≤ t ≤ r,

−γP (t) + e−δtImk(τmk − t)f(P (t)), 0 < t ≤ τMk,

P (0) = P0,

(44)

with notations r = nτ + τMk and f(.) = A ◦TPO(.) which is a decreasing function.

6.2. Sufficient conditions for low initial slope. We want to monitor the sign
of P (t) − P ∗ for t ∈ [0, r] with regards to the sign of P (0) − P ∗. Using Equation
(44) and a variation of constant formula, we obtain, for t ∈ [0, τMk],

P (t) = e−γt
[ ∫ t

0

e(γ−δ)sImk(τmk − s)f(P (s)) ds+ P (0)
]
,
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and for t ∈ [τMk, r],

P (t) =e−γt
[ ∫ t

τmk

2ne(γ−δ)sImp(r − s)f(P (s)) ds

+

∫ τmk

0

e(γ−δ)sImk(τmk − s)f(P (s)) ds+ P (0)
]
.

We write Imk = max Imk, Imk = min Imk, Imp = max Imp.
It implies that for 0 < t ≤ τMk,

e−γτMkP (0) < P (t) < Imkf(0)
e(γ−δ)τMk − 1

γ − δ
+ P (0), (45)

and for τMk ≤ t ≤ r,

e−γr
(
Imkf

(Imkf(0)

γ

)e(γ−δ)τMk − 1

γ − δ
+ P (0)

)
<P (t) < f(0)

2ne(γ−δ)τMkImp(e
(γ−δ)nτ − 1) + Imk(e(γ−δ)τMk − 1)

γ − δ
+ P (0).

(46)

Hence, we can deduce the following proposition:

Proposition 6. If P (0) > P ∗, then

P (0) > max(m0,mmk),

where m0 := eγτMkP ∗ and mmk := eγrP ∗−Imkf( Imkf(0)γ ) e
(γ−δ)τMk−1

γ−δ , is a sufficient

condition to obtain a low initial slope.
If P (0) < P ∗, then

P (0) < min(M0,Mmk)

where M0 := P ∗ − Imkf(0) e
(γ−δ)τMk−1

γ−δ and

Mmk := P ∗ − f(0)

γ − δ

(
2ne(γ−δ)τMkImp(e

(γ−δ)nτ − 1) + Imk(e(γ−δ)τMk − 1)
)
,

is a sufficient condition to obtain a low initial slope.

In Figure 6 we give an example of how to go from t0 < τ (Figure 6 (a)) to t0 > τ
(Figure 6 (b-c)) and then to t0 > r (i.e., low initial slope, Figure 6 (d)) by increasing
P (0) respectively above m0 and mmk.

Such a result can have serious implications, because it tells us that if conditions
(36) are satisfied and platelet count ever goes above a certain m = max(m0,mmk),
then oscillations always fade out: oscillations on platelet count might be treated by
an injection of the appropriate amount of platelets (a common procedure).

7. Conclusion. In order to study its dynamics (short and long term), a model
of megakaryopoiesis has been built using the framework of population dynamics.
Considering the interactions between stem cells, progenitors cells, mature megakary-
ocytes, platelets and thrombopoietin, we combined age-structured modeling and the
method of characteristic to obtain a single delay differential equation. Particular
features of this equation, like linear decay rate or a negative feedback with respect
to current state, involve the development of new tools to study its dynamics.

We first obtained sufficient and necessary conditions for solutions to oscillate.
Then we found that when solutions have a low initial slope, we can build two
enclosing sequences converging toward the steady state by restricting the delay r:
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Figure 6. Initial slope and initial conditions. Four solutions
of the equation (44) (blue) where different initial conditions lead
to different relative position for τ , r (dashed green) and the time
t0 when P (t) crosses P ∗ (dashed red).
(A) P (0) = 0.95eγτP ∗ such that t0 < τ . (B) P (0) = 1.1eγτP ∗ such
that t0 > τ (as implied by (45)). (C) P (0) = 0.6Mmk such that
t0 > τ . (D) P (0) = 1.1Mmk such that t0 > r (as implied by (46)).

this gives a sufficient condition for the asymptotic convergence of the steady state.
We emphasize the influence of initial conditions as the behavior of the solution before
t = r is critical for the proof. The history of the system might be inconsequential
in some applications, but in medicine it is crucial as dynamics can change after a
component is either removed, destroyed or injected. We provided such an example
in Section 6.

From these two results we can extract preliminary insights regarding the biolog-
ical system. On one hand, the stationary state can be made asymptotically stable
by accelerating the differentiation process of progenitors (1/τ) or decreasing the
number of divisions before maturity (n), in order to decrease r = (n + 1)τ , or by
increasing the resistance of platelets (1/γ) and either decreasing the sensitivity of
the differentiation feedback |g′(x)| or the strength of the expansion feedback at the
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steady state f(x∗). On the other hand, oscillations appear if r or γ are increased to
a certain threshold, but also if parameters from the feedback functions like q (the
strength of the feedback on TPO from platelets) or αA (the maximum number of
platelets that can be shed by one megakaryocyte) are modified.

It is straightforward to extend our results from megakaryopoiesis to any sys-
tem presenting a linear decay term and a feedback expressed as the product of two
decreasing functions of current state and delay state, like in populations with a con-
stant death rate and a feedback assured by an input rate decreasing with current
and/or past population. Indeed we have shown that classical physiology equations
like the Mackey-Glass equation and the Lasota-Wazewska equation can be repre-
sented by the equation we are studying: the sufficient condition for oscillations
that we obtained is a generalization of the previously existing results for these two
equations [10, 20].

Finally, the analytic work on initial conditions that we presented in Section
6 could be replicated on other systems in order to obtain stability results: delay-
dependent conditions for stability are likely to be relying on specific initial behavior,
and we used a simplified version of our model to give an example of the dependency
between this initial behavior and the initial conditions of the system.

Note that the asymptotic stability of a general family of DDE on R has been
explored by Ivanov et al. in 2003 [15], whose results can be adapted to our context
of solutions on R+ by adding the low initial slope condition introduced in Definition
5.2. However, a simple computation (not shown here) proves that both delay-
independent and delay-dependent results in [15] lead to more complex assumptions
than those given in Theorem 5.3. With regard to the two equations on which Ivanov
et al. successfully applied their results, it seems that the problem is caused by the
remaining non-linearity f(x(t))g(x(t − r)) in the positive term of the equation, or
at least by the fact that this non-linearity involves two decreasing functions. A
result on an even more general family of DDE also exists using the so-called York
condition [26], which neither can be applied to our case due to the linear decay rate.
Furthermore, it can be shown that this criterion can not be used for any equation
of the form

x′(t) = f1(x(t− r))g2(x(t))− f2(x(t− r))g1(x(t)) (47)

with fi, gi positive, f2, g1 increasing and convex, and g2, f1 decreasing. Thus it is
tempting to think that by a reasoning similar to ours, one could find a stability
result for such equations, or at least for such equations with f2(x) = 1. Also, suc-
cessive improvements have been made regarding the condition for global asymptotic
stability in more specific cases of (18) (for Mackey-Glass equation see [3, 11, 18, 22]),
and future work will be dedicated to explore a potential extension of these works
onto our equation.

Nevertheless, papers mentioning the oscillatory behaviors of specific cases [3, 13,
38] did not improve the results obtained in the aforementioned papers [10, 20].
The interest in the community has shifted towards other versions of the Mackey-
Glass equation [19], equations with periodic coefficients or other types of equations
(second- or third-order, neutral or impulsive). Similarly to the results on asymptotic
convergence, we think that further work should be dedicated to the oscillatory
behavior of equations of the general form (47), or at least for such equations with
f2(x) = 1.

Finally, in this work we linked these different dynamics (oscillations and asymp-
totic convergence) to mechanistic parameters of megakaryopoiesis, but to reach full
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potential these results would need to be tested against actual medical data. On one
hand, we would assess the strength of our biological hypothesis. For example, this
work is focused on the impact of TPO only on platelet regulation, while it is known
that other cytokines, like SDF-1 for instance, play important roles in megakary-
opoiesis. Although its action is mainly unknown [16], it has been shown that SDF-1
stimulates megakaryopoiesis via TPO-independent CXCR4 receptor pathways by
enhancing the chemotactic activity of their progenitors [27]. Because of the lack
of biological information about their role into megakaryocyte population dynamics,
it is likely that they would have a limited role, and we restricted our study to the
role played by TPO considered as the main stimulating factor in megakaryopoiesis
lineage. Comparing our results with clinical data through parameter estimation will
lead us to a clear idea of the different protagonists of this process in normal and
pathological cases. On the other hand, once we are able to reproduce the dynamics
that can be found both in normal and pathological cases, we have the possibility
to assess the strength of our mathematical results and possibly gain insights on
possible therapeutic strategies.
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