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Models for the polymerization process involved in prion self-replication are well-established and studied
[H. Engler, J. Pruss, and G.F. Webb, Analysis of a model for the dynamics of prions 11, J. Math. Anal. Appl.
324 (2006), pp. 98-117; M.L. Greer, L. Pujo-Menjouet, and G.F. Webb, A mathematical analysis of the
dynamics of prion proliferation, J. Theoret. Biol. 242 (2006), pp. 598-606; J. Pruss, L. Pujo-Menjouet,
G.F. Webb, and R. Zacher, Analysis of a model for the dynamics of prions, Discrete Cont. Dyn. Sys.
Ser. B 6(1) (2006), pp. 215-225] in the case where the dynamics coefficients do not depend on the size of
polymers. However, several experimental studies indicate that the structure and size of the prion aggregates
are determinant for their pathological effect. This motivated the analysis in Calvez et al. [Size distribution
dependence of prion aggregates infectivity, Math Biosci. 217 (2009), pp. 88-99] where the authors take
into account size-dependent replicative properties of prion aggregates.

We first improve a result concerning the dynamics of prion aggregates when a pathological state exists
(high production of the normal protein). Then we study the strain phenomena and more specifically we
wonder what specific replicative properties are determinant in strain propagation. We propose to interpret
it also as a dynamical property of size repartitions.

Keywords: prion kinetics; polymerization process; size repartition; duality method; strain phenomena

MSC Subject Classification: 35B35; 45K05; 92C45

1. Introduction

The prion protein is known to be at the origin of fatal neurodegenerative diseases as Creutzfeldt—
Jakob disease (CJD) in human and bovine spongiform Encephalopathy in cattle. Even though the
detailed mechanism remains mostly unclear, a largely accepted hypothesis suggests the infectious
agent is the misfolded form (called PrPsc) of the normal prion protein (PrPc). According to this
protein-only hypothesis, abnormal PrPsc can convert PrPc by a still unknown autocatalytic process
[20,29]. Very intringuing in this context is that prion infectious agent can exist under different
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strains. Prion strains have been initially distinguished by incubation periods and lesion profiles
in congenic mice [4,14]. Nowadays, a large body of literature suggests that differences between
prion strains lie in the diversity of PrPsc structure, that can be stably and faithfully propagated
(see [8,25] for reviews). However, it remains poorly understood how these changes in the PrPsc
conformation can account for their physiopathological effects [21]. Moreover, transmission of
prion diseases between different mammalian species is almost systematically less efficient than
within a single species [8]. This obstruction has been termed species barriers. Early studies argue
that this barrier resides in the PrP primary structure difference between donor and recipient
species [28]. However, BSE strain capability confirmed that different strains propagated in the
same host may have completely different barriers to another species. Consequently, transmission
barrier appears to depend on prion strain specificities [4,9]. A critical challenge of prion biology
consists in understanding how a diversity of strains may exist in the same host (expressing the
same PrP molecule) and what structural basis of prion strains determines the strength of the
species barrier.

As for many protein misfolding disorders (Alzheimer’s disease, Parkinson’s disease and many
other), misfolded PrPsc has the ability to polymerize and form long aggregates called fibrils.
Fibrils can be observed while the transconformation process arises at time and size scales mostly
unaccessible to experiments. This is why mathematical models are useful to forecast consequences
of modelling assumptions at that scale. Based on fibrilar aggregation, the model which seems by
now broadly accepted is the one of nucleated polymerization. In this approach, PrPsc is considered
to be a polymeric form of PrPc. Polymers can lengthen by addition of PrPc monomers, and they
can replicate by splitting into smaller fragments [12,15,30]. It is worth noting that this model
leads to an unimodal size distribution of PrP aggregates, which seems to be quite insensitive to
small variations of parameters [31]. Greer et al. [16] recently improved the model and include a
mean saturation effect by the whole population of polymers onto the lenghtening process (called
general incidence), and polymer joining (through a Smoluchowski coagulation equation). In all
these models, each aggregate has the same behaviour, regardless of its size. However, recent
experimental analysis of relation between infectivity and size distribution of PrPsc aggregates
(for PrPsc purified from infected brain [33] or for PrPsc produced by PMCA [38,39], a technique
which alternates PrPsc aggregates’ growth during incubation phases and aggregates’ fragmentation
during sonication phases) contradicts this uniform behaviour of PrPsc aggregates. In addition,
some complexity in the PrPsc aggregate size distribution is more likely to occur within the real
process [33]. This leads to consider a model which can reproduce such a behaviour, and the
simplest modelling assumption consists in introducing extension rates that depend on the fibril
size [6].

This motivates to use the following model for prion polymerization where V (¢) denotes the
quantity of PrPc (normal protein), x € (0, +o00) denotes the size of aggregates and u(x, ¢) the
density of aggregates of size x,

dv ()
dr

+ V(1) [y + /OO T(X)u(x, 1) dxi| =,
0

du(x, 1)
at

+ V(l)i(f(X)u(x, D)+ [n@x) + BO)]u(x, 1) =2 Ooﬁ(y)lc(x, y)u(y,t)dy,
0x

u(0,1) =0, (1)

together with appropriate initial conditions (x°, V°). This is a well-established family of models
used for describing aggregation, fragmentation in polymers as well as natural production of
monomers V (¢) (possibly already small aggregates of PrPsc molecules) [12,15,16,19,30,34].
Compared to earlier completely discrete models, it has the advantage of taking into account two
scales, as depicted by Figure 1; (i) a small scale (of the order of several PrPsc molecules) for
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Figure 1. Kinetic model of the prion aggregate growth model based on Figure 2 of Masel et al. [22].

continuous aggregation represented by the x-derivative and (ii) a large scale for the total length
of the fibrils represented by the integral term. It can be derived through an asymptotic analysis
departing from the single PrPsc scale with a discrete model [11,13,18].

Well-posedness, in the class of weak solutions, has been studied in great generality by Laurengot
and Mischler [19] and Simonett and Walker [34]. Strong solutions to Equation (1) are built
by [12] in the case of ‘constant coefficients’, i.e., where 7, u are constants, S(x) = Box and
k(x,y) =1/yLo<x<y)-

The transport term accounts for the growth in size of polymers: their size grows with the
rate V (¢)z(x), proportional to the available PrPc molecules V (¢), with an aggregation ability
depending on the size of the polymer (a conceivable hypothesis being that their size confers them
a peculiar geometry affecting the autocatalytic process). The fragmentation rate, for a polymer
of size y, is B(y) > 0. The repartition of the two fragments of (smaller) sizes x and y — x is
given by « (x, y) > 0. It should thus satisfy the two usual laws [26] expressing that the number of
fragments increases but with constant total molecular mass (recall the factor 2 on the right hand
side of Equation (1)):

/‘y/c(x, y)dx =1, /yx/c(x, y)dx = X 2
0 0 2

This implies that this dynamical system is equipped with two natural balance laws

d 00 )
—/ u(x,)dx = / [B(x) — n(x)]u(x, 1) dx,
ds 0 0

% (V(t) + /oox u(x,t) dx) =L—yV(@) — /‘00 xp(x)u(x, ) dx. )
0 0

In this study, we aim to continue the work initiated in [6]. Amongst other things, a convincing
mathematical model has to reproduce the unusual kinetics of PrPsc accumulation and to be
compatible with the strain phenomenon.

In Section 2, we address the first question. PrPsc accumulation in brain follows an exponential
growth until the death, whereas it invariably reaches a plateau concentration in tissues outside the
central nervous system [3,17]. Thus, the mathematical system must have at least two steady states
(one corresponding to the healthy state, and one corresponding to the infection). The question of
the existence and the stability of these steady states has been extensively studied in the case of
‘constant coefficients’ in [12,15,16,30]. Here, as in [6,10,11], we are interested in non-constant
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Figure 2. Left: experimental analysis of PrPsc aggregates (data have been kindly provided by J.R. Silveira. For details,
see [33]). Size-distribution of PrPsc aggregates in a whole infected hamster brain (solid line) and relative-specific infectivity
of each fraction containing PrPsc aggregates with respect to their size (dotted line). The former corresponds to the quantity
xu(x,t), and the latter represents a bell-shaped converting rate t(x). These are, however, undirect measurements after
purification and sonication (i.e. fragmentation induced by ultrasound). Centre: size distribution obtained by solving
numerically Equation (6) for a suitable bell-shaped converting rate = (x) (dotted line), the non-zero steady state solution
presents a bimodal shape (solid line). Right: size distribution corresponding to ‘constant coefficients’ in model (1).

rates. In such case, the attractivity of the healthy steady state is proved in [6] when A is small and
the infectious steady state does not exist. When the infectious steady state exists, it is not known
if it is attractive or if other dynamics such as periodic solutions can exist. Although oscillations
are not expected to occur according to experiments, and have not been observed in numerical
simulations so far, we are not able to exclude them at the moment. Our first purpose is to give an
improved estimate showing that (u = 0, V = V) is repulsive in the infectious case.

The second question concerning strain mechanism is addressed in Section 3. Our purpose
is to indicate a route to study possible relations between PrPsc aggregate size distributions as
obtained from the model (1) with ‘non-constant coefficients’ (especially non-constant elongation
rate 7) and the strain phenomena described previously. It is based on the dynamical capability of
this nonlinear system to generate size repartitions with high complexity and specific properties,
notably the bimodal repartition depicted in Figure 2.

2. Mathematical results

2.1. Description of the associated eigenproblem

The eigenproblem associated with the aggregation—fragmentation equation in (1) is useful for
the mathematical analysis. For a given V > 0, we denote by A (V) the first eigenvalue and by
(UV; x), (V; x)) resp. the eigenfunction and the adjoint eigenfunction, that are the solutions to

8 o0
Va(f(X)U(V;X))+(M(X)+ﬂ(x))M0/;x)—2/ Bk (x, UN; y)dy
=ANMYUV; x),
UN;0)=0, UN;x)>D0, /OOZ/I(V;x)dle. (4)
0

8 X
—VT(X)afﬂ(V;X)+(M(X)+,3(x))¢(V;x)—2/0 Bk (y, x)p(V; y)dy
= AM)p(V; x),
e(V;x) >0, /OOU(V;X)w(V;x)dX=1- 5)
0
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We remind the reader that the former (4) defines the (opposite of) Malthusian factor A (V), and
expresses the fact that whenever the level of PrPcV is fixed the population of aggregates grows with
the exponential rate exp(— A (V)t) and with the asymptotic size-distribution 2/ (V; x) (see [23] and
comments below for further discussion related to the stationary states). The latter (5) has less clear
biological interpretation however. It can be viewed as the natural measure that yields an effective
mass conservation for the corresponding aggregation—fragmentation Markov process [26].

Although the solutions of Equations (4) and (5) come formally from the Krein—Rutman theorem,
the lack of compactness in the problem requires some specific proof (and technical assumptions on
the coefficients). In particular, we shall pay much attention to the competition between the growth
term 9, (t (x)U (x)) which pushes the distribution away from small sizes and the fragmentation
term B(x)U(x) — 2fx°° B(y)x(x, y)U(y)dy which drives the distribution back to small sizes.
We refer the interested reader to [10] for existence and assume throughout this paper that the
coefficients satisfy the following main conditions:

X 14 Y
/ K(z,y)dygc(f) . e 1'(0,A4)) forsomey =0, A >0,
0 y T(x)

PO _ o, BY g0, 4y,

T(x)

lim

X—>—+00 ‘[(x) -

associated with a couple of technical assumptions.

Several analytical examples are presented in [6] where it appears naturally that A (V) should
be decreasing. Even though no general proof is available as of today, it holds true by continuity
when the coefficients do not differ too much from these examples. Also numerics indicate that
this property might be true for a large class of transconformation rates t (x), including bell-shaped
rates, as one can see in Figure 3.

Following [6], the steady states to Equation (1) can now be reformulated in terms of the
eigenelements. The so-called ‘healthy steady state’ correspondsto (u = 0, v = V := 1/y). More
interesting, the ‘infectious’ steady state (1, Voo) Can exist and corresponds, in Equations (4)
and (5), to the relations

A
T 0 3T TOU(Vigs ) O

AWVeo) =0, ug(x) = 00l (Vo3 X)), Vo (6)

L L L L L
0 1 2 3 4 5 (] 7 8 9 10 a 100 200 300 400 500 800

Figure 3. Eigenvalue problem for the microscopic distribution. Left: several eigenfunctions are plotted, for V, respec-
tively, above (full line), below (dotted line), and close to (dashed line) the equilibrium value V. This is the ‘constant
coefficient’ configuration except for the bell-like converting rate t (x). Coefficients’ values are given in Section 3. Right:
numerical computation of the eigenvalue function A (V) for a bell-like function t(x) (dashed line) compared to the
‘constant coefficients case’, where A(V) = o — /080 V (full line).
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Accordingly to the above interpretation, it corresponds to a level of PrPc yielding a zero
Malthusian growth for the aggregates, which is an obvious necessary condition for having a
stationary state. Furthermore the profile of the size-distribution at equilibrium is given by the
eigenfunction U (Vo; x).

Such a steady state only exists if the prion production A is high enough so as to choose ..
which satisfies the third condition, namely

Voo < V= & @)
14

The question of the stability of these steady states has been extensively studied in the case of
‘constant coefficients’, i.e., where 7, u are constant B(x) = Box and «(x, y) = 1/yLo<x<y) IN
[12,15,16,30]. Then the system can be reduced to a three by three system of ordinary differential
equations on (V (1), fy~ u(x, ) dx, [~ xu(x, 1) dx). It turns out that the condition (7) is sharp
and when  is small only the healthy steady state exists and is stable. If 2 is large enough so that
the other steady state exists, it is globally attractive. Here, we are interested in non-constant rates.

2.2. Analysis of stability

Several stability results are proved in [6]. When A is small the only steady state to Equation (1)
is (0, V), the healthy state, and it is globally attractive; for any initial data we have u(z) — 0 as
t — 0in L. In the case when there is another steady state (1., Vo), the infectious state, it is
proved that trajectories cannot come close to the healthy state (persistency). But it is not known
if it is attractive or if other dynamics as periodic solutions can exist.

We complete the result in [6] by removing a size condition on some parameters of the system
(see below), and replacing it with an assumption on the global boundedness of the number and
mean size of aggregates. The main advantages are twofold: this new criterion has a very clear
biological interpretation, and moreover it can be obtained through independent estimates as in
Theorem 2.1.

In order to state our new persistency result we first prove a uniform bound

THEOREM 2.1 Assume that fooo[l + x]ul(x) dx < o0, u(x) > u>0andB(x) < Ou(x) + Cpx
for some constant Cg > 0 and & < 1, then the solution u(¢) to Equation (1) is uniformly bounded
in L1((1 + x) dx).

The condition on 8 involves some smallness and we do not know if it can be improved. However,
it is clear that the mortality rate x should be large enough; otherwise, the constant production of
monomers is not balanced by any degradation and the system tends to infinity. On the other hand,
the case when B(x) has sublinear growth is also of interest and corresponds to a well-established
theory, see [10].

Proof We combine the two balance laws (3) and for a > 0 to be chosen later on, we calculate

% (V(t) +/ (@a+x)u(x,t) dx) +/ [(a +x)u(x) — a,B(x)]u(x, Hdx +y V() =A.
0 0

From our assumption on 3, we obtain that

E (V(t) + /oo(a +xX)u(x,t) dx)
dt 0

+/ [(a(X = 0) +x)u(x) —aCpx]ulx, 1)dx + y V() < A.
0
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We now choose a such that aCg < /2, and we get for some » > 0 small enough so that

dr

Thanks to the Gronwall lemma, this differential inequality proves the announced boundedness.
|

i (V(t) + /oo(a + xX)u(x, t) dx) +b (V(t) + /oo(a + X)u(x,t) dx) <A.
0 0

Our second result improves the persistency argument in [6] and still uses a duality method
based on the weight ¢ = ¢(V; -). We assume that there are two constants K; and K, such that

09(x)
0x

‘T(X) = Kig(x) and 7(x) = Ko9(x). ®)

This condition generally holds true because @ grows at most linearly at infinity according to
general structure properties proved in [24,26,27] and related to Assumption (2).
We have

THEOREM 2.2 We assume that A(V) < 0, V(0) < V and that /;°(1 + x)u(z, x) dx is uniformly
bounded. Then the system remains away from the steady state (u = 0, V). More precisely we have

oo
lim inf/ o) u(x,r)dx > 0.
11— 00 0
In comparison with [6, Theorem 3], the peculiar size condition on the coefficients, namely

K1V < A(V) + y (where K; is introduced in Equation (8), has been removed and replaced by
the boundedness of the number and size of the polymers).

Proof  For the sake of clarity we introduce the quantities0 < v(r) =V — V(1) < Vand w(r) =
fo"o @(x)u(x, t)dx. Testing the system (1) against @(x) (5), it implies after integration by parts

%v(t) +yv() = V(t)/oof(X)u(x, 1 dx < VKow(1),
0

u(x, 1) dx = AV)w(@) = (|AV)| = Ko@) w(@).

99 (x)
X

d (o]
aw(t) = —v(t)/0 T(x) 5

Note also that v(¢) cannot vanish in finite time.
Next we consider for some « > 1 to be chosen later on, the quantity y(¢) = w()v ().
It satisfies the differential inequality:

d /[ w() w(t) — w(t) —  w()
ar (va(t)) = v"‘(t)(|A(V)| — Kiv(1)) — av“(t) (—)/ + VKZ%) )

and we now choose « large enough so that § = ay + A(V) — K1V > 0. This leads to the system
of differential inequalities:

dy(t)

ar > y(t) [8 - aKZVyl/"‘wl_l/"‘] ,
dw(?) — w\Y*
>w(t) [ [AV)] = K1 (—) : ©)
dr y

We denote by w = limsup,_, ., w(t), which is finite thanks to our global boundness on u(x, t)
because @ has sublinear growth at infinity. Then, the first differential inequality on y(z) tells



Downloaded by [78.194.34.34] at 04:17 28 October 2017

Journal of Biological Dynamics 35

us that,
=liminfy(t) > ——————— >0
yi=Mminty = (a Ky Vwt=Ye)
And then, we deduce from the second inequality that liminf,_ ., w(z) > |A(V)|°‘K1‘“X and the
proof is completed. |

Note that we need the a priori knowledge that w(¢) is upper bounded in order to obtain the
lower bound from the system (9). And such a property is not a consequence of the dynamics
on (y, w) only. This means that some information is lost (as the mortality rate) when reducing
the infinite-dimensional system to these two quantities and the upper bound should come from
another stage as we mentioned earlier (Theorem 2.1 for instance).

3. Dynamicsand strain phenomena

It has been suggested that less stable prion strains are more infectious, as judged by their shorter
incubation times [21]. In addition, most infectious particles (fractionnated by sedimentation)
seem to be smaller for fast strains than for slow strains [2]. However, how the PrPsc conformation
of a specific strain influences its replicative properties remains unclear. In this section, we aim
at studying how a slight change in the replicative parameters can reproduce or predict strains
properties. We are mainly interested in PrPsc aggregate size distribution, which could be used to
study strain mechanisms. Indeed, analysis of the dynamics of model (1) initiated in [6] emphasizes
the importance of the size distribution of PrPsc aggregate, which seems to be very informative on
prion replication mechanism. Notably, it has been shown that different size repartitions resulting
from different replicative parameters can play a role in the strain adaptation mechanism.

Our approach is based both on analysis through the eigenvalue problems (4) and (5) and on
direct numerical simulations of the temporal dynamics.

3.1. Numerics

Parameters of the nucleated polymerization model for prion growth have been estimated for the
‘constant parameters model’ from experimental data and are available in the literature, see [15,31]
and the references therein. The parameter values used in the sequel have been quoted from
Rubenstein et al. [31]. Unless explicitly mentioned, they are: » = 2400 per day, y = 4 per day,
uo = 0.05 per day, and B(x) = Box with 8y = 0.03 per day.

The real conversion function is still unknown. We test two different functions, which represent
idealized extreme cases:

e a bell-shaped function, accounting for the case of the infectious particles, is concentrated
around one specific size. The conversion function 7 (x) is the sum of a basal rate 7o = 0.001
and a Gaussian bell centred on m:

T(x) =10+ Aexp (—(x —m)?/a?), (10)

with a magnitude A to be chosen by several orders of magnitude above 7.
e a sigmoidal shape, when aggregates larger than a critical size are identically more infectious
than smaller polymers. Then the conversion function z (x) is given by

exp(x —m)

= Am———
T = A G —m)’

(11)

with a magnitude A to be chosen by several orders of magnitude above .
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Throughout the rest of this paper, the simulations assume an initial PrPc population vV (0) =
V = 1/y (corresponding to the healthy steady state because we assume inoculation in an healthy
animal) and an initial PrPsc distribution which is a small perturbation of the zero steady state,
given by u(x, 0) = 0.5x2/(1 + x*).

3.2. Effectsof the conversion rate

Differently shaped size repartition of the conversion rate greatly affects the PrPsc aggregates
size distribution [6]. We test here the situation where changes in conformation do not lead to a
completely different profile of converting activity, but only a change of either the magnitude of
the conversion or the location of the most infectious particles. For the experiments depicted in
Figures 4 and 5, varying parameters act upon the kinetics of PrPsc accumulation as follows: the
higher the transconformation rate are or the smaller the most converting particles are, the faster
the PrPsc accumulates, and thus, the shorter the incubation time seems to be. In particular, this
implies that a fast strain could be able to fix and transconform PrPc either with great efficiency
or by smaller aggregates (or both). Interestingly, our simulations also predict changes in the
size-distribution of PrPsc, whose variations are specific of the varying parameters.

In the case of a bell-shaped conversion rate, we also have tested the effect of the tightness
of the converting peak, by studying the dominant eigenvalue. Indeed, when we focus on the
exponential growth of PrPsc (as is the case in the brain but corresponds only to the early stages
of accumulation in the spleen), the eigenvalue problem can be used during the initial phase of

Size distribution of 7 Time evolution of total PrPsc Size distribution of PrPsc
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Figure 4. (Available in colour online). Prion replication with variations in the maximum level of the conver-
sion rate 7. Transconformation rates are given by (top) 71(x) = 0.001 + H % exp(—10 % (x — 2)2). Three values
for H have been tested : H = 0.001 (blue line), H = .01 (green line) and H = 0.1 (brown line) (bottom)
72(x) = 0.0001 + Gexp(x —5)/(1 + exp(x — 5)). Three values for G have been tested : G = 0.01 (blue line), G = .015
(green line) and H = 0.02 (brown line). Left: size distribution of 71 and 7, (abscissa = PrPsc aggregates size; ordinate
= rate 7). Middle: time evolution of total PrPsc for : (B1) 71 and (B2) 7. (abscissa = Time (in day) ; ordinate = rate ¢
(per day). Right: normalized PrPsc aggregates size distribution at t1 = 90 days and t2 = 20 days, corresponding to the
exponential growth of PrPsc. The distributions are normalized by the total number of PrPsc aggregates (abscissa = PrPsc
aggregates size; ordinate = PrPsc aggregates number).
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Figure 5. (Availableincolour online). Prion replication with variations in the locus of the conversion rate z. Transconfor-
mation rates are given by: (top) 71 (x) = 0.001 + 0.1 % exp(—10 % (x — m)?). Three values for m have been tested : m = 2
(blue line), m = 4 (green line) and m = 6 (brown line) (bottom) 2 (x) = 0.0001 + 0.015exp(x —1)/(1 + exp(x —1)).
Three values for [ have been tested : / = 5 (blue line), I = 7 (green line) and / = 10 (brown line) Left, Middle and Right:
Same as Figure 4.

exponential growth (occurring at least in the diseased brains). We assume below that V > V,,
according to Equation (7), that A (V) is a decreasing function so that instability of the healthy
state holds true as proved in [6]. This holds for the choice of coefficients mentioned above.
We may assume that V' (r) remains close enough to V because u(x, ) dynamics undergoes an
exponential growth phase, while the polymerization behaves following a linear problem. Actually
the second equation in (1) is decoupled from the first one at the first order of approximation. The
dominant eigenvalue —A (V) thus measures the exponential growth of the PrPsc total population
(see [26] for a mathematical formulation of this fact using the generalized relative entropy).
Several transconformation rates 7 (x) —being the same basal rate t, combined with amore and more
concentrated Gaussian bell are tested — and the corresponding growth rate in the exponential phase
— A (V) are computed numerically (Figure 6). Interestingly, the results exhibit a best compromise
around @ ~ 0.01 (intermediate concentrations of the peak). Thus, according to this model the
optimal conditions for PrPsc accumulation in the exponential expansion phase do not correspond
to a very thin peak.

3.3. Effectsof the fragmentation rate

As suggested in [21,33], prion strains can differ in their stability. Here, we make the assumption
that the stability of a strain is only represented by the framentation rate 8. However, it could also
be interesting to study the effect of the degradation rate . According to numerical experiment
depicted in Figure 7, increasing the fragmentation rate leads to a faster PrPsc accumulation for a
bell-shaped converting rate t as for a sigmoidal . However, for a sigmoidal = with a higher critical
threshold, the inverse effect is observed, due to the fact that small aggregates are less able to convert
PrPc than larger PrPsc polymers, and then multiplying the number of small particles does not
compensate for the loss of conversion activity any more. Surprisingly enough, we also can observe
that when the fragmentation accelerates the accumulation of PrPsc, this faster accumulation leads
to a lower level of total PrPsc amount at the plateau.
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Figure 6. Influence of the transconformation tightness (top) The transconformation rate with several levels of concen-
tration: 7(x) = 10 + a@(a(x —m)), where ¢ is a Gaussian function and o = 10(-3-20) (middle) The corresponding
eigenfunctions U(V; x). (bottom) The exponential growth rate —A (V) (solid line) as a function of « (logarithmic scale,
units for —A (V) are day~?1) and the effective transconformation rate (dashed line) zefr = [ T@UV, x) dx (magnified
30 times). Bimodal distribution begins for In(a) = —3 and thus does not correspond to the distribution having the best
Malthusian parameter.

4. Conclusion and per spectives

We have continued the analysis in [6] concerning size-dependent polymerization rates in the
standard model (1) for prion PrPsc self-replication. The interesting situation is when the prion
production rate is large enough to permit an infectious steady state. Analytical study of its insta-
bility remains an open problem (see [12,15,16,30] for the ‘constant coefficients’ case) but we
could improve a previous result showing that the healthy state is unstable and solutions remain
globally bounded. As previously but in a more general framework, we confirm that the amount
of PrPc is critical for the development of prion diseases. This is in accordance with well-known
experimental results, where PrP-KO mice cannot be infected [5]. However, this result may have
wider implications for many other neurodegenerative diseases. Indeed, numerous pathologies
(such as Alzheimer’s disease, Parkinson’s disease and Hungtington’s disease) are characterized
by the aberrant polymerization and accumulation of misfolded proteins. Many evidences show
that they can be induced in transgenic models (see [35,37] for a review). Thus, whether these mis-
folding protein disorders are transmissible or not is currently widely debated. Our results suggest
that the bioavailability of the amyloid precursor is critical for transmissibility. This is consistent
with the fact that, in prion diseases, prion precursor is the protein itself and naturally present in
large amount in neurons, whereas in Alzheimer’s disease, Abeta is only a minor proteoteolytic
cleavage product of the amyloid precursor protein (APP).
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Figure 7. (Available in colour online). Prion replication with variations in the fragmentation rate of aggregates. Three
values for B have been tested (8 = 0.0314 - blue line, 8 = 0.0471 - green line and B = 0.0628 - brown line) for three con-
version rates 71 (x) = 0.001 4 0.1exp (—10(x - 2)2) (top), t2(x) = 0.0001 + 0.015exp(x — 5)/1 + exp(x — 5) (mid-
dle) and 73(x) = 0.0001 + 0.015exp(x — 10)/1 + exp(x — 10) (bottom) (Left) Time evolution of total PrPsc (abscissa
= Time (in day) ; ordinate = PrPsc total amount) (Right) Normalized PrPsc aggregates size distribution at t1 = 96 days
(for 11), t2 = 20 days (for 72) and t3 = 60 days (for z3) corresponding to the exponential growth of PrPsc. The distri-
butions are normalized by the total number of PrPsc aggregates (abscissa = PrPsc aggregates size; ordinate = PrPsc
aggregates number).
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This necessary condition of PrPc bioavaibility is, however, insufficient to explain strain mech-
anisms, since species expressing PrPc can be infected only by specific strains. Thus additional
constraints are likely to be required for prion strain transmission and propagation. Such constraints
can be purely physicochemical, due to one peculiar structure of prion aggregates. Indeed, a large
body of literature suggests that differences between prion strains lie in the diversity of structures
of PrPsc aggregates that can be stably and faithfully propagated [1,7,8,21,25,32,36]. However,
it remains poorly understood how these changes in the conformation of PrPsc aggregates can
account for their physiopathological effects and their relationship with the host [21]. Although
our model does not separate the host contribution from the strain contribution, it represents on
the contrary the relationship between host and pathogen and it allows studying which elementary
replicative parameter is critical in strain propagation.

Among the attempted biochemical characterization of prion strains, a relationship was found
between the relative stability values of PrPsc aggregates [21] or level of aggregation [32] and
incubation times, indicating that less stable prions are more infectious, as judged by their shorter
incubation times. This is presumably because unstable prions fragment more easily, giving rise to
smaller aggregates of PrPsc that are more infectious than larger ones. Our model agrees with these
observations for a bell-shaped conversion rate, since increasing the fragmentation rate gy leads
to a faster PrPsc accumulation. Inverse results can be obtained for some sigmoidal conversion
rates. It does not immediately mean that a sigmoidal conversion rate is unrealistic, since this result
strongly depends on the size distribution of the fragmentation rate. However, it emphasizes the
need for precisely monitoring the fragmentation rate, which might depend on the PrPsc aggregate
size in a more complex manner than the linear dependence supposed here.

We have also investigated the implications of varying the conversion rate: do different strain
conformations lead to a more efficient fixation and conversion by the same aggregates or do
they lead to different most converting particles? Our numerical simulations alone do not answer
to this question, but interestingly, they show that whereas changing parameters leads to similar
effects on PrPsc accumulation Kinetics, the resulting size-distribution variations are different. Thus
the achievement of experimental size-distribution of PrPsc aggregates for many prion strains
could therefore allow to better understand the molecular mechanisms involved in prion strain
phenomenon.

To conclude, this work completes the study initiated in [6], notably in studying strain
phenomenon. It emphasizes the potential role of PrPsc aggregates size distribution, which could
be a signature of prion strain converting abilities. The next step of our work is to approximate
faithfully the inverse problem in order to obtain the size dependence of the transconformation rate
from the distribution of PrPsc for several strains. This knowledge is a critical step for experimental
approaches of prion infectivity investigation like PMCA. Indeed, we have observed several times
the existence of an optimal converting rate for PrPsc accumulation (see for instance the tightness in
the case of a bell-shaped converting rate), which means that only slight changes in the replicative
parameters can dramatically influence the kinetics of PrPsc accumulation. It could explain the
sensitivity of PMCA to experimental procedures. Complete understanding of how the PrPsc
accumulation of a given strain depends on their replicative parameters could help to optimize
strain-specific PMCA protocols.
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