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Abstract

The period (in the order of 40 to 80 days) in periodicartic myelogenous leukemia (PCML) oscillations is quite long
compared with the duration of the cell cycle of the hematefoistem cells from which thesgillations are presumed to
originate (in the order of one or two day®)ur objective is to understand the origihtbese long-period oscillations using
a & model for stem cell dynamics. We @einine the local stabilitgonditions and show under what conditions the Hopf
bifurcation may occur. We interpret the role of each paraniatthe loss of stability, and then examine a simpler model to try
to deduce possible changes at the stem-cell level that might be responsible for the characteristic3dP&tethis article:

L. Pujo-Menjouet, M.C. Mackey, C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Résumé

Contribution a I'éude de la leucémie myélogene chronique périodique. La durée des périodes (de 'ordre de 40 a 80
jours) apparaissant lors des oscillations dans la leucém@ogene chroniqugériodique (LMCP) esassez longue comparée
a la durée du cycle cellulaire (de I'ordre de un ou deux jours). Notre objectif est de comprendre les causes de cette grande
différence en utiliant un modele de cellules souches avec phase de repos. Nous donnons les conditions qui permettent d’obtenit
la stabilité locale ainsi que la bifurcation de Hopf. Nous discutons ensuite du role de chacun des parametres impliqués dans ¢
phénomeéne. Puis nous transformons le modele non linéairemodéle plus simple pour donnane meilleure compréhension
des mécanismes apparaissant dans la LMROBr citer cet article: L. Pujo-Menjouet, M.C. Mackey, C. R. Biologies 327
(2004).
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1. Introduction determining stem cell dynamics without going into the
mathematical details. We then summarize some results
Leukemia, a cancer of the white blood cells, is presented in [4] (such as stability results), and refer the
classified clinically on the basis of the character reader to this latter publication for the analytical work.
of the disease (acute or chronic), the type of cells  This paperis organized as follows. In Section 2, we
involved (myeloid, lymphoid or monocytic), and the present the mathematical model for the hematopoietic
increase or constant nature in the number of abnormal stem cells that is used to investigate the problem. In
cells (leukemic or aleukemic). The acute or chronic Section 3, we present some stability results for the
character of leukemia is based upon the rate of HSC, and conditions for the Hopf bifurcation to occur.
progression of the disease behavior in the sense thatin Section 4, we transform the problem to compute
with no treatment, a patient with acute leukemia will the solutions analytidly and study the role of each
die within months, while chronic leukemia will kill ~ parameters involved in the model. We give a short
within years. conclusion in Section 5.
In this paper, we analyze chronic myelogenous
(or myeloid) leukemia (CML), one of the most com-
mon types of leukemia. CML is usually diagnosed by 2. The stem-cell model
the presence of a specific chromosomal abnormality,
the Philadelphia chromosome. It is due to a recipro-  Because PCML is believed to arise in the stem cell
cal translocation betwearhromosome 9 and chromo- compartment in the bone marrow, here we consider a
some 22, which results in chromosome 9 longer than stem cell model with a proliferating and a resting G
normal and one chromosome 22 shorter. This latter is phase [5]. A cell entering the proliferating phase can
called the Philadelphia chromosome. Associated with either die by apoptosis at a rateor divide a fixed time
this transformation is the fusion of the proto-oncogene t after entry (point of cytokinesis). Immediately after
c-Abl carried by the removed part of the chromosome division, the two newly born cells, the daughter cells,
9 and the gene Bcr contained in the break of the chro- enter the resting phase. They can either remain in this
mosome 22. This fusion results in the creation of a resting phase, or exit from this phase by differentiating
chimerical protein, the Bcr-Abl Tyrosine Kinase [1]. into one of the committed cell lines (red cells, white
CML is believed to arise in the hematopoietic cells, platelets) at a rat& or exit and re-enter the
stem cell (HSC) compartmerfthe earliest stage of  proliferating phase at a rafe
blood cell formation) from which all of the formed If we denote the density of proliferating cells at
elements of the blood (white blood cells, red blood time ¢ by P(¢), and the density of resting cells at
cells and platelets) are derived. Two lines of evidence time ¢ by N(¢), the conservation equations are given
lead to this hypothesis. First, in CML the Philadelphia by (see [6-8] for further details)
chromosome is found in all of the hematopoietic dP (1)
lineages [2], which come from the hematopoietic stem =—yP()+B(N)N —e VT B(N;)N; (1)
cell. The second piece of evidence is derived from
the observation of periodic oscillations in the three M — —[ﬂ(N) +8]N + 26777 B(N;)N, 2)
types of blood cells in one rare variant of CML. Thus, dr
our investigations of the CML are concentrated on the where N; = N(t — t). The term €Y*8(N;)N; in
dynamics in the stem cell compartment [3]. Eq. (1) represents the fraction of surviving cells about
In [4], the authors using the same model as here, to leave the proliferating phase that entered a time
proved that it is theoretically possible to get the large earlier. The term 2e"*8(N;)N; in EqQ. (2) repre-
difference observed experimentally between the short sents the new daughter cells produced from the sur-
cell cycle duration in the HSC (on the order of one to viving mother cells. These two last terms correspond-
two days) and the long period oscillations observed ing to the right-hand sides of Egs. (1), (2) can be justi-
in periodic CML (PCML) — in the order of 40 to fied technically as follows. The conservation equations
80 days — (the experimental results are presented(1), (2) derive actually from an age-structured sys-
in [3]). Here we examine the role of each parameter in tem of non-linear partial differential equations with-
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out delay. After integrating with respect to age, using In this section, we briefly summarize the stability
the method of characteristics and considering some results analytically proved by Mackey and Pujo-
boundary conditions (see [9] for clear a detailed com- Menjouet in [4]. Before analyzing the period of the
putations), the terms with time delays"& 8(N;)N; solutions, it is necessary to give the regions where
and 2e7* 8(N,)N; appear naturally and have a sim- stability occurs and the ones where the solutions
ple biological interpretation as mentioned above. The become unstable through the Hopf bifurcation. To that

mitotic reentry rate from @into proliferation @) is end, we determine the steady states of Eq. (2), and then
taken to be a monotone decreasing Hill functiomof  simplify the problem using dimensionless variables
given by and determine the regions of stability.

B(N) = Pol6" /(6" +N")] (3) 3.1. Steady states

wherefp is the maximal rate of cell movement from

the resting phased3nto proliferation is the G stem When dV/dr = 0, the steady-state solutiong® of

cell population at which the rate of cell movement Eq. (2) satisfy eitheN* =0 or
from Gg into proliferation is one-half of its maximal
value o andn controls the sensitivity of the mitotic ~ B(N*) =" =5/(2e 7" —1) =5/(k — 1) (4)
reentry rate8 to changes in the size offGWe assume
thatn is a positive real number. Equations like these
with negative delayed feedback have been studied in a
more general context [10-15].
Note that the solution to Eq. (2) is independent of
the behavior of the solution to Eq. (1) but the converse
is not true. Knowing the behavior of the solutions of N* :9;‘/@(2@” - 1) —1=90 "/@ -1 (5)
Eq. (2) itis easy to obtain the behavior of the solutions 8 B
of Eq. (1). Thus we concentrate our study on Eg. (2).
A solution to Eg. (2) is a continuous function
N:[—71,4+00) — Ry, for all + > 0. We denote the
continuous functionp:[—1,0) — Ry, ¢(t) = N(t) 0<7<tmax and & < fo, (6)
forall t € [—1, O], as the initial condition forv. Using
the method of steps, it is easy to prove (see [9]) that Wherétmax= —(1/y) In[(8 + Bo)/2po]
for everygp € C([—t, Q]), there is a unique solution to
Eq. (2), whereC([—t, 0)) is the space of continuous 3.2. Local stability
functions on[—z, 0].
The purpose of this paper is to apply the technique  Letx = N/6, which is a dimensionless variable, so
used in [11] to this HSC model in order to study the Eq. (2) becomes:
effect of various parameter changes on the dynamics
and to thereby hopefully obtain some insight into the = —[Bx) + 8]x + kB (xc)xc @)
HSC origin of PCML. dr

with x = 2e777. In order for the steady-state re-entry
rate 8* to be non-negativer must satisfy: 0< 7 <
In2/y. Using the definition of8 given by (3), we can
give an explicit form of the nontrivial steady state:

For this nontrivial steady state to exist, it is hecessary
to restrict the value of such that

and the steady states are netv= 0 and

3. Stability results ot = n/% -1 (8)

Our objective is to derive some understanding of _ _ ] _
the possible mechanisms giving rise to the long-period  If we linearize Eq. (7) in the neighborhood of one
oscillations seen in PCML by looking at the influence ©f the steady states, and set= x — x* and B =
of each parameter in our HSC model on the stability 8"+ 8*x*, then Eq. (7) becomes:
of the steady states and the period of the solutions that dz

result once stability is lost. g = [B+ol+ kBz; 9)
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Take z(t) = €; so the characteristic equation that since we are interested here only in periodic os-
corresponding to Eqg. (9) is: cillations for PCML, we do not investigate the behav-
Y ior of the blood cell population after this phase (acute
A+ (@+B)=«Be (10) leukemia) where a sudden expansion of abnormal cells

The regions of parameter space in whigh < 0 occurs leading to the death of the patient [17]. The fol-
are easily determined (see [4] and [16] for the details lowing sections are then focused only on the amplitude

of the computations), and can be summarized as and period of the oscillations that could might be ob-
follows: served clinically during PCML. The parameters cho-

sen for the simulations were taken from estimates in
(1) if n € [0, 1], then the solutions are locally stable the literature [6,8].
fort e [O, Tmax]; .
(2) if n > 1, then we must consider two sub-cases;: ~ 3-2-1. Influence of the sensitivity

(@) if [n/(n — 1)16 > o, then the solutions are Whgnn varies from 1to 10 (Fig. 1), we qbserve that
locally stable forr € [0, tma: osc_lllatlons appear (for about 10), then increase in
(b) consider 0< [1n/(n — 1)15 < fo, and letr, = period and amplitude up tq a ‘satu_rat|on’ limit (Fig. 2)
—1/y) In{1/2[(8/,30)(1+ 1/{n —1}) + 11} due to the fact that the Hill fUﬂCthﬁ- given by (3)
(i) if = € [0, 7], then we have stability if and approaches the Heav_|S|de step function wheﬁ_oo,
only if as explained in Section 4. Consequently, to increase
the oscillation period and amplitude in a larger way,
~1< §+B <1 and the other parameters involved in the model play a
kB crucial role.
cos 1((s + B)/(x B)) Note that for the next simulations in this section,
" \/(K B)2 — (8 + B)? (11) we choosea: = 12 not only because we are focused on

long period oscillations but also because in Section 4
we are interested in the linear case whergends
to infinity. Due to the saturation effect, it is then

o ] ) sufficient to taken = 12 as a good parameter value
Periodic solutions will appear through the Hopf for comparison.

bifurcation when the parametei®, §, « are such

that T = ¢rit. We therefore focus our attention on

Case (2(k()). When there is a Hopf bifurcation, the :

eigenvalues are pure imaginary= iw, w being a real }
0

(i) if 0 < [n/(n — 1)]8 < Bo, then the solu-
tions are locally stable for € [, Tmax]-

number, and there is a periodic solution to Eq. (9) with
Hopf periodTy = 27 /w given by:
-1/2

T =27[(kB)? — (6 + B)?]
= 2 terit/ €OS [(8 + B)/x B] (12)

After this brief analysis, we now turn to a numerical
investigation of the influence of each parameter in the
HSC model on the stability and periodicity of the so-
lutions. Simulations presented in 3D were done using time (days)

WinPP, the Windows version of XPP (freeware cre- 10 < 80

ated by Prof. B. Ermentrout), and the ones presented as time t vs n vs x

two-dimensional graphs were carried out using MAT- o ) ) . )

LAB version 6.0. The figures in 3D are neither nor- Fig. 1 This figure |IIustrat_es the highly sensitive behaworfff the
. . solutions to Eq. (7) as varies from 1 to 10, witls = 0.05 day -,

malized nor shown from the same perspective because; _ 1 gay, g, — 1.77 day ! andy = 0.2 day L. As » increases,

each case is different and we chose the best way tOthe steady state decreases, as expected from Eq. (8), ame-fho

present the simulations. The reader should also noteoscillations appear.

1
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time (days)

time (days) go 10

timet vs n vs x time t vs 8 vs x
Fig. 2. Asn increases from 10 to 19 (witlh = 0.05 day?, Fig. 3. These numerical solutions illustrate the influence of the loss
t =1 day, Bp = 1.77 day ! andy = 0.2 day 1), the amplitude rate s from the resting phase on the solutions of Eq. (7), with
and period of the periodic solutions increase until they saturate. varying from0t0 0.2 dayl and takingr = 1 day,Bg = 1.77 dayfl,

3.2.2. Influence of the loss ratésandy
Consider first the loss ratefrom the resting phase.
One can observe five different stages ascreases.

1.

. If we increase’ slightly, one notices an abrupt 3

y =0.2 day 1 andn = 12.

Whené = 0, the solution converges rapidly to
the nontrivial steady state (Fig. 3). Then &s
increases, small oscillations start to appear.

\\
\‘\

A
Aﬁ"‘»
\\,
M»/\\M
0

rise in the amplitude and period of the oscillations ?
occurring in a narrow interval of changednWe 0
denote byéy the value at which this transition

occurs where the amplitude and period are at time (days)
their maximum. From our calculations (shown in go 05
Fig. 3), this value is abou ~ 0.46567 day ™.

timet vs 8 vs X

. Lets become larger thafy. Then, the amplitude

and period decrease slowly &s continues to Fig. 4. Here we show the sensitive dependence of the solution
increase. amplitude and period on the loss ratefor § varying from 0.5

. . . . 1 i i ~1
. This phenomenon persists until the solution starts ©© 1.4 day " and again takingr = 1 day, fo = 1.77 day ",

. ) . . =0.2day! =12.8q ~ 0.04657.
to exhibit a succession of small-amplitude oscil- 7 02 day™* andn g~ 00465

lations just before a ‘big amplitude jump’. These

big jumps are, however, smaller than the ampli- This behavior is subtle. It is rather easy to observe
tudes seen in the previous case, and continue tothe five different stages but it is more difficult to ex-

decrease asincreases. This behavior is shown in  plain them by considering the nonlinear equation (7).
Fig. 4 whens is close to 0.5. Due to this small os- However, if we transform this nonlinear equation (7)

cillation effect the period again increases. We de- into a simpler linear system and if we consider the ex-
note these solutions as having a ‘tail-jump’ shape. plicit expression of the Hopf period given &y in

. When a too large value of is reached, the (12),itisthen possible to get a better understanding of

solutions converge to the trivial steady state: 0 what happens. This will be done in Section 4.
due to a high loss rate in the resting phase leading  Consider next the influence of the apoptosis sate
to the extinction of the cell population. from the proliferating phase. Numerically, we found
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time t vs y vs x time t vs T vs X

Fig. 5. This figure illustrates the influence of the apoptosis (death) Fig. 6. This figure illustrates the influence of the proliferating phase

ratey on solution behavior foy varying from 0.58 to 0.68 day* durationz on the solutions of Eq. (7), with varying from 0 to 3

and takingr = 1 day,fy = 1.77 day 1, § = 0.05 day ! andn = 12. days and holding = 0.05 day 1, S = 1.77 day 1, y = 0.2 day™1

The behavior is qualitatively the same as for changes in the loss rate andn = 12. As proved analytically in Section 3.2,1fis too small,

8 from the resting phase, as illustrated in Figs. 3 and 4. the solutions approach the nontrivial steady state which is stable.

After the critical valuergyit is exceeded, oscillations occur and these

. . . . oscillations increase in period and amplituderagcreases until
that)/ influences the behavior of the solutions in the T = Tmax at which point the solutions again approach the trivial

much same way a8. Namely, asy increases, the  steady state.

amplitude and period of the oscillations increase and

again there is a transition point at which there is a

sudden jump in both, and then a slight decrease in

the amplitude and period. We have estimated the valueis clearly due to the parameter=2¢e"7", because as
at which this happens to be ~ 0.2 day* (Fig. 5). 7 increasesk tends toward O and so the right-hand
A succession of ‘tail-jump’-like shapes then occurs side of Eq. (7) is ruled only by the negative term. The
until finally the solution approaches the trivial steady solution reaches then the tralisteady state. All these
statex = 0. behaviors are shown in Fig. 6.

3.2.3. Influence of the cell cycle time

The influence ofr on the behavior of the cell i )
population corresponds to the predictions based on 1he maximal reentry rat@o plays an important
the local stability analysis in Section 3.2. Thus, when '0l€ in determining the amplitude and period of the
7 is small and close to 0 (so the cell cycle time is Periodic solutions. As shown in Fig. 7, whef is
short and the cells rapidly proliferate), the solution is Sufficiently large, the morggo increases, the larger
stable and rapidly converges to the nontrivial steady the amplitude and the period of the oscillations are.
state. Ast increases, it reaches the point= i, However, whergg is close to 0, the behavior is more
the nontrivial steady state becomes unstable and therecomplicated. Indeed, in this case, one can observe
is a Hopf bifurcation to limit cycle behavior. Further ~ from Eq. (7) that the behavior of the solutions is ruled
increases lead to complewlstion behavior that are by the two loss death rates and §, and it is not
still under investigation and will be the object of future SO straightforward to understand what is happening
work. Finally, if t is increased past the valagax, the by considering the full equation (7). To give a more
cell cycle time becomes so large that the population is accurate interpretation of this complex behavior we
extinguished and the nontrivial steady state ceases totransform the nonlinear equation (7) into a piecewise
exist. In this case the single remaining steady state is linear one, by considering the extreme case of co.
the trivial one and the cell population dies out. This This is the subject of the next Section 4.

3.2.4. Influence of the maximal reentry rgig
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time (days)

time t vs Pfo vs x
Fig. 7. Here we show the influeaof the maximal reentry rajg, on
the solution behavior (Eqg. (7)), withg varying from 0 to 1 dayl

and takingr = 1 day,y = 0.2 day 1, § = 0.05 day ! andn = 12.
The largerBg, the larger the oscillation amplitude and period.

4. Transformed problem

In [4], the explicit solution to Eq. (2) was computed
for n — oo to obtain the oscillation period and
amplitude analytically. In this section we are not
interested in the analysis of [4]. Our purpose is to go
further in the interpretations of the numerical results
presented in Section 3.2 and explain the complicated
influence of the loss rates observed in the previous

section.

Before showing the numerical results, note that

whenn — oo, the feedback functiof8 can be ap-
proximated by the Heaviside step functi@rix;) =
Boll— H(x; — 6)], where:

1 ify>0

H(y) =
) [0 otherwise

(13)

If we seta = Bo+ 6 andI” =2Bpe V" = kfo, then
Eq. (2) becomes:

—8x forl<x,x;
d_x_ —ax forO<x <1< x; (14)
dt ~ | —ax+Tx;, forO<x,x, <1

—S6x+T'x; forO<x; <1<x

Since the numerical simulations in Section 3.2 were

carried out forn = 12, whenrn tends to infinity one

observes only slight differences in the numerical sim-
ulation for the same set of parameters. As explained in
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Section 3.2.1, this is due to a ‘saturation’ limit influ-
enced by the Hill functiorg. For this reason, we do
not show the effect of in this section, as well as the
effect of large values ofy. However, the transformed
problem is useful in the sense that, thanks to its sim-
plicity, we are able to interpret the different behaviors
induced by the loss rates.

Indeed, concerning the loss réatérom the resting

phase, we can explain the five different stages shown
in the previous section.

0]

(i)

If §is very low, i.e.,§ =0, the right-hand side of
the first and second equations of the system (14)
are close to 0 and the solutiardoes not oscillate,
or does so only slightly, and rapidly reaches the
non-trivial steady state.

For larger values o8, the amplitude and period
in oscillations reach their maximum very rapidly;
these maximum values are due to the fact that
the difference betweerax and I'x; (or —éx
and I'x;) in the right-hand side of the third (or
fourth) equation of (14) is at its optimum. In
other words, all the conditions are met to obtain
the maximal amplitude and period oscillations.
This value of$§ is difficult to find analytically,
but is approximated by ~ 0.46567 day?! in
Section 3.2.2. The rapid evolution in such a short
interval of § is not well understood analytically
but is confirmed in [4]. Indeed, the authors were
able to give an explicit but quite complicated form
of the amplitude and to show numerically that in
this interval the increase of the amplitude to its
maximum is remarkably fast. However, because
the explicit form found in [4] is complicated we
were not able to provide any simple interpretation.

. After this abrupt increase, the amplitude and

period decrease slowly due to a smaller and
positive difference betweer-ax or —38x and
I'x;. We can see this phenomenon if we study the
Hopf period given byTy in (12). It is clear (even
analytically) that7y decreases as increases
(up to a critical value ofs as explained in the
next case). This is shown in Fig. 8. Because
the influence ofr and y on the Hopf period
Ty is similar, we do not show the effect of the
increase of in this figure. Thus, with our chosen
parameters, to obtain maximal oscillatioahas

to be very close to an ‘optimal’ value that is
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Fig. 8. This figure illustrates the influence of the loss &t the
length of the Hopf periody with § varying from O to 0.05 dayl
and for two different values of: t = 1 day andr = 3 days.

A slightly similar interpretation can be given for

the

and so we do not go into the details. However,

the

. Whens is too large, the difference betweefnxx

Fig. 9. This figure illustrates the influence of the loss rate
on the length of the Hopf periody with y varying from 0O to

0.7 day ! and for two different values of: § = 0.05 day ! and

§=0.1day L.

neither too small nor too large andandy have
to also stay at a low level.

to study analytically whery varies. If we analyze

it numerically one can note that the period length
decreases ag increases up to a certain value. Then
due to the effect of the ‘tail-jump’ oscillations as
Then the solutionx as well asx; have some  explained above we can see that the period length will
difficulty in going to 1. This means that some very increase up to infinity whery tends to a value we
small oscillations occur due to the fact that the denote byygit. For y > ycrit, the periodic solutions
difference—ax or —ax — I'x; (Or —6x — 'xy) disappear, and the solutionconverges to the trivial

is positive, then negative following the different solutionx = 0, which means that the cell population
values taken by andx.. This phenomenonleads is extinguished.

to very long period oscillations with very small We give two numerical illustrations of the Hopf
amplitudes and the ‘tail-jump’-like shape. This period T4 when y varies. One figure is with two
period tends to infinity ag tends to a valuécyit. different values o8 and the other is with two different

In Fig. 8, if we increase with T = 1 day and values ofz. In the first figure, we increase (Fig. 9

t = 3 days), one can observe a shorter interval with § = 0.05 day ! and § = 0.1 day 1), which
where oscillations occur, i.&¢it becomes smaller  implies an increase in the period length. In the second
as t gets bigger. The cell population tends to figure, which is similar to Fig. 8, if we increase

be extinguished for lower values éfwhent is (Fig. 10 witht = 1 day andr = 3 day), we can see
larger. a shorter interval where oscillations occur, i)yt

or —8x and I'x; decreases, but is still positive.

. Then, wher$ > §¢it, 8 becomes too large, so the becomes smaller asgets bigger. The cell population

difference—ax — 'x; (or —8x — 'x;) remains tends to be extinguished for lower valuesyofvhent
negative and the oscillations vanish with the is larger.
solutionx converging to the trivial solutiom = 0. The influence of the proliferating phase duration
has been fully explained analytically in Section 3.2
and illustrated in Section 3.2.3. The transformed
problem does not bring further insight.

However, the system (14) is very useful to interpret
the influence of the maximal reintroduction rge As

death ratey related to the proliferating phase,

length of the Hopf periody is more difficult
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Fig. 10. This figure illustrates the influence of the loss fatn the

length of the Hopf period’yy with y varying from 0 to 0.7 day?!
and for two different values of: t = 1 day andr = 3 days.

é//// 0
time (days)

time t vs y vs X

30

Fig. 11. This figure illustrates the influence pfwhen the reintro-
duction ratesg is close to 0 in the proliferating phase of Eq. (9), with
y varying from 2.5 to 3 day! andt = 0.2 day,s = 0.05 day 1,
Bo=0.2day L.

noted in Section 3.2.4, whe#y is sufficiently large,
thena ~ Bo andI” ~ 28p and the moregg increases,
the more the amplitude and period of the oscillations
increase. However, whesy decreases and is close to
0, ~8andI' ~2e 7", In that case, the population
dynamics become more complicated and depend on
3 andy. The behavior is then under the influence of

these loss rates and so it is similar as the one presented

in Section 3.2.2 and above (see Figs. 11 and 12).
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time (days)
0.3 40
time t vs & vs x

Fig. 12. This figure illustrates the influence &dfwhen the reintro-
duction ratefy is close to 0 in the proliferating phase of Eq. (9),
with § varying from 0.3 to 0.5 da\yl and takingt = 0.2 day,
y=02dayl, Bp=0.2day 1.

5. Conclusion

The aim of this note was to show how short cell
cycle durations in the HSC (order of one to two days)
can give birth to long period oscillations (order of 40
to 80 days) as observed in the disease PCML. We also
wanted to see how these oscillations could occur and
in which way each of the five HSC parametersfo,

7, ¥, and?d) influence the oscillation amplitude and
period.

Our analysis of Eq. (7) showed that instability oc-
curs in a very small intervd0, 7,,] of . Itis in this
interval that our attentio has been focused, and we
showed analytically that periodic solutions can arise in
this interval. We performed numerical investigations
to see if large amplitude and long period oscillations
could exist and under which circumstances. We ob-
served three different groups in the parameters.

e The first one consists ot and gp and corre-
sponds to the influence of the Hill functigh(V).
Changes im and g can produce oscillations, but
due to a saturation effect increasesido not im-
ply long period and large amplitude. However, if
Bo is large, long period and large amplitude oscil-
lations are possible.

e The second group consists of the loss ratesd
8. It appears that under changes in these para-
meters, it is possible to obtain large amplitude
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