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Abstract

The period (in the order of 40 to 80 days) in periodic chronic myelogenous leukemia (PCML) oscillations is quite lo
compared with the duration of the cell cycle of the hematopoietic stem cells from which the oscillations are presumed t
originate (in the order of one or two days). Our objective is to understand the origin of these long-period oscillations usin
a G0 model for stem cell dynamics. We determine the local stabilityconditions and show under what conditions the H
bifurcation may occur. We interpret the role of each parameter in the loss of stability, and then examine a simpler model to
to deduce possible changes at the stem-cell level that might be responsible for the characteristics PCML.To cite this article:
L. Pujo-Menjouet, M.C. Mackey, C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Contribution à l’étude de la leucémie myélogène chronique périodique. La durée des périodes (de l’ordre de 40 à
jours) apparaissant lors des oscillations dans la leucémiemyélogène chroniquepériodique (LMCP) est assez longue comparé
à la durée du cycle cellulaire (de l’ordre de un ou deux jours). Notre objectif est de comprendre les causes de cet
différence en utilisant un modèle de cellules souches avec phase de repos. Nous donnons les conditions qui permetten
la stabilité locale ainsi que la bifurcation de Hopf. Nous discutons ensuite du rôle de chacun des paramètres impliqué
phénomène. Puis nous transformons le modèle non linéaire en unmodèle plus simple pour donnerune meilleure compréhension
des mécanismes apparaissant dans la LMCP.Pour citer cet article : L. Pujo-Menjouet, M.C. Mackey, C. R. Biologies 327
(2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Leukemia, a cancer of the white blood cells,
classified clinically on the basis of the charac
of the disease (acute or chronic), the type of c
involved (myeloid, lymphoid or monocytic), and th
increase or constant nature in the number of abnor
cells (leukemic or aleukemic). The acute or chro
character of leukemia is based upon the rate
progression of the disease behavior in the sense
with no treatment, a patient with acute leukemia w
die within months, while chronic leukemia will kil
within years.

In this paper, we analyze chronic myelogeno
(or myeloid) leukemia (CML), one of the most com
mon types of leukemia. CML is usually diagnosed
the presence of a specific chromosomal abnorma
the Philadelphia chromosome. It is due to a recip
cal translocation betweenchromosome 9 and chromo
some 22, which results in chromosome 9 longer t
normal and one chromosome 22 shorter. This latte
called the Philadelphia chromosome. Associated w
this transformation is the fusion of the proto-oncoge
c-Abl carried by the removed part of the chromoso
9 and the gene Bcr contained in the break of the ch
mosome 22. This fusion results in the creation o
chimerical protein, the Bcr-Abl Tyrosine Kinase [1].

CML is believed to arise in the hematopoie
stem cell (HSC) compartment (the earliest stage o
blood cell formation) from which all of the forme
elements of the blood (white blood cells, red blo
cells and platelets) are derived. Two lines of evide
lead to this hypothesis. First, in CML the Philadelph
chromosome is found in all of the hematopoie
lineages [2], which come from the hematopoietic st
cell. The second piece of evidence is derived fr
the observation of periodic oscillations in the thr
types of blood cells in one rare variant of CML. Thu
our investigations of the CML are concentrated on
dynamics in the stem cell compartment [3].

In [4], the authors using the same model as h
proved that it is theoretically possible to get the la
difference observed experimentally between the s
cell cycle duration in the HSC (on the order of one
two days) and the long period oscillations observ
in periodic CML (PCML) – in the order of 40 to
80 days – (the experimental results are prese
in [3]). Here we examine the role of each paramete
t

determining stem cell dynamics without going into t
mathematical details. We then summarize some res
presented in [4] (such as stability results), and refer
reader to this latter publication for the analytical wo

This paper is organized as follows. In Section 2,
present the mathematical model for the hematopo
stem cells that is used to investigate the problem
Section 3, we present some stability results for
HSC, and conditions for the Hopf bifurcation to occ
In Section 4, we transform the problem to comp
the solutions analytically and study the role of eac
parameters involved in the model. We give a sh
conclusion in Section 5.

2. The stem-cell model

Because PCML is believed to arise in the stem
compartment in the bone marrow, here we consid
stem cell model with a proliferating and a resting0
phase [5]. A cell entering the proliferating phase c
either die by apoptosis at a rateγ or divide a fixed time
τ after entry (point of cytokinesis). Immediately aft
division, the two newly born cells, the daughter ce
enter the resting phase. They can either remain in
resting phase, or exit from this phase by differentiat
into one of the committed cell lines (red cells, wh
cells, platelets) at a rateδ, or exit and re-enter th
proliferating phase at a rateβ .

If we denote the density of proliferating cells
time t by P(t), and the density of resting cells
time t by N(t), the conservation equations are giv
by (see [6–8] for further details)

(1)
dP(t)

dt
= −γP(t) + β(N)N − e−γ τ β(Nτ )Nτ

(2)
dN(t)

dt
= −[

β(N) + δ
]
N + 2e−γ τ β(Nτ )Nτ

where Nτ ≡ N(t − τ ). The term e−γ τ β(Nτ )Nτ in
Eq. (1) represents the fraction of surviving cells ab
to leave the proliferating phase that entered a timτ
earlier. The term 2e−γ τβ(Nτ )Nτ in Eq. (2) repre-
sents the new daughter cells produced from the
viving mother cells. These two last terms correspo
ing to the right-hand sides of Eqs. (1), (2) can be ju
fied technically as follows. The conservation equati
(1), (2) derive actually from an age-structured s
tem of non-linear partial differential equations wit
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out delay. After integrating with respect to age, us
the method of characteristics and considering so
boundary conditions (see [9] for clear a detailed co
putations), the terms with time delays e−γ τ β(Nτ )Nτ

and 2e−γ τβ(Nτ )Nτ appear naturally and have a sim
ple biological interpretation as mentioned above. T
mitotic reentry rate from G0 into proliferation (β) is
taken to be a monotone decreasing Hill function ofN

given by

(3)β(N) = β0
[
θn/

(
θn + Nn

)]
whereβ0 is the maximal rate of cell movement fro
the resting phase G0 into proliferation,θ is the G0 stem
cell population at which the rate of cell moveme
from G0 into proliferation is one-half of its maxima
valueβ0 andn controls the sensitivity of the mitoti
reentry rateβ to changes in the size of G0. We assume
that n is a positive real number. Equations like the
with negative delayed feedback have been studied
more general context [10–15].

Note that the solution to Eq. (2) is independent
the behavior of the solution to Eq. (1) but the conve
is not true. Knowing the behavior of the solutions
Eq. (2) it is easy to obtain the behavior of the solutio
of Eq. (1). Thus we concentrate our study on Eq. (2

A solution to Eq. (2) is a continuous functio
N : [−τ,+∞) → R+, for all t > 0. We denote the
continuous functionφ : [−τ,0) → R+, φ(t) = N(t)

for all t ∈ [−τ,0], as the initial condition forN . Using
the method of steps, it is easy to prove (see [9]) t
for everyϕ ∈ C([−τ,0]), there is a unique solution t
Eq. (2), whereC([−τ,0]) is the space of continuou
functions on[−τ,0].

The purpose of this paper is to apply the techniq
used in [11] to this HSC model in order to study t
effect of various parameter changes on the dynam
and to thereby hopefully obtain some insight into
HSC origin of PCML.

3. Stability results

Our objective is to derive some understanding
the possible mechanisms giving rise to the long-pe
oscillations seen in PCML by looking at the influen
of each parameter in our HSC model on the stab
of the steady states and the period of the solutions
result once stability is lost.
In this section, we briefly summarize the stabil
results analytically proved by Mackey and Pu
Menjouet in [4]. Before analyzing the period of th
solutions, it is necessary to give the regions wh
stability occurs and the ones where the soluti
become unstable through the Hopf bifurcation. To t
end, we determine the steady states of Eq. (2), and
simplify the problem using dimensionless variab
and determine the regions of stability.

3.1. Steady states

When dN/dt ≡ 0, the steady-state solutionsN∗ of
Eq. (2) satisfy eitherN∗ ≡ 0 or

(4)β(N∗) ≡ β∗ = δ/
(
2e−γ τ − 1

) = δ/(κ − 1)

with κ = 2e−γ τ . In order for the steady-state re-en
rateβ∗ to be non-negative,τ must satisfy: 0� τ �
ln2/γ . Using the definition ofβ given by (3), we can
give an explicit form of the nontrivial steady state:

(5)N∗ = θ
n

√
β0

δ

(
2e−γ τ − 1

) − 1 = θ n

√
β0

β∗ − 1

For this nontrivial steady state to exist, it is necess
to restrict the value ofτ such that

(6)0 � τ � τmax and δ < β0,

whereτmax= −(1/γ ) ln[(δ + β0)/2β0]

3.2. Local stability

Let x = N/θ , which is a dimensionless variable,
Eq. (2) becomes:

(7)
dx

dt
= −[

β(x) + δ
]
x + κβ(xτ )xτ

and the steady states are nowx∗ ≡ 0 and

(8)x∗ = n

√
β0

β∗ − 1

If we linearize Eq. (7) in the neighborhood of o
of the steady states, and setz = x − x∗ and B =
β∗ + β∗′x∗, then Eq. (7) becomes:

(9)
dz = −[B + δ]z + kBzτ
dt
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Take z(t) = eλt ; so the characteristic equatio
corresponding to Eq. (9) is:

(10)λ + (δ + B) = κB e−λt

The regions of parameter space in which�λ < 0
are easily determined (see [4] and [16] for the det
of the computations), and can be summarized
follows:

(1) if n ∈ [0,1], then the solutions are locally stab
for τ ∈ [0, τmax];

(2) if n > 1, then we must consider two sub-cases:
(a) if [n/(n − 1)]δ � β0, then the solutions ar

locally stable forτ ∈ [0, τmax];
(b) consider 0� [n/(n − 1)]δ � β0, and letτn =

−(1/γ ) ln{1/2[(δ/β0)(1+ 1/{n − 1}) + 1]}
(i) if τ ∈ [0, τn], then we have stability if and

only if

−1 � δ + B

κB
� 1 and

(11)τ < τcrit ≡ cos−1((δ + B)/(κB))√
(κB)2 − (δ + B)2

(ii ) if 0 � [n/(n − 1)]δ < β0, then the solu-
tions are locally stable forτ ∈ [τn, τmax].

Periodic solutions will appear through the Ho
bifurcation when the parametersB, δ, κ are such
that τ ≡ τcrit. We therefore focus our attention o
Case (2(b(i))). When there is a Hopf bifurcation, th
eigenvalues are pure imaginaryλ = iω, ω being a real
number, and there is a periodic solution to Eq. (9) w
Hopf periodTH = 2π/ω given by:

TH = 2π
[
(κB)2 − (δ + B)2]−1/2

(12)= 2πτcrit/cos−1[(δ + B)/κB
]

After this brief analysis, we now turn to a numeric
investigation of the influence of each parameter in
HSC model on the stability and periodicity of the s
lutions. Simulations presented in 3D were done us
WinPP, the Windows version of XPP (freeware c
ated by Prof. B. Ermentrout), and the ones presente
two-dimensional graphs were carried out using MA
LAB version 6.0. The figures in 3D are neither no
malized nor shown from the same perspective beca
each case is different and we chose the best wa
present the simulations. The reader should also
that since we are interested here only in periodic
cillations for PCML, we do not investigate the beha
ior of the blood cell population after this phase (ac
leukemia) where a sudden expansion of abnormal c
occurs leading to the death of the patient [17]. The
lowing sections are then focused only on the amplit
and period of the oscillations that could might be o
served clinically during PCML. The parameters ch
sen for the simulations were taken from estimate
the literature [6,8].

3.2.1. Influence of the sensitivityn
Whenn varies from 1 to 10 (Fig. 1), we observe th

oscillations appear (forn about 10), then increase
period and amplitude up to a ‘saturation’ limit (Fig.
due to the fact that the Hill functionβ given by (3)
approaches the Heaviside step function whenn → ∞,
as explained in Section 4. Consequently, to incre
the oscillation period and amplitude in a larger w
the other parameters involved in the model play
crucial role.

Note that for the next simulations in this sectio
we choosen = 12 not only because we are focused
long period oscillations but also because in Sectio
we are interested in the linear case wheren tends
to infinity. Due to the saturation effect, it is the
sufficient to taken = 12 as a good parameter val
for comparison.

Fig. 1. This figure illustrates the highly sensitive behavior of
solutions to Eq. (7) asn varies from 1 to 10, withδ = 0.05 day−1,
τ = 1 day,β0 = 1.77 day−1 andγ = 0.2 day−1. As n increases,
the steady state decreases, as expected from Eq. (8), and forn = 10
oscillations appear.
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Fig. 2. As n increases from 10 to 19 (withδ = 0.05 day−1,
τ = 1 day, β0 = 1.77 day−1 and γ = 0.2 day−1), the amplitude
and period of the periodic solutions increase until they saturate

3.2.2. Influence of the loss ratesδ andγ

Consider first the loss rateδ from the resting phase
One can observe five different stages asδ increases.

1. When δ = 0, the solution converges rapidly
the nontrivial steady state (Fig. 3). Then asδ

increases, small oscillations start to appear.
2. If we increaseδ slightly, one notices an abrup

rise in the amplitude and period of the oscillatio
occurring in a narrow interval of change inδ. We
denote byδg the value at which this transitio
occurs where the amplitude and period are
their maximum. From our calculations (shown
Fig. 3), this value is aboutδg ≈ 0.46567 day−1.

3. Let δ become larger thanδg. Then, the amplitude
and period decrease slowly asδ continues to
increase.

4. This phenomenon persists until the solution st
to exhibit a succession of small-amplitude osc
lations just before a ‘big amplitude jump’. The
big jumps are, however, smaller than the am
tudes seen in the previous case, and continu
decrease asδ increases. This behavior is shown
Fig. 4 whenδ is close to 0.5. Due to this small o
cillation effect the period again increases. We
note these solutions as having a ‘tail-jump’ sha

5. When a too large value ofδ is reached, the
solutions converge to the trivial steady statex ≡ 0
due to a high loss rate in the resting phase lead
to the extinction of the cell population.
Fig. 3. These numerical solutions illustrate the influence of the
rate δ from the resting phase on the solutions of Eq. (7), withδ

varying from 0 to 0.2 day−1 and takingτ = 1 day,β0 = 1.77 day−1,
γ = 0.2 day−1 andn = 12.

Fig. 4. Here we show the sensitive dependence of the solu
amplitude and period on the loss rateδ for δ varying from 0.5
to 1.4 day−1 and again takingτ = 1 day, β0 = 1.77 day−1,
γ = 0.2 day−1 andn = 12. δg ≈ 0.04657.

This behavior is subtle. It is rather easy to obse
the five different stages but it is more difficult to e
plain them by considering the nonlinear equation
However, if we transform this nonlinear equation (
into a simpler linear system and if we consider the
plicit expression of the Hopf period given byTH in
(12), it is then possible to get a better understandin
what happens. This will be done in Section 4.

Consider next the influence of the apoptosis ratγ

from the proliferating phase. Numerically, we fou
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Fig. 5. This figure illustrates the influence of the apoptosis (de
rateγ on solution behavior forγ varying from 0.58 to 0.68 day−1

and takingτ = 1 day,β0 = 1.77 day−1, δ = 0.05 day−1 andn = 12.
The behavior is qualitatively the same as for changes in the loss
δ from the resting phase, as illustrated in Figs. 3 and 4.

that γ influences the behavior of the solutions in t
much same way asδ. Namely, asγ increases, the
amplitude and period of the oscillations increase
again there is a transition point at which there is
sudden jump in both, and then a slight decreas
the amplitude and period. We have estimated the v
at which this happens to beγ ≈ 0.2 day−1 (Fig. 5).
A succession of ‘tail-jump’-like shapes then occu
until finally the solution approaches the trivial stea
statex ≡ 0.

3.2.3. Influence of the cell cycle timeτ

The influence ofτ on the behavior of the ce
population corresponds to the predictions based
the local stability analysis in Section 3.2. Thus, wh
τ is small and close to 0 (so the cell cycle time
short and the cells rapidly proliferate), the solution
stable and rapidly converges to the nontrivial ste
state. Asτ increases, it reaches the pointτ = τcrit,
the nontrivial steady state becomes unstable and t
is a Hopf bifurcation to limit cycle behavior. Furthe
increases lead to complex solution behavior that are
still under investigation and will be the object of futu
work. Finally, if τ is increased past the valueτmax, the
cell cycle time becomes so large that the populatio
extinguished and the nontrivial steady state cease
exist. In this case the single remaining steady sta
the trivial one and the cell population dies out. Th
Fig. 6. This figure illustrates the influence of the proliferating ph
durationτ on the solutions of Eq. (7), withτ varying from 0 to 3
days and holdingδ = 0.05 day−1, β0 = 1.77 day−1, γ = 0.2 day−1

andn = 12. As proved analytically in Section 3.2, ifτ is too small,
the solutions approach the nontrivial steady state which is sta
After the critical valueτcrit is exceeded, oscillations occur and the
oscillations increase in period and amplitude asτ increases until
τ = τmax at which point the solutions again approach the triv
steady state.

is clearly due to the parameterκ = 2 e−γ τ , because a
τ increases,κ tends toward 0 and so the right-ha
side of Eq. (7) is ruled only by the negative term. T
solution reaches then the trivial steady state. All thes
behaviors are shown in Fig. 6.

3.2.4. Influence of the maximal reentry rateβ0

The maximal reentry rateβ0 plays an importan
role in determining the amplitude and period of t
periodic solutions. As shown in Fig. 7, whenβ0 is
sufficiently large, the moreβ0 increases, the large
the amplitude and the period of the oscillations a
However, whenβ0 is close to 0, the behavior is mo
complicated. Indeed, in this case, one can obs
from Eq. (7) that the behavior of the solutions is ru
by the two loss death ratesγ and δ, and it is not
so straightforward to understand what is happen
by considering the full equation (7). To give a mo
accurate interpretation of this complex behavior
transform the nonlinear equation (7) into a piecew
linear one, by considering the extreme case ofn → ∞.
This is the subject of the next Section 4.
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Fig. 7. Here we show the influence of the maximal reentry rateβ0 on
the solution behavior (Eq. (7)), withβ0 varying from 0 to 1 day−1

and takingτ = 1 day,γ = 0.2 day−1, δ = 0.05 day−1 andn = 12.
The largerβ0, the larger the oscillation amplitude and period.

4. Transformed problem

In [4], the explicit solution to Eq. (2) was compute
for n → ∞ to obtain the oscillation period an
amplitude analytically. In this section we are n
interested in the analysis of [4]. Our purpose is to
further in the interpretations of the numerical resu
presented in Section 3.2 and explain the complica
influence of the loss rates observed in the previ
section.

Before showing the numerical results, note t
when n → ∞, the feedback functionβ can be ap-
proximated by the Heaviside step functionβ(xτ ) =
β0[1− H(xτ − θ)], where:

(13)H(y) =
{

1 if y � 0
0 otherwise

If we setα = β0 + δ andΓ = 2β0 e−γ τ = κβ0, then
Eq. (2) becomes:

(14)
dx

dt
=




−δx for 1 � x, xτ

−αx for 0 � x < 1 � xτ

−αx + Γ xτ for 0 � x, xτ < 1
−δx + Γ xτ for 0 � xτ < 1 � x

Since the numerical simulations in Section 3.2 w
carried out forn = 12, whenn tends to infinity one
observes only slight differences in the numerical s
ulation for the same set of parameters. As explaine
Section 3.2.1, this is due to a ‘saturation’ limit infl
enced by the Hill functionβ . For this reason, we d
not show the effect ofτ in this section, as well as th
effect of large values ofβ0. However, the transforme
problem is useful in the sense that, thanks to its s
plicity, we are able to interpret the different behavio
induced by the loss rates.

Indeed, concerning the loss rateδ from the resting
phase, we can explain the five different stages sh
in the previous section.

(i) If δ is very low, i.e.,δ ∼= 0, the right-hand side o
the first and second equations of the system (
are close to 0 and the solutionx does not oscillate
or does so only slightly, and rapidly reaches
non-trivial steady state.

(ii ) For larger values ofδ, the amplitude and perio
in oscillations reach their maximum very rapidl
these maximum values are due to the fact t
the difference between−αx and Γ xτ (or −δx

and Γ xτ ) in the right-hand side of the third (o
fourth) equation of (14) is at its optimum. I
other words, all the conditions are met to obt
the maximal amplitude and period oscillation
This value ofδ is difficult to find analytically,
but is approximated byδ ≈ 0.46567 day−1 in
Section 3.2.2. The rapid evolution in such a sh
interval of δ is not well understood analyticall
but is confirmed in [4]. Indeed, the authors we
able to give an explicit but quite complicated for
of the amplitude and to show numerically that
this interval the increase of the amplitude to
maximum is remarkably fast. However, becau
the explicit form found in [4] is complicated w
were not able to provide any simple interpretati

3. After this abrupt increase, the amplitude a
period decrease slowly due to a smaller a
positive difference between−αx or −δx and
Γ xτ . We can see this phenomenon if we study
Hopf period given byTH in (12). It is clear (even
analytically) that TH decreases asδ increases
(up to a critical value ofδ as explained in the
next case). This is shown in Fig. 8. Becau
the influence ofτ and γ on the Hopf period
TH is similar, we do not show the effect of th
increase ofγ in this figure. Thus, with our chose
parameters, to obtain maximal oscillations,δ has
to be very close to an ‘optimal’ value that
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Fig. 8. This figure illustrates the influence of the loss rateδ on the
length of the Hopf periodTH with δ varying from 0 to 0.05 day−1

and for two different values ofτ : τ = 1 day andτ = 3 days.

neither too small nor too large andτ andγ have
to also stay at a low level.

4. Whenδ is too large, the difference between−αx

or −δx and Γ xτ decreases, but is still positiv
Then the solutionx as well asxτ have some
difficulty in going to 1. This means that some ve
small oscillations occur due to the fact that t
difference−αx or −αx − Γ xτ (or −δx − Γ xτ )
is positive, then negative following the differe
values taken byx andxτ . This phenomenon lead
to very long period oscillations with very sma
amplitudes and the ‘tail-jump’-like shape. Th
period tends to infinity asδ tends to a valueδcrit.
In Fig. 8, if we increaseτ with τ = 1 day and
τ = 3 days), one can observe a shorter inter
where oscillations occur, i.e.δcrit becomes smalle
as τ gets bigger. The cell population tends
be extinguished for lower values ofδ whenτ is
larger.

5. Then, whenδ > δcrit, δ becomes too large, so th
difference−αx − Γ xτ (or −δx − Γ xτ ) remains
negative and the oscillations vanish with t
solutionx converging to the trivial solutionx ≡ 0.

A slightly similar interpretation can be given fo
the death rateγ related to the proliferating phas
and so we do not go into the details. Howev
the length of the Hopf periodTH is more difficult
Fig. 9. This figure illustrates the influence of the loss rateγ

on the length of the Hopf periodTH with γ varying from 0 to
0.7 day−1 and for two different values ofδ: δ = 0.05 day−1 and
δ = 0.1 day−1.

to study analytically whenγ varies. If we analyze
it numerically one can note that the period leng
decreases asγ increases up to a certain value. Th
due to the effect of the ‘tail-jump’ oscillations a
explained above we can see that the period length
increase up to infinity whenγ tends to a value we
denote byγcrit. For γ > γcrit, the periodic solutions
disappear, and the solutionx converges to the trivia
solutionx ≡ 0, which means that the cell populatio
is extinguished.

We give two numerical illustrations of the Hop
period TH when γ varies. One figure is with two
different values ofδ and the other is with two differen
values ofτ . In the first figure, we increaseδ (Fig. 9
with δ = 0.05 day−1 and δ = 0.1 day−1), which
implies an increase in the period length. In the sec
figure, which is similar to Fig. 8, if we increaseτ
(Fig. 10 with τ = 1 day andτ = 3 day), we can se
a shorter interval where oscillations occur, i.e.γcrit
becomes smaller asτ gets bigger. The cell populatio
tends to be extinguished for lower values ofγ whenτ

is larger.
The influence of the proliferating phase durationτ

has been fully explained analytically in Section 3
and illustrated in Section 3.2.3. The transform
problem does not bring further insight.

However, the system (14) is very useful to interp
the influence of the maximal reintroduction rateβ0. As
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Fig. 10. This figure illustrates the influence of the loss rateγ on the
length of the Hopf periodTH with γ varying from 0 to 0.7 day−1

and for two different values ofτ : τ = 1 day andτ = 3 days.

Fig. 11. This figure illustrates the influence ofγ when the reintro-
duction rateβ0 is close to 0 in the proliferating phase of Eq. (9), w
γ varying from 2.5 to 3 day−1 andτ = 0.2 day,δ = 0.05 day−1,
β0 = 0.2 day−1.

noted in Section 3.2.4, whenβ0 is sufficiently large,
thenα ∼ β0 andΓ ∼ 2β0 and the moreβ0 increases
the more the amplitude and period of the oscillatio
increase. However, whenβ0 decreases and is close
0, α ∼ δ andΓ ∼ 2 e−γ τ . In that case, the populatio
dynamics become more complicated and depend
δ andγ . The behavior is then under the influence
these loss rates and so it is similar as the one prese
in Section 3.2.2 and above (see Figs. 11 and 12).
d

Fig. 12. This figure illustrates the influence ofδ when the reintro-
duction rateβ0 is close to 0 in the proliferating phase of Eq. (9
with δ varying from 0.3 to 0.5 day−1 and takingτ = 0.2 day,
γ = 0.2 day−1, β0 = 0.2 day−1.

5. Conclusion

The aim of this note was to show how short c
cycle durations in the HSC (order of one to two da
can give birth to long period oscillations (order of
to 80 days) as observed in the disease PCML. We
wanted to see how these oscillations could occur
in which way each of the five HSC parameters (n, β0,
τ , γ , and δ) influence the oscillation amplitude an
period.

Our analysis of Eq. (7) showed that instability o
curs in a very small interval[0, τn] of τ . It is in this
interval that our attention has been focused, and w
showed analytically that periodic solutions can arise
this interval. We performed numerical investigatio
to see if large amplitude and long period oscillatio
could exist and under which circumstances. We
served three different groups in the parameters.

• The first one consists ofn and β0 and corre-
sponds to the influence of the Hill functionβ(N).
Changes inn andβ0 can produce oscillations, bu
due to a saturation effect increases inn do not im-
ply long period and large amplitude. However,
β0 is large, long period and large amplitude osc
lations are possible.

• The second group consists of the loss ratesγ and
δ. It appears that under changes in these p
meters, it is possible to obtain large amplitu



244 L. Pujo-Menjouet, M.C. Mackey / C. R. Biologies 327 (2004) 235–244

lu-
ht
-
ls
SC

ges

dy.
ong
le

ed

he

ge

ther
nd
lt
er.

of
I-
g
20,
nd
ide
ec,
ard
-

o-
d

ce:
2

lin.

us
ogi-

in

ic
956.
ell
ys-
n,

ell
.

g:
e-

ial
th.

ex
in:
iol-
81,

on
J.

d
4.
er-
.
ate
4.

in
7

ed
h.

s

and long period oscillations. However, the evo
tion of these oscillations is very sensitive to slig
changes in bothγ andδ. We showed that the be
havior can be totally different in small interva
of change of these parameters, and thus the H
population seems to be highly sensitive to chan
in its loss rates (mortality or differentiation).

• The third group, consisting ofτ , is interesting in
the sense that this is the main focus of our stu
Indeed, because our goal was to show that l
period oscillations could occur when the cell cyc
durationτ is small, our attention was concentrat
only in small variations ofτ (no more than
3 days). Like the loss rate, the behavior of t
solution showed a high sensitivity to changes inτ ,
and we observed that the interval ofτ over which
we can obtain long-period oscillations with lar
amplitude is quite narrow, i.e.τ can be neither too
small nor too large.

All these five parameters can be combined toge
to give rise to the maximal values of amplitude a
period oscillations, but this optimum point is difficu
to find due to the strong influence of each paramet
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