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Abstract
Many studies have shown that periodic erythrocytic (red blood cell linked) diseases
are extremely rare in humans. To explain this observation, we develop here a simple
model of erythropoiesis in mammals and investigate its stability in the parameter
space. A bifurcation analysis enables us to sketch stability diagrams in the plane of
key parameters. Contrary to some other mammal species such as rabbits, mice or
dogs, we show that human-specific parameter values prevent periodic oscillations of
red blood cells levels. In other words, human erythropoiesis seems to lie in a region
of parameter space where oscillations exclusively concerning red blood cells cannot
appear. Further mathematical analysis show that periodic oscillations of red blood
cells levels are highly unusual and if exist, might only be due to an abnormally high
erythrocytes destruction rate or to an abnormal hematopoietic stem cell commitment
into the erythrocytic lineage. We also propose numerical results only for an improved
version of our approach in order to give a more realistic but more complex approach
of our problem.
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1 Introduction

A medullar enigma: why are cyclic diseases exclusively concerning human ery-
throcytes so rare?

Erythropoiesis, along with leukopoiesis and thrombopoiesis, are subparts of
hematopoiesis which accounts for the medullar production and regulation of the three
blood cell types: red blood cells or erythrocytes, white blood cells or leukocytes and
platelets or thrombocytes.
In some hematopoietic disorders labeled as dynamical hematological diseases by
Mackey and Glass (1977), blood cell production operates in a region of physiological
parameters that leads to pathological behavior and abnormalities in blood cell counts.
Such physiological behavior would originate either from bone marrow defects or from
peripheral origins (Haurie et al. 1998). Disregarding the causes, periodic oscillations
in blood cell levels can appear and result in a so called cyclic hematological disor-
der. The occurrence of such periodic fluctuations specific to hematopoietic stem cells
(HSC), leukocytes and thrombocytes has been clearly established and documented
(for reviews see e.g., Reimann 1971; Haurie et al. 1998; Foley and Mackey 2009).
Famous examples of periodic hematological disorders are cyclical neutropenia (Dale
and Hammond 1988), periodic chronic myelogenous leukemia (see e.g., Morley et al.
1967) and cyclic thrombocytopenia (see e.g., Fontenele et al. 2015). However, when
regarding erythropoiesis, rare oscillations of some erythrocytic cell types have effec-
tively been reported, but the situation seems different. Actually, these oscillations
are often coupled either with oscillations from other blood cell lineages (see e.g.,
Morley 1969; Morley 1979) or with cyclic syndromes such as periodic autoimmune
hemolytic anemia (Ranløv and Videbæk 1963; Meyer et al. 1978; Björkholm et al.
1982). These situations indicate that periodic erythrocytic oscillations originate either
from the hematopoietic stem cell population, impacting then all the lineages (see
e.g., Haurie et al. 1998) or from the periodic occurrence of a syndrome. Interestingly,
specific only erythropoiesis cyclic fluctuations have rarely been documented. It has
only been reported for few cases in animals: clinically observed in dogs (Morley and
Stohlman 1969) and experimentally induced in rabbits and mice (Orr et al. 1968; Gur-
ney et al. 1981; Gibson et al. 1984, 1985). Even rarer in humans, it has only been
reported in a young patient with pure red cell aplasia (Gordon and Varadi 1962) with
very long periods (between three and five months). One can thus be surprised by such
exceptional and unusual observations. In this work, we attempt then to explain this
through a simple model of erythropoiesis.

How to choose a simple but relevant model?
Manymodels of hematopoiesis already exist (see e.g., Pujo-Menjouet 2016) somemay
deal with the production and regulation of one single hematopoietic lineage (see e.g.,
Craig et al. 2016; Langlois et al. 2017), while others focus on the hematopoietic stem
cell population (see e.g., Mackey 1978; Mackey 2001; Pujo-Menjouet et al. 2005;
Adimy et al. 2005, 2006). Blood cell production is believed to involve delays due to
maturation, proliferation and feedback processes and requires thus the use of delay
differential equations (DDE) (see e.g., Mackey and Glass 1977; Foley and Mackey
2009). Some models, although carefully designed, use DDEs without mathematically
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deriving the appearance of delays (see e.g., Loeffler et al. 1989; Ramakrishnan et al.
2004; Woo et al. 2006; Krzyzanski et al. 2008), while age-structured models, such as
Fuertinger et al. (2013), composed of partial differential equations (PDEs) of transport
type allow clearmathematical derivation of DDEs thanks to an integrationwith respect
to the structure variables (see e.g., Banks et al. 2004) and the use of the methods of
characteristics. Many models have already been developed to account for some peri-
odic hematological disorders (for a detailed review see Foley and Mackey 2009). In
this present work, we focus on cyclic erythropoiesis and design a model to explain this
rarely observed disorder. To that purpose, we take advantage of relevant erythropoiesis
mice, dogs and rabbit models (Bélair et al. 1995; Mahaffy et al. 1998; Fuertinger et al.
2013) and mathematical analysis specific to DDEs (Beretta and Kuang 2002; Adimy
et al. 2005; Crauste 2010; Boullu et al. 2019a) Changes on parameter values account-
ing for the cyclic erythropoiesis have been well described: among these changes, one
can note an increase in the hematopoietic stem cells apoptosis rate (Mackey 1997)
(mice and dogs) or a death rate amplification of mature red blood cells in the case of
induced auto immune hemolytic anemia (Mackey 1979) (rabbits). However, erythro-
cyte periodic oscillations specific to humans have been poorly investigated.

Our approach is basedon theworkofMackey (1979). InSect. 2,we set up anupdated
erythropoiesis model and, in Sect. 3, prove its well-posedness. Sect. 4 is dedicated to
the analysis of the asymptotic behavior with respect to the variation of four parameters.
In Sect. 5, we apply our model to the occurrence of periodic oscillations for rabbits
and humans. Then, in Sect. 6, we detail further improvement and suggestions. We
conclude this paper with a discussion in Sect. 7.

2 Erythropoiesis Modeling

2.1 Red Blood Cell Production, Destruction and Regulation

Before designing our model, let us briefly remind the biological background. The
process begins with a pool of pluripotent myeloid hematopoietic stem cell able to
self-renew or differentiate into three different hematopoietic lineages (erythrocytic,
megakaryocytic and granulocytic). The irreversible commitment into the erythrocytic
lineage leads to committed erythroid progenitor cells called Burst Forming Unit Ery-
throid (BFU-E) and the rapidly dividing Colony Forming Unit Erythroid (CFU-E).
Under normal conditions in humans, cells stay in these two stages for about 13 to
14 days while they differentiate and divide (about five to seven times). Further dif-
ferentiation leads the second identifiable compartment of erythroid precursors called
normoblasts or erythroblasts with four to five more divisions. It takes approximately
five days (Beutler et al. 2001; Doig 2015) for these cells to lose their nucleus and
become marrow reticulocytes and leave the bone marrow—in 1 to 2 days—to reach
the peripheral blood. During the transit in the bone marrow—from the proerythroblast
to reticulocyte stages—hemoglobin is synthesized.

However, red blood cells are continuously destroyed due to intra- or extra-vascular
processes occurring both in normal and pathological situations.
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To maintain essential life functions, these losses have to be permanently com-
pensated for. Erythrocytes production must be carefully regulated. This regulation
is mainly performed by erythropoietin (EPO): a hormone essentially produced in
kidneys. In normal physiological conditions, thanks to O2 sensors in kidneys, EPO
production is negatively regulated by the O2 level of blood. Consequently, the total
number of erythrocytes is in negative feedback with EPO concentrations. Erythro-
poiesis is thus a complex controlled system which should ensure that the red blood
cell count and hemoglobin level stay within narrow limits. For instance, in humans,
hemoglobin concentration should steadily remain,without abrupt changes,within 11.5
and 13.5 g.dL−1 which corresponds roughly to an interval of 3 × 1011 to 4.5 × 1011

red blood cells for each kilogram of body weight. Abnormally low (anemia), high
(absolute polycythemia) or oscillating levels of hemoglobin are harmful and health
could be greatly impaired.

2.2 Erythropoiesis Model

Our new model is based on biological updates illustrated in Fig. 1 with parameters
specified in Table 1.

2.2.1 Bone Marrow Cell Compartment

Our erythropoiesis model begins with the compartment of the maturing and differenti-
ating bonemarrow cells. Cells transit in this compartment for a time τ ≥ 0, while some
of them die randomly with a rate δme > 0. This rate accounts both for the apoptosis
of erythroid progenitors (essentially of CFU-E) and for the ineffective erythropoiesis
possibly due to iron deficiency (Fuertinger et al. 2013) which occurs even in normal
physiological conditions (Finch et al. 1970; Dinant andMaat 1978; Beutler et al. 2001;
Lichtman et al. 2006).

Even though EPO normally downregulates erythropoiesis by preventing erythroid
progenitor from apoptosis (see e.g., Koury and Bondurant 1990; Wu et al. 1995; Doig
2015) δme is assumed to be constant for simplification purpose. Insight in the effect
of EPO could be seen by a variation of this parameter investigated in Sect. 4.2.
Let m(t, a) be the population density of bone marrow cells at time t ≥ 0 with the age
a ∈ (0 , τ ). The age-structured equation ruling the density m is

∂m

∂t
(t, a) + ∂m

∂a
(t, a) = −δme m(t, a), t ≥ 0, a ∈ (0, τ ) , (1)

and the total population of bone marrow cells is given by

M(t) =
∫ τ

0
m(t, a) da .

This compartment is supplied with a cell flux K coming from a pool of hematopoietic
stem cells whose population dynamic is not modeled here. Recent works of Grover
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Fig. 1 Erythropoiesis model organized in two aged-structured compartments describing populations of
Bone marrow cells and Red Blood Cells (RBCs). When a cell enters one compartment, its age is reset
to 0. This explains why age is a structured variable. The maximal age a cell spends in the bone marrow
compartment is τ and it is assumed to be +∞ for RBCs (even if it is 120 days, we assume that this is large
enough and very few cells survive after that time, represented by the shaded dark zone). Population death
rates are δme and δe . The amplification parameter A = 2n translates the n ∈ Nmitotic divisions undergone
by a single nucleated cell during its development in the bone marrow. Te represents the mean lifespan of
red blood cells and essentially accounts for extravascular senescence. The kinetics of EPO does not appear
explicitly here. Indeed, we consider that the red blood cell population directly downregulates erythropoiesis.
We decide to model this downregulation through a negative feedback of the total red blood cell population -
E—over the cell influx K (E) coming from the Hematopoietic Stem Cell population (Color figure online)

et al. (2014) and Singh et al. (2018) seem to indicate that EPO stimulates the commit-
ment of hematopoietic stem cells into the erythrocytic lineage. Even though this idea
remains to be investigated, we decide, for simplicity, to only take this feedback process
into account. Moreover, as mentioned in Sect. 2.1, EPO is negatively regulated by the
total number of red blood cells. Indeed, to simplify, we assume that feedback reactions
are fast compared to other physiological mechanism. It enables us not to model the
kinetic of EPO. All things considered, we model the supply of bone marrow cells K (·)
as a decreasing function of the total population of red blood cells—E—such that:

K (E) = Kc + α

1 +
(
E
β

)q , (2)

where Kc ≥ 0 represents the basal cell flux of hematopoietic stem cells when the
total number of red blood cells is large (E → +∞). Parameter α > 0 stands for
the supplementary influx due to a decrease in red blood cell population (E → 0),
while β > 0 is the total number of red blood cells corresponding to the median flux
Kc + α

2 and q ≥ 1 is the Hill coefficient characterizing how fast is the change between
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erythrocytes number and hematopoietic stem cells commitment. It is difficult to find
the value of these parameters in the literature. Thus, as in numerous modeling works
(see e.g.,Mackey 1979; Fuertinger et al. 2013), we set them accordingly to the fact that
erythropoiesis is expected to increase about three to fivefold (Finch 1982; Goodnough
2002). Consequently, we assume that α ∈ [3Kc , 6Kc]. The boundary condition of
this compartment is then given by

m(t, 0) = K ( E(t) ) , t ≥ 0. (3)

Additionally, while going through this compartment, a single cell undergoes n mitotic
divisions. In our model, we take this amplification into account at the end the bone
marrow cells compartment where we assume that the cell density m(t, τ ) is amplified
by a factor A = 2n before entering the blood circulatory compartment.

2.2.2 Red Blood Cell Compartment

The model ends with the compartment of the red blood cells which describes the
population of cells who lie in the peripheral blood that is peripheral blood reticulocytes
and erythrocytes.

Red blood cell degradation is crucial in erythropoiesis and involves different com-
plex processes. It is thus important to model erythrocyte destruction carefully. To do
so, we analyzed numerous different erythropoiesis models (see e.g., Bélair et al. 1995;
Mahaffy et al. 1998; Fuertinger et al. 2013). We decided, for the sake of simplicity,
to model erythrocytes removal by a non-specific death rate δe > 0 that accounts for
every cause of death. Doing so, selective removal of senescent red blood cells is not
modeled in detail but we still try to keep a relevant biological model by expressing δe
such that:

δe = ln 3

Te
+ δe,b (4)

where Te is the mean lifespan of erythrocytes and ln 3
Te

accounts for senescence. Thus
ln(3)/Te ensures that at least two thirds of the RBCs that entered the compartment at
time t have been destroyed a time Te > 0 thereafter. The term δe,b is an auxiliary death
rate, usually smaller than ln 3

Te
, that accounts for cell destruction processes different

from senescence (due to infrequent intravascular hemolysis or blood losses). With this
assumption, the age of cells can possibly go until infinity even though a large majority
has been destroyed at age Te.
All things considered, if e(t, a) is the population red cells density at time t ≥ 0 with
age a > 0, the age-structured equation of transport ruling its dynamics is given by

∂e

∂t
(t, a) + ∂e

∂a
(t, a) = −δee(t, a), t ≥ 0, a > 0, (5)
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and the total population is given by

E(t) =
∫ +∞

0
e(t, a) da,

with the boundary condition

e(t, 0) = Am(t, τ ). (6)

Using the framework of Eq. (5) and the classical methods of characteristics, we obtain
that at long times, if t > Te, the number of cells entering the compartment at time
t − Te and who survived Te days later is such that

e (t, Te) = e(t − Te, 0)e
−δeTe .

From this expression and Eq. (4), we see that the term ln 3
Te

effectively models senes-
cence. It ensures that at least two thirds of the red blood cells that entered the
compartment at time t have been destroyed a time Te > 0 thereafter:

e (t, Te) ≤ 2

3
e (t − Te, 0) .

3 Reduction of theModel

Assuming that the solutions are smooth enough, we integrate equations (1) and (5)
over the age variable and we take into account their associated boundary conditions
(3) and (6). It simply leads to the following system of differential equations if t ≥ 0:

M ′(t) = −m(t, τ ) + K (E(t)) − δmeM(t),

E ′(t) = −δeE(t) + Am(t, τ ),

whose short time dynamics (not mentioned here) is easily solved with the knowledge
of initial population densities and initial conditions given by

M(0) = M0 =
∫ τ

0
m(0, a) da, E(0) = E0 =

∫ +∞

0
e(0, a) da.

We simply focus on the long time dynamics, for t ≥ τ . Thanks to the classical method
of characteristics and the boundary condition (3), we obtain

m(t, τ ) = m(t − τ, 0)e−δmeτ = K (E(t − τ))e−δmeτ

from which we deduce

M ′(t) = −K (E(t − τ))e−δmeτ + K (E(t)) − δmeM(t), if t ≥ τ .
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Hence, the dynamics of the red blood cell population E entirely rules the dynamics
of the bone marrow cell population M as follows

M(t) =
∫ τ

0
K (E(t − u))e−δmeu du.

All in all, the time behavior of the model relies on the equation ruling the erythrocyte
population dynamics

E ′(t) = −δeE(t) + AK (E(t − τ))e−τδme . (7)

We want to study its steady states. They verify

δeE = Ae−τδme K (E), E ≥ 0. (8)

Due to the variation of K , Eq. (8) has a unique solution andEq. (7) consequently admits
a unique equilibrium E∗ > 0. These elements and the implicit function theorem enable
us to state the following Proposition.

Proposition 1 Eq. (7) admits a unique positive equilibrium E∗ which satisfies

δeE
∗ = Ae−τδme K (E∗) = Ae−τδme

⎛
⎜⎝Kc + α

1 +
(
E∗
β

)q
⎞
⎟⎠ , (9)

and consequently verifies

Ae−τδme Kc

δe
≤ E∗ ≤ Ae−τδme (Kc + α)

δe
.

Moreover, E∗ is a continuously differentiable function with respect to all parameters.
It is especially decreasing with respect to δe, δme and τ and increasing with respect
to Kc.

The associated bone marrow population M∗ > 0 is also unique and verifies

M∗ = K (E∗)[1 − e−τδme ]
δme

.

The derivatives of E∗ with respect to τ , δe, Kc and δme are detailed in “Appendix 2”.

Remark 1 Solving Eq. (1) and Eq. (5) along with the stationary condition and

E∗ =
∫ +∞

0
e∗(a) da,

123



   19 Page 10 of 31 M. Adimy et al.

gives the stationary population densities—m∗ and e∗ - associated with the equilibrium
(M∗ , E∗) :

m∗(a) = K (E∗)e−δmea, a ∈ [0 , τ ] ,
e∗(a) = Ae−τδme K (E∗)e−δea = δeE∗e−δea, a ∈ [0 , +∞) .

(10)

4 Local Asymptotic Stability of the Steady State

Let us now perform a local asymptotic stability analysis of Eq. (7) near its unique
equilibrium E∗ and obtain a classical characteristic equation (Sect. 4.1). Analyzing
the roots of this equation enables us to investigate the stability of E∗ in the space of
parameters (Sect. 4.2).We especially focus on τ , δe, Kc and δme and show that—under
some conditions—periodic solutionsmay appear and potentially through aHopf bifur-
cation. Stability diagrams in the space of parameters as well as example trajectories
were drawn using MATLAB and the function dde23 (Shampine and Thompson 2001).

4.1 Linearization About the Equilibrium

After a simple translation of the time variable, Eq. (7) is linearized about its unique
steady state E∗ > 0 and gives

z′(t) = −δez(t) − Lz(t − τ), t ≥ 0, (11)

where

L = − Ae−τδme
∂K

∂E
(E∗),

= q
Ae−τδme

β

(
E∗

β

)q−1
α(

1 +
(
E∗
β

)q)2 ,

is strictly positive and continuously differentiable with respect to all the parame-
ters. Its corresponding derivatives with respect to τ , δe, Kc and δme are detailed in
“Appendix 2”.

Every solution of Eq. (11) can be decomposed as an infinite linear combination of
eigenfunctions of the form zλ : t 	→ exp (λt) associated with the eigenvalue λ ∈ C.
Introducing the expression of zλ into Eq. (11), leads to the characteristic equation of
Eq. (7) linearized about E∗ :

λ + δe + Le−λτ = 0, λ ∈ C. (12)

This equation being transcendental, determining the position in the complex plane of
its roots λ ∈ C is tricky. To study it, we begin with the formulation of a sufficient
stability condition for the equilibrium E∗.
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Proposition 2 (Hayes 1950) If τ = 0 or L ≤ δe then all roots of Eq. (12) have negative
real parts.

The proof of this proposition is mentioned in “Appendix 1”. Keeping in mind that L
is an implicit function of model parameters, the latter condition enables us to identify
regions in parameter space where E∗ is locally asymptotically stable.
Actually, as long as model parameters vary while satisfying Proposition 2, E∗ is
stable and stability switches cannot occur. However, when Proposition 2 does not hold
anymore, solution dynamics is unknown.
In the following, we investigate the local asymptotic stability of E∗ when model
parameters do not verify Proposition 2.Wewish to identify the boundaries in parameter
space where stability switches could occur due to a variation of one of the model
parameters -such as τ , δe, δme or Kc- all the others being fixed by using techniques
of Beretta and Kuang (2002), Adimy et al. (2005, 2006), Adimy and Crauste (2007,
2012) and Boullu et al. (2019a, b).

4.2 Local Stability with Respect to Parameter Variations

Denote byψ ∈ P one of the parameters among δe, Kc, δme, or τ .P is the set of possible
values for the chosen parameter ψ (the only one to be varied, other parameters being
fixed to given values). For the sake of simplicity, in this section we only explicit the
dependence with respect to the parameter ψ . First, we define the set

Π = {ψ ∈ P | 0 < δe < L(ψ) } ,

gathering all possible values of the parameterψ for which Proposition 2 is not verified
(assuming that τ > 0). We subsequently simply obtain:

Corollary 1 If ψ /∈ Π then all roots λ ∈ C of Eq. (12) have negative real parts and
E∗(ψ) is thus locally asymptotically stable.

All other parameters being fixed, the set Π consequently defines the set of parameter
values in which stability switches could occur. From the variations of L with respect
to ψ , we identify sufficient conditions ensuring the existence of Π and enabling to
give it a more explicit form.
In this work, we studied the effect of δe, Kc, δme and τ on the local asymptotic stability
of E∗. We thus established the variations of L with respect to each of these parameters
thanks to its derivatives. We obtained the following properties:

(i) For ψ = δe, we note Π = J and obtain:

Proposition 3 J 
= ∅ if and only if

α

Kc
>

4q

(q − 1)2
.

In this case,

J = (δe,min , δe,max
)
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where δe,min < δe,max are uniquely defined such that L(δe,max ) = L(δe,min) = δe
and L(δe) ≥ δe for all δe ∈ [δe,min, δe,max

]
.

(ii) For ψ = Kc, we note Π = K and obtain:

Proposition 4 If

4q

q2 − 1

(
q − 1

q + 1

) 1
q

<
Aαe−τδme

βδe
≤
(
q − 1

q + 1

) 1
q

, (13)

then K 
= ∅ et K ⊂ [
0 , Kc,max

)
where Kc,max ∈

[
K̃c , +∞

)
is defined such that

L(Kc,max ) = δe and L(Kc) > δe for all Kc ∈ K ∩ [0 , Kc,max
)
. Furthermore, if

L(Kc = 0) ≤ δe then we uniquely define Kc,min and Kc,max such that Kc,min <

Kc,max and

K = (Kc,min , Kc,max
)
.

(iii) For ψ = δme, we note Π = D and obtain:

Proposition 5 If

AKc

δe
> β (14)

and

(q − 1)α

2Kc
> 1 +

√
1 + α

Kc
, (15)

then

D = (δme,min , δme,max
)
,

where δme,min < δme,max are uniquely defined such that L(δme,max ) = L(δme,min) =
δe and L(δme) ≥ δe for all δme ∈ [δme,min , δme,max

]
.

(iv) For ψ = τ , we note Π = I and obtain:

Proposition 6 If conditions (14) and (15) hold then I 
= ∅ and there exists a unique
τmax ∈ [τ̃ , +∞) such that L(τmax ) = δe and L(τ ) > δe for all τ ∈ I ∩ [0 , τmax ),
such that I ⊂ [0 , τmax ). Furthermore, if L(τ = 0) ≤ δe then we uniquely define
τmin ∈ [0 , τ̃

]
such that L(τmin) = δe and

I = (τmin , τmax ) .
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Thus, we identified sufficient conditions ensuring that Π 
= ∅ and that P\Π 
= ∅.
In other words, if these conditions hold, then there exist some values ψ ∈ P\Π for
which E∗(ψ) is stable (Corollary 1) and other values ψ ∈ Π for which stability
switch can occur (the local stability of E∗ is unknown for these values). The following
proposition is adapted from Theorem 2.1 and 3.1 of Beretta and Kuang (2002).

Proposition 7 Assume that model parameters (different from ψ) are fixed and such
thatΠ 
= ∅. The characteristic equation (12) admits a pair of simple conjugate purely
imaginary roots ±iω(ψ∗) in ψ∗ ∈ Π with

ω(ψ∗) =
√
L(ψ∗)2 − δ2e , (16)

if and only if there exists k ∈ N such that z(ψ∗, k) = 0 with

z(ψ, k) = τ −
arctan

(
−

√
L(ψ)2−δ2e

δe

)
+ (2k + 1)π

√
L(ψ)2 − δ2e

, (ψ, k) ∈ Π × N. (17)

Moreover, when a boundary value ψ∗ ∈ Π exists and is reached due to a variation of
ψ , its associated pair of simple conjugate purely imaginary roots cross the imaginary
axis—possibly inducing a stability switch—from left to right if Δ(ψ∗) > 0 and from
right to left if Δ(ψ∗) < 0 where

Δ(ψ∗) = sign

{
d(Reλ)

dψ
(ψ∗)

}
.

This Proposition is proven in “Appendix 3”.

Remark 2 For givenparameter values underwhichΠ 
= ∅, a stability switch is possible
only if there exists k ∈ N such that z(·, k) vanish at least one time.

Remark 3 When the chosen parameter varies from a value ψs /∈ Π for which
E∗(ψs) is stable, a Hopf bifurcation must occur at the first boundary value ψ∗

h =
min {ψ∗ | there exists k ∈ N such that z(ψ∗, k) = 0 } if the transversality condition
d(Reλ)
dψ (ψ∗

h ) 
= 0 is verified.

Explicit form of d(Reλ)
dψ is obtained by differentiating the characteristic equation

(12) following the branch of roots λ(ψ) defined such that λ(ψ∗) = iω(ψ∗) =
i
√
L(ψ∗)2 − δ2e . After some computations, one obtains:

d(Reλ)

dδe
(δ∗

e ) = ∂L

∂δe
(δ∗

e )
sin
(
ω(δ∗

e )τ
)
ω(δ∗

e )τ − cos(ω(δ∗
e )τ )

(
1 + τδ∗

e

)
(1 + τδ∗

e )
2 + (ω(δ∗

e )τ )2

−
(
1 + τδ∗

e

)
(1 + τδ∗

e )
2 + (ω(δ∗

e )τ )2
,
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Fig. 2 On the left panel: stability diagrams where boundary parameters (a ψ∗ = δ∗
e for red blood cell death

rate, c ψ∗ = K ∗
c for hematopoietic stem cells influx) are specified by dashed ( d(Reλ)

dψ (ψ∗) < 0) or full

( d(Reλ)
dψ (ψ∗) > 0) lines. The gray zone corresponds to a biologically relevant area. On the right panel:

illustrative trajectories associated with different erythrocyte death rate (b for values indicated by a cross in
(a)) or different hematopoietic stem cells influx ((d) for values in cells.kg−1.day−1 indicated by crosses in
(c)). The parameters used to obtain these plots are specified in Table 2 (Color figure online)

d(Reλ)

dKc
(K ∗

c ) = ∂L

∂Kc
(K ∗

c )
sin(ω(K ∗

c )τ )ω(K ∗
c )τ − (1 + τδe) cos(ω(K ∗

c )τ )

(1 + τδe)
2 + (ω(K ∗

c )τ
)2 ,

d(Reλ)

dδme
(δ∗

me) = ∂L

∂δme
(δ∗

me)
sin
(
ω(δ∗

me)τ
)
ω(δ∗

me)τ − cos(ω(δ∗
me)τ ) (1 + τδe)

(1 + τδe)2 + (ω(δ∗
me)τ )2

,

d(Reλ)

dτ
(τ ∗) = ∂L

∂τ
(τ ∗) ω(τ ∗)3τ ∗ sin(ω(τ ∗)τ ∗)

(1 + τ ∗δe)2 + (ω(τ ∗)τ ∗)2
− cos(ω(τ ∗)τ ∗) (1 + τ ∗δe)

(1 + τ ∗δe)2 + (ω(τ ∗)τ ∗)2
.
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Fig. 3 On the left panel: stability diagrams where boundary parameters (a ψ∗ = δ∗
me for bone marrow

cells death rate; c ψ∗ = τ∗ for bone marrow cells transit time) are specified by dashed ( d(Reλ)
dψ (ψ∗) < 0)

or full ( d(Reλ)
dψ (ψ∗) > 0) lines. The gray zone corresponds to a biologically relevant area. On the right

panel: illustrative trajectories associated with example bone marrow cells death rates (b for values indicated
by crosses in (a)) or example bone marrow transit time (d for values indicated by crosses in (c)). The
parameters used to obtain these plots are specified in Table 2 (Color figure online)

In Figs. 2 and 3, we display stability diagrams in the (τ , δe)-plane (Figs. 2a and
3c), in the (Kc , δe)-plane (Fig. 2c) and in the (δe , δme)-plane (Fig. 3a) as well as
example trajectories (Figs. 2b, d, and 3b, d) corresponding to values specified by
crosses (respectively, in Figs. 2a, c and 3a, c). The parameters used to obtain these
plots are set to values mentioned in Table 2. In Figs. 2d, 3b, d the red blood cell death
rate is set to an arbitrary unrealistic value δe = 0, 07 day−1 for illustrative purpose.
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Table 2 Summary of model parameter values used in numeric simulations

Parameter Value assigned Range Unit

τ 19 or varying (only in Figs. 3c, d) [14 , 21] days

δme 0, 22 or varying (only in Fig. 3a, 3b) [0, 1 , 1] day−1

δe 0, 07 or varying (only in Fig. 2a, b) [0, 01 , 0, 03] day−1

Te Not assigned [40 , 120] days

δe,b Not assigned [0, 001 , 0, 01] day−1

A = 2n 29 [25 , 211] –

Kc 5.108 or varying (only in Fig. 2c, d) [107 , 5.109] cells.kg−1.day−1

α 25.108 (= 5Kc excepted when varying in Fig. 2c, d) [3Kc , 6Kc] cells.kg−1.day−1

β 1, 5.1011 Approx. 1011 cells.kg−1

q 5 – –

Exact or approximated values from the literature are used for ranges

Note 1 Asymptotic solutions turned out to be independent from initial conditions and
densities.We thus arbitrarily decided to compute each trajectories shown in Figs. 2b, d
and 3b, dwith an initial condition and densities corresponding to 80%of the associated
steady state specified by parameter values.

5 Application to Periodic Oscillations of Erythrocytes

Let us first apply our model to experiments carried out on rabbits (Sect. 5.1) and
check that our model is able to accurately describe periodic oscillations specific to the
erythrocytic lineage.

5.1 In Rabbits

Wefurther assess the relevance of ourmodel by comparing its outputwith experimental
measurements of Orr et al. (1968). In their study, the authors regularly administrated
(every 2 or 3 days) red blood cell antibodies to rabbits and consequently induced an
immune hemolytic anemia. In the subject presented in figure 4 of Orr et al. (1968), we
observe reticulocyte and hemoglobin oscillations around 75 percent of the normal level
with a period of 16 to 17 days and an amplitude of approximately 10%. To compare
our modeling with these experimental results, we carefully choose model parameters
displayed in Table 3. To do so, we follow experimental observations and statements of
Orr et al. (1968) as well as the parameter choice approach of Mackey (1979); Bélair
et al. (1995) and Mahaffy et al. (1998). Firstly, we set the initial red blood cell level to
the average normal level for humans (Beutler et al. 2001): E0 = 3, 5×1011 cells.kg−1.
Parameters A, n and Kc are chosen within range observed in mammals (see e.g.,
Crauste et al. 2008; Greer et al. 2003). Given the lack of data, we decide to arbitrarily
choose the values of q and α such that the model output presents periodic oscillations.
Setting q = 18 and α = 8Kc (it remains in a plausible range) leads to consider that
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Table 3 Parameter values used for model simulation of the immune hemolytic anemia experiment in rabbits

Parameter Value assigned Range Unit

τ 5 [14 , 21] days

δme 0, 2286 [0, 1 , 1] day−1

δe 0, 0785 or 0, 0122 [0, 01 , 0, 03] day−1

Te 14 or 90, 1 [7 , 50] days

δe,b Not assigned [0, 001 , 0, 01] day−1

n 7 [5 , 11] –

A = 2n 27 [25 , 211] –

Kc 1.108 [107 , 5.109] cells.kg−1.day−1

α 8.108 (= 8Kc) [3Kc , 6Kc] cells.kg−1.day−1

β 2, 6283.1011 approx. 1011 cells.kg−1

q 18 – –

Exact or approximated values from the literature are used for ranges

feedback processes are fast, our choices may thus be unrealistic. Then, we set the value
of β such that it verifies the assertion of Orr et al. (1968) declaring that “a reduction
of the average hemoglobin level to about 75 percent of its normal value has increased
differentiation by a factor of at least 5.”We also choose τ arbitrarily but still in a range
of meaningful values. Actually, Orr et al. (1968) wrote: “the time spent in the erythron
cannot bemore than 3 days.”However, this ambiguous assertion does not clearly define
which cell stages are designated through the term “erythron.” One especially ignores
if BFU-E and CFU-E are considered or not. Hence, the marrow transit time in our
modeling is likely to be greater than 3 days and the choice of τ = 8 days is plausible.
The mean lifespan of erythrocytes is chosen according to the measurements of Orr
et al. (1968), that is Te = 14 days and consequently (see Eq. (4)) δe = 0, 0785 day−1.
We adapted the choice of δme in order to obtain a solution who oscillate around 75
percent of its normal level. Lastly, the initial erythrocyte death rate δe,0 (and thus
red blood cell lifespan Tgb,0) are imposed by these choices ensuring that the initial
equilibrium -E0- is well defined. We obtain δe,0 = 0, 0122 day−1 corresponding to
Tgb,0 � 90 days which is significantly higher than normal values of 45 to 50 days
found in the literature (Burwell et al. 1953). Initial population densities are steady
state populations given in Eq. (10) associated with E0.
Positions of the initial situation (normal with δe,0) and the experimental one (induced
immune hemolytic anemia with δe) in the (τ , δe)-plane as well as boundary of sta-
bility regions (δ∗

e ) are illustrated in Fig. 4a. The model solution displayed in Fig. 4b
periodically oscillates around an unstable equilibrium of 0, 75 E0,ini t with a mean
periodicity of 16, 9 days and an amplitude of 13, 6%. Although parameter choices
impose an unrealistic normal mean lifespan of erythrocyte, our model output is not far
from the observations shown in figure 4 of Orr et al. (1968). The application to rabbits
seems to support the relevance of our model to describe periodic diseases specific to
the erythrocyte lineage in other species and especially humans.
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Fig. 4 a Stability diagram obtained in the framework of Orr et al. (1968) experiment. bModel output E(t)
E0

associated with model parameters specified in Table 3 (Color figure online)

5.2 In Humans

In Figs. 2 and 3, we considered the case study of a human subject and paid particular
attention to set fixed parameters to physiologically meaningful values (see Table 2,
excepted for δe which has been set to δe = 0.07 day−1 for illustrative purpose in
Figs. 2d and 3b, d). We only have uncertainties about the biological relevance of the
values taken for Kc, α, β and q. Because of a lack of clearly referenced data for these
parameters, we set them similarly to what is usually done in other modeling studies
specific to erythropoiesis (see e.g., Mackey 1979; Bélair et al. 1995; Crauste et al.
2008). Using ranges of parameter values referenced in Table 1, we identify physio-
logically meaningful regions of parameter space (which include extreme values seen
in some diseases) with colored areas in Figs. 2a, c and 3a, c. It is important to note
here that these biologically relevant regions predominantly lie in regions where E∗
is locally asymptotically stable consequently excluding the possibility of oscillations
under physiologically conceivable conditions. In the case of the variation of τ , δe and
δme (Figs. 2a and 3a, c), we underline that biologically relevant areas do not include
stability switch boundaries and are thus disjoint from unstable regions. Consequently,
it seems that a variation of these parameters under biologically conceivable conditions
is highly unlikely to lead to periodic fluctuations of red blood cell levels. When it
comes to the parameter Kc (basal influx of hematopoietic stem cells) in Fig. 2c, the
interpretation is almost the same excepted that the biologically relevant area slightly
encounter a stability boundary at very high erythrocyte death rates δe and low values of
Kc. Consequently, Kc may be the only parameter which might induce periodic fluctu-
ations specific to erythrocytes in humans. This is in agreement with the observation of
Gordon and Varadi (1962) in which erythrocytic-specific oscillations are due to bone
marrow defects. Moreover, Kc being tightly associated with the hematopoietic stem
cell population (whose dynamics is not considered in this paper), our analysis also
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seems to support other studies (see e.g., Haurie et al. 1998; Mackey 1997) in which
erythrocytic oscillations would originate from the hematopoietic stem cell population
itself and not from erythropoiesis.

All in all, thanks to literature data and our analysis, one can understandwhy periodic
hematological diseases specific to erythrocytes are so rarely observed. We state that
human erythropoiesis should operate in parameter regions where periodic red blood
cell oscillations cannot occur even under pathological conditions. Actually periodic
fluctuations specific to red blood cell lineage are highly unlikely to appear under
physiologically possible parameters. However, if it is the case, it might be due to an
abnormally low value of basal hematopoietic stem cell influx and/or a high red blood
cell death rate.

6 Further Improvements of theModel

We suggest to improve the previous model into the one illustrated in Fig. 5. However,
due to its complexity, it can only be studied numerically and this is themain reasonwhy
we give it only in this last section. Modifications of the first model are the following:

– the population of bone marrow cells is divided in two: the bone marrow nucleated
cells with a transit time Tp and a death rate δp and the (unnucleated) Marrow

Fig. 5 Erythropoiesis model improved.Mainmodifications of the last model are indicated in red. Previously
described bonemarrow population is now divided into two: the bonemarrow nucleated cells and theMarrow
reticulocytes. The finite transit time in cell compartments are Tp for bone marrow nucleated cells, Tr for
marrow reticulocytes and Te for red blood cell. Population death rates are δp , δr and δe . A = 2n translates
the n ∈ Nmitotic divisions underwent by a single nucleated cell during its development in the bonemarrow.
This valuemay be a little less if we take cell apoptosis in every doubling stage. This is whywe assume that A
belongs in the interval [25, 211] in Table 4. Total red blood cell population -E- downregulates erythropoiesis
through a negative feedback over the cell influx K (E) and through a positive feedback over the death rate
of bone marrow nucleated cells δp(E) (Color figure online)
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reticulocytes with a transit time Tr and a death rate δr . As mentioned in Sect. 2.1
as a limit of the simple model presented in Fig. 1, EPO here not only affects
hematopoietic stem cell influx, but also the apoptosis rate δp of erythroid progen-
itors (CFU-E). In a standard way, we use an increasing Hill function to describe
this feedback:

δp(E) = δp,min + (δp,max − δp,min)
Eqb

Eqb + β
qb
p

, E ≥ 0,

where δp,min and δp,max account, respectively, for the minimal and maximal death
rate of bone marrow nucleated cells. βp > 0 is the total number of erythrocytes

corresponding to the median death rate
δp,min+δp,max

2 and qb ≥ 1 is the Hill coef-
ficient characterizing how fast is the change between red blood cells number and
progenitor apoptosis. All things considered, similar to the previous modeling, cor-
responding densities are also ruled by transport equations:

∂ p

∂t
(t, a) + ∂ p

∂a
(t, a) = −δp(E(t))p(t, a), t ≥ 0 , a ∈ [0 , Tp

]
, (18)

∂r

∂t
(t, a) + ∂r

∂a
(t, a) = −δr r(t, a) , t ≥ 0 , a ∈ [0 , Tr ] . (19)

– Cells cannot transit infinitely in the red blood cell compartment, we now consider
a finite transit time Te accounting for the finite lifespan of erythrocytes. Each
red blood cell reaching age Te is identified as senescent by macrophages and is
actively degraded due to phagocytosis. In this paradigm δe no longer accounts
for senescence (Eq. (4) does not hold anymore) and its meaning becomes more
consistent with its unspecific nature. δe only models other causes of red blood cell
destruction that are—in the vast majority—random and non-specific. We use the
same framework to describe the erythrocyte density e excepted concerning the
finite lifespan:

∂e

∂t
(t, a) + ∂e

∂a
(t, a) = −δee(t, a) , t ≥ 0 , a ∈ [0 , Te] . (20)

Total populations obtained after integration of equations (18), (19) and (20) over the
corresponding age intervals are suitable to accuratelymodel erythropoiesis. Derivation
of the corresponding model equations is not the aim of this work, we simply state that
solution dynamics at long time t ≥ Te + Tr + Tp is entirely ruled by

E ′(t) = − δeE(t) + Ae−Tr δr

[
K
(
E(t − (Tr + Tp))

)
e− ∫ Tr+Tp

Tr
δp(E(t−u)) du

−e−Teδe K
(
E(t − Te − (Tr + Tp))

)
e− ∫ Te+Tr+Tp

Te+Tr
δp(E(t−u)) du

]
.

(21)
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This nonlinear delay differential equation admits a unique positive equilibrium E∗ > 0
solving

δeE
∗ = A

(
1 − e−Teδe

)
K (E∗)e−Tr δr−Tpδp(E∗).

However, Eq. (21) involves discrete and distributed delays which render the local
asymptotic study of solutions around E∗ particularly tedious and kept for a future
work. The resulting characteristic equation is

λ + δe + e−λTr
[
1 − e−(λ+δe)Te

] [
ξ1

(∫ Tp

0
e−λu du

)
− ξ2e

−λTp

]
= 0,

with

ξ1 = Ae−Tr δr−Tpδp(E∗)K (E∗)
∂δp

∂E
(E∗),

ξ2 = Ae−Tr δr−Tpδp(E∗) ∂K

∂E
(E∗).

One would remark that 0 cannot be a root of the latter equation due to the variations
of K and δp with respect to E . Consequently, the characteristic equation of Eq. (21)
linearized about its unique positive equilibrium E∗ reads

λ + δe + e−λTr
[
1 − e−(λ+δe)Te

] [ξ1 − (ξ1 + λξ2) e−λTp
]

λ
= 0. (22)
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Fig. 6 a Stability diagram of the improved model associated with the characteristic equation Eq. (22) in
the
(
Tp , Te

)
-plane. We remind that Te,1 is the parameter used to describe normal conditions, and Te,2 a

pathological one. A biologically relevant area is colored. (b) Illustrative trajectories associatedwith example
red blood cell transit time specified in (a). The parameters used to obtain these plots are specified in Table 4
(Color figure online)
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Table 4 Parameter values used in Fig. 6 for the integration of Eq. (21). Exact or approximated values from
the literature are used for ranges

Parameter Value assigned Range Unit

Tp varying (Fig. 6) 19 (Fig. 6b) [12 , 20] days

Tr 1 [1 , 3] days

δr 0.05 [0, 1 , 1] day−1

δe 0.005 [0, 01 , 0, 03] day−1

Te varying [60 , 120] days

n 9 [5 , 11] –

A = 2n 29 [25 , 211] –

Kc 1.108 [107 , 5.109] cells.kg−1.day−1

α 5.108 (= 5Kc) [3Kc , 6Kc] cells.kg−1.day−1

β 3.3.1011 approx. 1011 cells.kg−1

q 8 – –

δp,min 0.01 – day−1

δp,max 0.3 – day−1

βp 3.3.1011 approx. 1011 cells.kg−1

qp 8 – –

As mentioned above, finding the roots of Eq. (22) is an open problem and is only
carried out numerically here. In Fig. 6a we provide an insight into the stability of the
model in the

(
Tp, Te

)
-plane. Thanks to a “τ -decomposition” method, for a given value

of Tp, we attempt to determine boundary red blood cell transit time at which stability
switches might occur. Fixed model parameters are set to biologically relevant values
as specified in Table 4. In Fig. 6b we illustrate the stability switch by considering
two situations with the same Tp and two different red blood cell transit time: Te,1
and Te,2. Here, Te,1 represents the normal conditions (that is a 120 days lifespan for
erythrocytes while Te,2 represents a critical pathological condition (parameter value
given in Table 4, with reference given from Table 1. Thanks to the MATLAB solver
dde23 we integrate Eq. (21) for the situations i ∈ {1, 2} assuming a blood loss
at t = 0 and Ei (t) = E∗

i for all t < 0. These examples and others (not shown
here) highlight that solution dynamics is likely to be more complicated without being
drastically different.

7 Summary and Conclusion

We analyzed an erythropoiesis model and attempted to account for the rare obser-
vations of cyclic red blood cell oscillations. Motivated by recent experimental
observations concerning the effect of EPO on the commitment of hematopoietic stem
cells into the erythrocytic lineage, we provided a mathematical model of erythro-
poiesis generalizing the one in Mackey (1997). We continued and improved this
work by adding a basal cell influx (parameter Kc) and by providing a more detailed
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mathematical and numerical analysis. We numerically obtained the boundaries of
stability switches in parameter space. With the resulting stability diagrams and a thor-
ough insight into erythropoiesis-specific literature we completed the work of Mackey
(1979,1997). Two cases study enabled us to highlight key aspects involved in the
occurrence of periodic erythrocytic oscillations. As pointed out by Mackey (1979),
Bélair et al. (1995) and Mahaffy et al. (1998), our model also predicts that an increase
in the erythrocyte death rate δe may trigger periodic oscillations of erythrocytes in rab-
bit. Our contribution lies in the identification, in the parameter space, of biologically
relevant areas for humans from which we explained the extremely rare observations
of cyclic erythropoiesis in humans. We particularly identified that human parameter
values are responsible for the very sparse observations of periodic red blood cell lev-
els and if observed, this periodicity might only be due to abnormally high erythrocyte
death rate and/or abnormally low basal hematopoietic stem cells influx. Carefully
inspecting erythropoiesis processes, we finally highlighted the limit of our model and
developed an improved one. Its tedious characteristic equation and stability switches
are still to be investigated. Moreover, this new model grasps more biological aspects
(especially concerning erythropoietin feedback over apoptosis of erythroid progeni-
tor and red blood cell removal) while remaining simple with a reasonable number of
parameters. Thus, added to a pharmacokinetic modeling of EPO and possibly a model
of iron dynamics, it opens up prospects for hemoglobin regulation of dialysis patients.
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Appendix 1: Sufficient Stability Condition

In this “Appendix”, we use the theorem established by Hayes (1950) to formulate a
sufficient stability condition for the equilibrium E∗. Consider a set ofmodel parameters
A, δme, q, β, Kc, α, δe and τ . If τ = 0 then the characteristic equation (12) admits a
unique root λ = −δe − L which is real and negative because L > 0. Now, we consider
that τ > 0. Eq. (12) can be written as

(λτ + δeτ) eλτ + Lτ = 0, λ ∈ C. (23)

The latter equation is adapted to the theorem formulated by Hayes (1950). Hence, if
λ ∈ C verifies Eq. (23) then

Re λ < 0 ⇔
{
0 < Lτ < μ sin(μ) − δeτ cos(μ),

μ = −δeτ tan(μ), μ ∈ (π
2 , π

)
.

Which can also be written as

Re λ < 0 ⇔
{
0 < − cos(μ) < δe

L ,

μ = −δeτ tan(μ), μ ∈ (π
2 , π

)
.

Given that 0 < − cos(μ) < 1 holds for all μ ∈ (π
2 , π

)
, we obtain Proposition 2.
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Appendix 2: Continuity, Differentiability and Variations with Respect
to Model Parameters

Derivatives with respect to E . Given the form of K (·) in Eq. (2), trivial derivation
rules and simple computations lead, for E > 0, to

∂K

∂E
(E) = −q

1

β

(
E

β

)q−1
α(

1 +
(
E
β

)q)2 > 0,

and

∂2K

∂E2 (E) = qα
(q + 1)

(
E
β

)2q−2 − (q − 1)
(
E
β

)q−2

β2
(
1 +

(
E
β

)q)3 .

Continuity and variations with respect to τ . Remembering the fact that L is strictly
positive for all τ ≥ 0, one can establish from the implicit function theorem that, all
other parameters being fixed, τ 	→ E∗(τ ) is continuously differentiable on [0,+∞)

and

∂E∗

∂τ
(τ ) = −δmeδeE∗(τ )

δe + L(τ )
> 0.

τ 	→ E∗(τ ) is thus a strictly decreasing function with lim
τ→∞ E∗(τ ) = 0. After few

lines of computations not mentioned here, one also obtains

∂L

∂τ
(τ ) = − qδmeL(τ )

(δe + L(τ ))
(
1 +

(
E∗(τ )

β

)q)
[
δe − AKc

β

(
E∗(τ )

β

)q−1

e−τδme

]
.

This expression enables us to study the variation of L with respect to τ . From

AKc

δe
≤ E∗(τ = 0) ≤ A(Kc + α)

δe
,

weestablish that ifmodel parameters are such thatCondition (14) holds then τ 	→ L(τ )

admits a unique maximum at

τ̃ = 1

δme

[
q − 1

2q
ln

(
1 + α

Kc

)
+ ln

(
AKc

βδe

)]
,

and

L(τ̃ ) = qδeα

2Kc

(
1 +

√
1 + α

Kc

)
+ α

.
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Continuity and variationswith respect to δe. Remembering the fact L is strictly positive
for all δe > 0, one can establish that δe 	→ E∗(δe) is continuously differentiable on
(0,+∞) and

∂E∗

∂δe
(δe) = − E∗(δe)

δe + L(δe)
.

δe 	→ E∗(δe) is thus a strictly decreasing ranging from +∞ (when δe → 0) to 0. One
also obtains

∂L

∂δe
(δe) = L(δe)

(q + 1)
(
E∗(δe)

β

)q − (q − 1)

(δe + L(δe))
(
1 +

(
E∗(δe)

β

)q) .

We establish after a few tedious computations that the function δe 	→ L(δe) admits a
unique maximum

L(δ̃e) = Aαe−τδme

4β

(q − 1)
q−1
q (q + 1)

q+1
q

q
,

with

δ̃e = Ae−τδme

β

(
q + 1

q − 1

) 1
q
(
Kc + 3α

5

)
.

Continuity and variations with respect to Kc. As previously done, one can establish
that the function Kc 	→ E∗(Kc) is continuously differentiable and

∂E∗

∂Kc
(Kc) = δeE∗(Kc)

(δe + L(Kc))
(
1 +

(
E∗(Kc)

β

)q) .

The equilibrium E∗ is thus a strictly increasing function of Kc and we have. One
subsequently conclude, by composition, that Kc 	→ L(Kc) is continuously differen-
tiable on R+, all other model parameters being fixed. With computations similar to
the one performed by the reader in the latter paragraph, few lines of computations, not
mentioned here, leads to

∂L

∂Kc
(Kc) = −δeL(Kc)

(q + 1)
(
E∗(Kc)

β

)q − (q − 1)

(δe + L(Kc))
(
1 +

(
E∗(Kc)

β

)q)(
Kc + α

1+
(
E∗(Kc)

β

)q
) .
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From this expression, one can study the variation of L with respect to Kc. Using
Eq. (9), one sees that

E∗(Kc = 0) ≤ Aαe−τδme

δe
,

and easily establish that if the sufficient condition (13) holds, then Kc 	→ L(Kc)

admits a maximum at

K̃c = β

A
øme

(
q − 1

q + 1

)
− α(q + 1)

2q
,

given by

L(K̃c) = Aαe−τδme
(q + 1)2

4βq

(
q − 1

q + 1

) q−1
q

.

Continuity and variations with respect to δme. Similarly to the previous paragraphs,
we have that δme 	→ E∗(δme) is continuously differentiable and

∂E∗

∂δme
(δme) = − τδeE∗(δme)

δe + L(δme)
< 0.

Then, δme 	→ E∗(δme) is a strictly decreasing with lim
δme→∞ E∗(δme) = 0. Similarly,

one also obtains

∂L

∂δme
(δme) = − qδmeL(δme)

(δe + L(δme))
(
1 +

(
E∗(δme)

β

)q)

×
(

δe − AKc

β

(
E∗(δme)

β

)q−1

e−τδme

)
.

With the same arguments previously mentioned, if Condition (14) is satisfied then
δme 	→ L(δme) admits a maximum

L(δ̃me) = qδeα

2Kc

(
1 +

√
1 + α

Kc

)
+ α

,

at

δ̃me = 1

τ

[
q − 1

2q
ln

(
1 + α

Kc

)
+ ln

(
AKc

βδe

)]
.

123



Why Are Periodic Erythrocytic Diseases so Rare in Humans? Page 27 of 31    19 

Appendix 3: Proof of Proposition 7

Letψ be one of the parameter among δe, Kc, δme or τ . First, let us remark that 0 is a root
of Eq. (12) if and only if δe = −L(ψ). Yet, we know that L(ψ) > 0. Consequently,
0 cannot be a root Eq. (12).
Moreover, considering the complex conjugate of Eq. (12), we obtain that if λ ∈ iR
is a root of Eq. (12) then −λ is also a root of this equation. From this, we know that
if pure imaginary roots of Eq. (12) exist, then they will be given by λ = ±iω(ψ),
ω(ψ) > 0.

Let ψ∗ ∈ P be a chosen parameter. Thanks to Proposition 2 and to Corollary 1,
we know that if ψ∗ /∈ Π then pure imaginary roots of Eq. (12) cannot exist. It is thus
necessary that ψ∗ ∈ Π .
We begin to show the first part of Proposition 7. From what we just mentioned above,
we assume, without loss of generality, that iω(ψ∗), ω(ψ∗) > 0, is a root of Eq. (12).
In such situation, separating the real from the imaginary part, we obtain that ω(ψ∗)
must verify

{
δe = − L(ψ∗) cos(ω(ψ∗)τ ),

ω(ψ∗) = L(ψ∗) sin(ω(ψ∗)τ ).
(24)

Considering that −1 ≤ cos(x) ≤ 1 and that δe > 0, we verify that ψ∗ ∈ Π is a
necessary condition for the definition of System (24). The latter system also reads

⎧⎪⎪⎨
⎪⎪⎩
cos
(
ω(ψ∗)τ

) = − δe

L(ψ∗)
,

sin
(
ω(ψ∗)τ

) = ω(ψ∗)
L(ψ∗)

,

and we obtain

1 = cos(ω(ψ∗)τ )2 + sin(ω(ψ∗)τ )2 =
(

ω(ψ∗)
L(ψ∗)

)2

+
(

δe

L(ψ∗)

)2

.

Consequently,

ω(ψ∗)2 = L(ψ∗)2 − δ2e ,

and we get that ω(ψ∗) is expressed by Eq. (16).

Remark 4 It is necessary that ψ∗ ∈ Π otherwise ω(ψ∗) is not defined. This condition
also guarantee, a posteriori, that the function ψ 	→ ω(ψ) is well defined on the set
Π .

Finally, from the signs involved in Eq. (24), it is necessary that

ω(ψ∗)τ ∈ ∪
k∈N

(
(4k + 1)

2
π , (2k + 1)π

)
,
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from which it follows that there exists k ∈ N such that ψ∗ ∈ Π verifies

ω(ψ∗)τ = arctan

(
−ω(ψ∗)

δe

)
+ (2k + 1)π.

We reformulate the latter condition using the function z defined in Eq. (17) and obtain
the first part of Proposition 7: if iω(ψ∗) for ψ∗ ∈ Π is a root of (12) then there exists
k ∈ N such that ψ∗ ∈ Π is a zero of z(·, k).
Remark 5 For all k ∈ N, ψ 	→ z(ψ, k) is well defined and continuously differentiable
on Π .

The proof of this remark directly originates from the continuous differentiability
of ψ 	→ L(ψ) and ψ 	→ ω(ψ) on Π .
The reciprocal of Proposition 7 is simply established by separating real and imaginary
parts and by doing similar computations to the one above. The proof of the end of this
proposition is given by Beretta and Kuang (2002).
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