
ARTICLE IN PRESS
0022-5193/$ - se

doi:10.1016/j.jtb

�Correspond
E-mail addr

pujo@math.un

glenn.f.webb@v
Journal of Theoretical Biology 242 (2006) 598–606

www.elsevier.com/locate/yjtbi
A mathematical analysis of the dynamics of prion proliferation

Meredith L. Greera, Laurent Pujo-Menjouetb, Glenn F. Webbc,�

aDepartment of Mathematics, Bates College, 213 Hathorn Hall Bates College, Lewiston, Maine 04240, USA
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Abstract

How do the normal prion protein ðPrPCÞ and infectious prion protein ðPrPScÞ populations interact in an infected host? To answer this

question, we analyse the behavior of the two populations by studying a system of differential equations. The system is constructed under

the assumption that PrPSc proliferates using the mechanism of nucleated polymerization. We prove that with parameter input consistent

with experimentally determined values, we obtain the persistence of PrPSc. We also prove local stability results for the disease steady

state, and a global stability result for the disease free steady state. Finally, we give numerical simulations, which are confirmed by

experimental data.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Though widely investigated, the pathogenesis of trans-
missible spongiform encephalopathies (TSEs) remains
incompletely understood. These diseases, members of the
fatal neurodegenerative disease family, have different
names depending on the mammalian species. They are
called scrapie for sheep or bovine spongiform encephalo-
pathy (BSE) for cattle, and for humans they appear under
forms called kuru, Creutzfeldt–Jakob disease (CJD),
Gerstmann–Sträussler–Scheinker syndrome and fatal fa-
milial insomnia. It is believed that they show common
pathologies such as spongiform degeneration, described as
large vacuoles in the cortex and the cerebellum (Horwich
and Weissman, 1997). They are also characterized by long
incubation periods, a lack of immune response and
invisibility to detection as viruses. It has been shown that
only one infectious agent is the cause of these diseases
(Griffith, 1967; Prusiner, 1982). This agent is the prion; its
e front matter r 2006 Elsevier Ltd. All rights reserved.
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discovery was very surprising in the sense that it is thought
not to be a virus or any other viroid-like agent but is
commonly accepted to be a protein (Aguzzi and Poly-
menidou, 2004; Prusiner, 1991). The fact that a protein
alone can transmit an infectious disease has been a great
controversy within the scientific community. However,
despite some arguments against this protein-only hypoth-
esis, the prion is now widely regarded as the best
explanation for TSEs.
Much progress was made in the 1980s in understanding

structural aspects of the different forms of prion protein
(Oesch et al., 1985; Prusiner, 1991; Prusiner et al., 1981, 1984).
To summarize, we can say that the prion infectious agent is a
modified form of a normal protein called PrPC (prion protein
cellular) which is a normal proteinase K-sensitive form of
prion protein PrP. Single molecules of the protein PrPC,
which we will refer to as monomers, can normally be found in
the human system. Many authors have investigated the
functional role of prions (Bounhar et al., 2001; Brandner et
al., 1996; Brown et al., 2002; Chiesa et al., 2005; Kim et al.,
2004; Li and Harris, 2005; Roucou et al., 2003, 2004).
Brandner et al. (1996) showed that PrPSc does not directly
damage neurons. Roucou et al. (2003, 2004) showed that for
human neurons, normal PrP located in the cytosol retains its
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protective function against Bax, a substance in the human cell
which when activated provokes cell apoptosis. In other
words, normal PrP could be considered a natural protection
against apoptosis. Without it, a massive destruction of our
neurons would occur under stress.

On the other hand, the infectious protein PrPSc (Prion
Protein Scrapie) is an abnormal pathogenic conformation of
PrPC and is the origin of the TSEs. PrPSc is hydrophobic and
has a tendency to form aggregates (Prusiner, 1998). It is then
more stable than PrPC and much more resistant to proteolytic
treatment as well as radiation and high temperatures (Huang
et al., 1984; Pan et al., 1993). The motivation to study the
dynamics of these protein populations comes from the
research of Roucou et al. (2003) and the authors quoted
above, which suggests that the PrPSc proteins do not directly
damage the neurons in the TSEs. Indeed, if we assume that
PrPSc is an aggregate that converts PrPC monomers as it
replicates, then the neurons would be damaged because the
protection of PrPC disappears and no shield against the Bax
within the cell persists. Thus, the more an animal or human is
stressed the faster the neurons die (Brown et al., 2002).
Obviously, this biological assumption is very simplified here,
and there exist other hypotheses regarding the cause of death
due to the prion disease.

The objective in this work is to understand the dynamics
of the PrPC and PrPSc populations. Our goal is to develop a
basic model incorporating the essential elements of prion
disease. We would like to understand under what condi-
tions the PrPSc population survives while the monomer
PrPC population declines, and if such conditions are
biologically realistic. In other words, we want to study
the stability of the protein populations involved in these
diseases. In order to study this behavior we need to
consider a sufficiently robust model. Several models to
explain the replication process of PrPSc have been proposed
(Cohen et al., 1994; Eigen, 1996; Harper and Lansbury,
1997; Jarrett and Lansbury, 1993; Kulkarni et al., 2003;
Laurent, 1997; Masel et al., 1999; Mobley et al., 2003;
Fig. 1. Left: nucleated polymerization mechanism with minimum nucleation si

on Fig. 2 of Masel et al. (1999).
Nowak et al., 1998; Pöschel et al., 2003; Slepoy et al.,
2001). These models are distinguished primarily as one-
dimensional (lengthening fibrils) or two-dimensional (pla-
nar aggregates). Areal aggregation models (that is, two-
dimensional aggregations on regular arrays corresponding
to cell surfaces) have been investigated (Kulkarni et al.,
2003; Mobley et al., 2003; Slepoy et al., 2001) and
experimental evidence of areal aggregation has been shown
(Govaerts et al., 2004; Wille et al., 2002). There is
experimental evidence that PrP proteins with glyco-
phospho-inositol (GPI) anchors deleted can yield increased
scrapies upon inoculation without disease symptoms
(Chesebro et al., 2005). Areal aggregation models have
provided an impressive theoretical explanation of the
highly reproducible logarithmic correlation of incubation
times and inoculum doses, as well as experimentally
observed deviations in this relationship at small doses
(Kulkarni et al., 2003).
The view that PrPSc aggregates are essentially one-

dimensional fibrillic structures lengthening in both linear
directions has been investigated (Jarrett and Lansbury, 1993;
Collins et al., 2004; Lansbury and Caughey, 1981; Scheibel et
al., 2001). Collins et al. (2004) investigate one-dimensional
yeast prion aggregation by single molecule fluorescence
measurements, which indicate that fibrils grow by monomer
addition. The one-dimensional propagation of prion fibrils
has been modeled mathematically (Masel et al., 1999; Nowak
et al., 1998; Pöschel et al., 2003). Masel et al. (1999)
hypothesize nucleated polymerization (see Fig. 1) as the
primary mechanism of PrPSc proliferation and develop a
deterministic model for it consisting of an infinite system of
ordinary differential equations, one for each possible fibril
length. The model in Masel et al. (1999) is the starting point
of our investigation, but we consider a continuum of possible
fibril lengths described by partial differential equations
(Greer, 2002). The advantages of our modeling approach
are that it is conceptually more accessible and mathematically
more tractable.
ze n ¼ 6. Right: Kinetic model of the prion aggregate growth model based
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We state our model of prion proliferation, then find the
steady state values of the system. We study the local
stability of the disease free and disease steady states. We
prove global stability for the disease free steady state and
the conditions necessary for persistence of the disease. We
conclude with numerical simulations based on experimen-
tal data (Masel et al., 1999; Rubenstein et al., 1991). All the
details of the proofs of our propositions concerning the
existence, uniqueness, and asymptotic behavior of the
solutions of the model are available on request.

2. The model of prion proliferation

Our model describes nucleated polymerization, the me-
chanism by which prions are hypothesized to replicate
(Nowak et al., 1998). It is necessarily abstract, because it
describes an extremely complex biological process. The model
contains six basic parameters, each of which has a funda-
mental biological interpretation. The nucleated polymeriza-
tion theory considers the PrPSc protein to be a polymeric
form of PrPC. It is important to point out that above a critical
size, PrPSc is very stable and does not polymerize anymore
(Pan et al., 1993). Only terminally truncated forms of the
PrPSc polymerize. Our work is consequently focused on these
truncated forms that polymerize which by language abuse we
name PrPSc. By polymerizing, we mean that PrPSc increases
its length by attaching to its end units of converted PrPC in a
stringlike formation (Scheibel et al., 2001). After a PrPSc

polymer attaches to a PrPC monomer, the PrPC is converted
to the infectious PrPSc form. It is assumed that the PrPSc

proteins are long enough to wrap into a helical shape, in
which they form stabilizing bonds (Wille et al., 2002). The
first winding of the helix, achieved at the critical size, is the
‘‘nucleus’’ referred to by the term nucleated polymerization
(see Fig. 1) (Masel et al., 1999).

The bonds formed in a PrPSc polymer likely confer PrPSc

greater metabolic stability than PrPC (Masel et al., 1999).
This difference in stability is manifested in the parameters
for metabolic degradation of PrPSc and PrPC. Polymers of
PrPSc can split into smaller polymers, and the mechanisms
of lengthening and splitting are the basis of prion prolifera-
tion (see Fig. 1). A split usually transforms one infectious
polymer into two smaller infectious polymers, each of which
can attach PrPC. However, when a newly split polymer falls
below the critical size, it immediately degrades into PrPC

monomers. We note that our assumption that the PrPSc

polymers can degrade into PrPC units is controversial,
although there is experimental evidence that monomers less
than a minimum size are energetically unfavorable (Pöschel
et al., 2003; Wille et al., 2002). All our results, however, are
valid with or without this assumption, that is, our minimum
viable polymer length may be as small as 1.

2.1. The monomer population

Let us denote by V ðtÞ the population of PrPC monomers
at time t40, and by UðtÞ ¼

R1
x0

uðx; tÞdx the total
population of polymers of length x greater than a
minimum length x040. The function u is the density of
polymers at time t40 with respect to the length
x 2 ðx0;1Þ. Note that polymer lengths have been shown
to range over thousands of monomer units (Masel et al.,
1999; Prusiner, 1986). In (Masel et al., 1999) polymer
lengths x were assumed to be integer values, but we assume
continuous values for mathematical tractability. The
monomer population satisfies the ordinary differential
equation

dV ðtÞ

dt
¼ l� gV ðtÞ � tV ðtÞUðtÞ

þ 2

Z x0

0

x

Z 1
x0

bðyÞkðx; yÞuðy; tÞdydx, ð1Þ

where l40 is the constant background source of mono-
mers, g40 is the constant metabolic degradation rate of
monomers and t is the polymerization rate, i.e. the rate at
which polymers attach to, and convert, monomers. In the
last term of the right-hand side, bðyÞ gives the possibly
length-dependent likelihood of splitting of polymers to
monomers. Supposing a split occurs, kðx; yÞ is the
probability of an polymer of length y splitting to any
shorter length x with the other piece having length y� x,
and is defined in the following way:

kðx; yÞ ¼
0 if ypx0 or ypx;

1=y if y4x0 and 0oxoy:

(
(2)

The form of Eq. (2) means that the probability a length y

splits to any shorter length x is equally likely. Observe that
for a fixed value of y,Z 1
0

kðx; yÞdx ¼
0 if ypx0;

1 if y4x0:

(
(3)

In Eq. (1), the tV ðtÞUðtÞ term on the right-hand
side represents the loss of monomers as PrPC units are
attached to the polymer PrPSc. The term 2

R x0

0 x
R1

x0
bðyÞ

kðx; yÞuðy; tÞdydx represents the monomers gained when a
PrPSc polymer splits with at least one polymer shorter than
the minimum length x0. We assume that such a polymer
piece degrades immediately into PrPC units. We also give
the initial condition

V ð0Þ ¼ V0, (4)

where V0 is positive.

2.2. The polymer population

The polymer population is described by the following
transport equation:

q
qt

uðx; tÞ þ tV ðtÞ
q
qx

uðx; tÞ

¼ �mðxÞuðx; tÞ � bðxÞuðx; tÞ

þ 2

Z 1
x

bðyÞkðx; yÞuðy; tÞdy. ð5Þ
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While the term tV ðtÞUðtÞ of Eq. (1) represents the loss of
PrPC monomers as they are polymerized, the term
tV ðtÞðq=qxÞuðx; tÞ in Eq. (5) shows the gain in length of
PrPSc due to polymerization. The first term on the right-
hand side of Eq. (5) gives the metabolic degradation of
PrPSc. In this paper, for simplicity we assume polymers are
equally likely to split anywhere along their length where
two protein units join, hence bðxÞ ¼ bx. We also assume
mðxÞ � m. Note the important roles of b and m. In our
model there is a very small probability that PrPSc polymers
can grow to greater lengths than have been experimentally
observed. Careful choices of both b and m can render this
probability negligible. These choices do not contradict the
biological observations and without them, the study of the
model could become extremely complex. The last two
terms of Eq. (5) describe splitting. The term bðxÞuðx; tÞ is
the loss of polymers, subject to the splitting rate bðxÞ. The
last term of the right-hand side is the count of all the
polymers of length x resulting from the splitting of
polymers of length greater than x. We give the initial
condition for the polymer population as

uðx; 0Þ ¼ jðxÞ for x0oxo1, (6)

and the boundary condition to be

uðx0; tÞ ¼ 0 for tX0. (7)
3. An associated system of ordinary differential equations

From the system comprised of Eq. (1) and Eqs. (4)–(7), a
straightforward computation allows us to deduce the
following associated system of ordinary differential equa-
tions:

d

dt
UðtÞ ¼ bPðtÞ � mUðtÞ � 2bx0UðtÞ;

d

dt
V ðtÞ ¼ l� gV ðtÞ � tV ðtÞUðtÞ þ bx2

0UðtÞ;

d

dt
PðtÞ ¼ tV ðtÞUðtÞ � mPðtÞ � bx2

0UðtÞ;

8>>>>>><
>>>>>>:

(8)

where PðtÞ ¼
R1

x0
xuðx; tÞdx is the total population of PrPSc

monomers comprising the polymers at time t. We remark
that System 8 is analogous to the system of three
differential equations presented by Masel et al. (1999).
However, in our work, we analyse different aspects of the
system. Further, System 8 is obtained from Eq. (1) and
Eqs. (4)–(7), which is a formulation of the model based on
continuous fibril lengths. The System Eq. (1) and Eqs.
(4)–(7) carries more biological information, namely the
distribution of prion fibrils, as well as the lengthening and
splitting processes.

There are two steady states for System (8): the disease
free steady state

U ¼ 0; V ¼ l=g and P ¼ 0,
and the prion disease steady state

U ¼
blt� gðx0bþ mÞ2

mtð2x0bþ mÞ
; V ¼

ðx0bþ mÞ2

bt

and

P ¼
blt� gðx0bþ mÞ2

bmt
.

Note that the disease steady state exists only if
x0bþ moðblt=gÞ1=2. The left-hand side of this inequality
is related to the net loss of PrPSc polymers due to their
degradation and splitting to unstable lengths, and the right-
hand side is related to the net production of polymers due
to their lengthening and splitting to stable lengths as they
consume the available supply of PrPC, in other words, the
inequality conditioning the disease steady state can be
interpreted in terms of the degradation, splitting and
lengthening rates of the polymers. We state below results
concerning the existence, uniqueness and the partial
differential equations Systems Eq. (1) Eqs. (4)–(7). We
also state results concerning the stability of the steady state
of these two systems. The proofs of Propositions 3.0.1(i)
and (ii) are available in the Appendix. The proof of
Proposition 3.0.1(iii) is given in Prüss et al. (2006). The
proof of Proposition 3.0.2 is based on the results for the
associated system of ordinary differential equations and is
given in Engler et al. (2006).

Proposition 3.0.1. Let l; g; t;b; m;x040. Let X ¼ fðU ;V ;PÞ
2 R3

þ : UX0;VX0 and PXx0Ug
(i)
 For each ðUð0Þ;V ð0Þ;Pð0ÞÞ 2 X there is a unique

solution ðUðtÞ;V ðtÞ;PðtÞÞ to the initial value problem

(8) for tX0. Further, ðUðtÞ;V ðtÞ;PðtÞÞ 2 X for tX0.

(ii)
 The disease free steady state given by ðU ;V ;PÞ ¼
ð0; l=g; 0Þ is globally stable in X for the system (8) (that

is, limt!1 ðUðtÞ;V ðtÞ;PðtÞÞ ¼ ðU ;V ;PÞ for all

ðUð0Þ;V ð0Þ;Pð0ÞÞ 2 X , if

ðblt=gÞ1=2ox0bþ m.
(iii)
 The disease steady state given by

U ¼
blt� gðx0bþ mÞ2

mtð2x0bþ mÞ
; V ¼

ðx0bþ mÞ2

bt

and

P ¼
blt� gðx0bþ mÞ2

bmt

is globally stable in X for the system (8), if

ðblt=gÞ1=24x0bþ m.
Proposition 3.0.2. Let l; g; t;b; m;x040. Let X ¼ R� L1

ððx0;1Þ; xdxÞ. For each ðV0;fÞ 2 Xþ there is a unique

solution ðV ðtÞ; uð:; tÞÞ to the initial value problem System
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Eq. (1) and Eqs. (4)–(7) for tX0 and ðV ðtÞ;UðtÞ;PðtÞÞ 2 Xþ.
The disease free steady state ðl=g; 0Þ is globally stable in Xþ,
if

ðblt=gÞ1=2ox0bþ m.

The disease steady state

V ¼
ðx0bþ mÞ2

bt
,

uðxÞ ¼
2bðlbt� gðmþ bx0Þ

2
Þ

mtðmþ bx0Þðmþ 2bx0Þ
F

bðx� x0Þ

mþ bx0

� �
,

where FðrÞ ¼ ðrþ r2=2Þ expð�ðrþ r2=2ÞÞ, is globally stable

in Xþ, if

ðblt=gÞ1=24x0bþ m.
4. Numerical illustrations

Our model can be used for simulations based on
experimental data for prion proliferation. The model has
six parameters: x0; g; l;m;b, and t. The minimum stable
polymer length x0 is estimated as 6 to 30 in Masel et al.
(1999), but remains controversial (Masel et al., 2005). The
half-life of PrPC monomers is estimated as 3–6 h from
studies for mouse neuroblastoma cells (Borchelt et al., 1990;
Caughey et al., 1989) which means g � 325 day�1. We
estimate the PrPC source as l � 103 � 104, which is
consistent with the values in Masel et al. (1999). These
three parameters x0; g; l are obtainable independently of the
disease dynamics. We note that the pre-inoculation steady
state V ð0Þ ¼ l=g relates l and g independently of the disease
dynamics. The other three parameters m;b; t can be obtained
experimentally from the observed disease steady state values

V ¼
ðx0bþ mÞ2

bt
,

Table 1

Model parameters and variables definitions and units. The parameter values w

Parameter/ variable Definition

t Time

x Length of a PrPSc polymer

x0 Minimum polymer length

uðx; tÞ Density of polymer lengths

UðtÞ Total number of PrPSc polymers

V ðtÞ Total number of PrPC monomers

PðtÞ Total number of PrPSc monomers in

g Degradation rate of monomers

m Degradation rate of polymers

b Rate of splitting of polymers to mono

l Source of monomers

t Conversion rate of monomers to poly

kðx; yÞ Probability that a polymer of length y

Splits to lengths x and y� x

*SAF/sq means Scrapie-Associated Fibrils per square unit and is explained
U ¼
blt� gðx0bþ mÞ2

mtð2x0bþ mÞ
,

P=U ¼
2x0bþ m

b
,

which are, respectively, the monomer population, the
polymer population, and the mean polymer length at disease
steady state. These three equations yield a unique solution
for m;b, and t in terms of x0, l, g, U , V and P given by

t ¼ �
ðP�Ux0Þ

2
ðVg� lÞ

P U V ðP� 2Ux0Þ
; m ¼

�Vgþ l
P

and

b ¼
Uð�Vgþ lÞ
PðP� 2Ux0Þ

.

We apply our model to experimental data in Rubenstein
et al. (1991). The parameter values for the simulation are
given in Table 1. MATHEMATICA code used in the
simulations is available on request.

4.1. Convergence of the density uðx; tÞ to the disease steady

state

In Fig. 2, the early (left panel) and late (right panel)
stages for the pathogenesis of prion proliferation are given
for the polymer density uðx; tÞ. It can be seen in Fig. 2 and
also in Fig. 3 that the mean polymer length first increases
and then decreases as it stabilizes over disease progression.
Our model explains this phenomenon as follows. In the
early stage there is an abundance of PrPC monomers which
are maintained at a constant source rate. As this
population is consumed by the lengthening and splitting
polymers, the mean polymer length is constrained. This is
consistent with the hypothesis formulated by Roucou et al.
(2003), that is, deaths attributable to prion disease result
ere taken from Masel et al. (1999)

Value Unit

– days

– –

6 –

– SAF/sq*

– SAF/sq

– –

polymers – –

5 day�1

:04 day�1

mers :0001 ðSAF=sqÞ�1day�1

4400 day�1

mers :3 ðSAF=sqÞ�1day�1

– –

in detail by Rubenstein et al. (1991).
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0 25 50 75 100 125 150

DAYS AFTER INOCULATION

600

800

1000

1200

1400

1600

M
E

A
N

 L
E

N
G

T
H
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PrPC monomer population. The parameters used are presented in Table 1.

The simulations assume an initial PrPC population V 0 ¼ 880 and an initial

PrPSc population uðy; 0Þ given by :000002 times a Gaussian distribution

with mean :15 and standard deviation :03.
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dependent on the log scale. Bottom panel: graphs of the number of fibrils

UðtÞ (in SAF/sq) for the nine inoculum doses. The horizontal line

corresponds to the onset of symptoms. The parameters are taken from

Table 1.

M.L. Greer et al. / Journal of Theoretical Biology 242 (2006) 598–606 603
from the pathogenic consumption of normal PrPC mono-
mers. Both simulations assume an initial PrPC population
V 0 ¼ 880 and an initial PrPSc population uðy; 0Þ given by
:000002 times a Gaussian distribution with mean :15 and
standard deviation :03.
4.2. Analysis of infectivity

In Fig. 4 we show the dependence of the incubation time
on the inoculation dose. It is well documented (Prusiner,
1986; Ferreira et al., 2003) that the incubation time (defined
as appearance of disease symptoms or death) is a log
function of the inoculum dose. In the top panel of Fig. 4
the incubation time in days is graphed for nine order of
magnitude dilutions of the inoculum dose Uð0Þ. In the
bottom panel of Fig. 4 the corresponding graphs of UðtÞ

are given. The incubation time is defined as the number of
days for UðtÞ to reach 130 SAF/sq which is the experi-
mental value obtained in Rubenstein et al. (1991) for the
appearance of symptoms in mice injected intracerebrally
with 139A scrapie strain as measured in spleen.
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In Fig. 5 we graph the solution of System (8) for an
inoculum dose corresponding to data in Rubenstein et al.
(1991). The model simulation fits the data for the disease
progression. This data has also been simulated by Pöschel
et al. (2003) who used a model similar to Masel et al.
(1999). In Rubenstein et al. (1991) the authors used scrapie-
associated fibrils (SAF) as the indicator of infectivity. In
their experiment, they infected mice by intracerebral
injection as well as intraperitoneal injection then measured
the level of SAF in the brain and spleen at various times
after inoculation. The data they obtained are shown in Fig.
5 (dots in the graph of the right part, the arrow represents
the onset of clinical disease). Here we show the data from
the spleen after an intracerebral injection (Fig. 2 in
Rubenstein et al. (1991)).

5. Conclusion

We have presented a model of prion proliferation with
biological assumptions similar to those of Masel et al.
(1999). Our model differs from theirs in that we consider
prion polymer length to be a continuous rather than
discrete structure variable. This change from a discrete
model allows us to show different behaviors of the
interacting protein populations. As one example, our
model shows the complete polymer distribution uðx; tÞ for
each time t.

The continuous model is simple enough to provide
clear numerical results and be easily manipulated, and
it is detailed enough to describe many aspects of prion
diseases. It is accurate and consistent when compared to
biological data. We can use the model to predict events,
such as the early increase and later decrease in mean
polymer length (Fig. 3), the log relationship between
inoculation doses and incubation times (Fig. 4) and
the saturation of total PrPSc mass as a determinant of
onset of clinical symptoms (Fig. 5). Yet the model is
mathematically challenging enough to leave open questions
for both mathematicians and experimental biologists.
These include global stability of the disease steady state
and a more complete description of PrP lengths and
quantities in vivo.
We have several directions for future work. The

model requires analysis in the case when m and b are not
constant and investigation of unstable behavior and
possible oscillations. We will study each parameter in more
depth to better understand its influence on disease
progression. And finally, the model may be adapted
to reflect further biological understanding of polymer
formation.

Appendix A. Proof of Proposition 3.0.1(i)

We first give the following equivalent system of
equations to system (8) in terms of UðtÞ;V ðtÞ;W ðtÞ; where
W ðtÞ ¼ PðtÞ � x0UðtÞ:

d

dt
UðtÞ ¼ bW ðtÞ � ðmþ bx0ÞUðtÞ;

d

dt
V ðtÞ ¼ l� gV ðtÞ � tV ðtÞUðtÞ þ bx2

0UðtÞ;

d

dt
W ðtÞ ¼ tV ðtÞUðtÞ � ðmþ bx0ÞW ðtÞ:

8>>>>>><
>>>>>>:
We re-write the new system in vector form as

d

dt
ZðtÞ ¼ AZðtÞ þ F ðZðtÞÞ; Zð0Þ ¼ ðUð0Þ;V ð0Þ;W ð0ÞÞ,

(9)
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where ZðtÞ ¼ ðUðtÞ;V ðtÞ;W ðtÞÞT, A is the matrix defined by

A ¼

�ðmþ bx0Þ 0 b

bx2
0 �g 0

0 0 �ðmþ bx0Þ

0
B@

1
CA

and F ðZðtÞÞ ¼ ð0; l� tUðtÞV ðtÞ; tUðtÞV ðtÞÞT. The integra-
tion of Eq. (9) gives

ZðtÞ ¼ etAZð0Þ þ

Z t

0

eðt�sÞAF ðZðsÞÞds, (10)

where
etA ¼

e�tðmþbx0Þ 0 e�tðmþbx0Þtb

e�tgð1� e�tðmþbx0�gÞÞbx2
0

mþ bx0 � g
e�tg e�tðmþbx0Þx2

0b
2
ðetðmþbx0�gÞ � 1� tðmþ bx0 � gÞÞ

ðmþ bx0 � gÞ2

0 0 e�tðmþbx0Þ

0
BBB@

1
CCCA
if mþ bx0ag, and

etA ¼

e�tg 0 e�tgtb

e�tgtbx2
0 e�tg 1

2
e�tgt2x2

0b
2

0 0 e�tg

0
B@

1
CA

if mþ bx0 ¼ g. Then, etAðR3
þÞ � R3

þ for tX0, F is Lipschitz
continuous on bounded sets in R3

þ, and for each Z 2 R3
þ,

Zþ hF ðZÞ 2 R3
þ for h40 and sufficiently small. Thus,

there exists a unique solution of (9) in R3
þ for each Zð0Þ 2

R3
þ defined on a maximal interval of existence ½0; tmaxÞ, and

either tmax ¼ 1 or tmaxo1 and lim t! tþmaxkZðtÞk ¼ 1

(Martin, 1976). Since

d

dt
ðUðtÞ þ V ðtÞ þW ðtÞÞ

¼ bW ðtÞ � ðmþ bx0ÞðUðtÞ þW ðtÞÞ þ l� gV ðtÞ þ bx2
0UðtÞ

plþ cðUðtÞ þ V ðtÞ þW ðtÞÞ

for some positive constant c, the solution ZðtÞ stays
bounded on bounded intervals of t. Thus, tmax ¼ 1, and
the existence of a unique global positive solution is proved.
Appendix B. Proof of Proposition 3.0.1(ii)

Let us define the mapping F : CðR3
þÞ�!R by

F ðU ;V ;PÞ ¼ V �
l
g

� �2

þ bU þ
bb

m
P,

with

b ¼
1

b2gt
ð2mð4x0bgmþ 2gm2 þ bðx2

0bg� ltÞÞÞ.

Then F is a Liapunov functional. Indeed, notice first that
the condition ðblt=gÞ1=2ox0bþ m implies that b40, and
thus ð0; l=g; 0Þ is a strict minimum for F. It is not difficult
to show that

_F ðU ;V ;PÞ ¼ � 2bUx0b�
bb

m
Ux2

0bþ 2UVx2
0b

� 2V 2gþ 4Vl� 2
Ux2

0bl
g
� 2

l2

g
� bUm

þ
bb

m
UVt� 2UV 2tþ 2

UVlt
g

and then,

_F ðU ;V ;PÞp�
U

g
bgð2x0bþ mÞ þ

bbg
m

gþ 2ð�Vgþ lÞ
� ��

�ðx2
0b� VtÞ

�
,

which for b given above and from the condition
ðblt=gÞ1=2ox0bþ m, leads to

_F ðU ;V ;PÞp0.

Then from Hale (1969) the proof is complete.

References

Aguzzi, A., Polymenidou, M., 2004. Mammalian prion biology: one

century of evolving concepts. Cell 116, 313–327.

Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N., Prusiner, S.B., 1990.

Scrapie and cellular prion proteins differ in their kinetics of synthesis

and topology in cultured cells. J. Cell Biol. 110, 743–752.

Bounhar, Y., Zhang, Y., Goodyer, C., LeBlanc, A., 2001. Prion protein

protects human neurons against bax-mediated apoptosis. J. Biol.

Chem. 276, 39145–39149.

Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A.,

Kobayashi, Y., Marino, S., Weissmann, C., Aguzzi, A., 1996. Normal

host prion protein necessary for scrapie-induced neurotoxicity. Nature

379, 339–343.

Brown, D., Nicholas, R., Canevari, L., 2002. Lack of prion protein

expression results in a neuronal phenotype sensitive to stress.

J. Neurosci. Res. 67, 211–224.

Caughey, B., Race, R.E., Ernst, D., Buchmeier, M.J., Chesebro, B., 1989.

Prion protein biosynthesis in scrapie-infected and uninfected neuro-

blastoma cells. J. Virol. 63, 175–181.

Chesebro, B., Trifilo, M., Race, R., Meade-White, K., Teng, C., LaCasse,

R., Raymond, L., Favara, C., Baron, G., Priola, S., Caughey, B.,

Masliah, E., Oldstone, M., 2005. Anchorless prion protein results in

infectious amyloid disease without clinical scrapie. Science 308,

1435–1439.

Chiesa, R., Piccardo, P., Dossena, S., Nowoslawski, L., Roth, K.A.,

Ghetti, B., Harris, D.A., 2005. Bax deletion prevents neuronal loss but

not neurological symptoms in a transgenic model of inherited prion

disease. Proc. Natl Acad. Sci. USA 102, 238–243.



ARTICLE IN PRESS
M.L. Greer et al. / Journal of Theoretical Biology 242 (2006) 598–606606
Cohen, F.E., Huang, Z., Fletterick, R.J., Baldwin, M., Prusiner,

S.B., 1994. Structural clues to prion replication. Science 264,

530–531.

Collins, S., Douglass, A., Vale, R., Weissman, J., 2004. Mechanism of

prion propagation: amyloid growth occurs by monomer addition.

PLOSBio 2, 1582–1590.

Eigen, M., 1996. Prionics or the kinetic basis of prion diseases. Biophys.

Chem. 63, 11–18.

Engler, H., Prüss, J., Webb, G.F., 2006. Analysis of a model for the

dynamics of prions II, in press.

Ferreira, A.S., da Silva, M.A., Cressoni, J.C., 2003. Stochastic modeling

approach to the incubation time of prionic diseases. Phys. Rev. Lett.

90, 198101–198104.

Govaerts, C., Wille, H., Prusiner, S.B., Cohen, F.E., 2004. Evidence for

assembly of prions with left-handed b-helices into trimers. Proc. Natl

Acad. Sci. 101, 8342–8347.

Greer, M.L., 2002. A population model of prion dynamics. Ph.D. Thesis,

Vanderbilt University.

Griffith, J.S., 1967. Nature of the scrapie agent. Nature 215,

1043–1044.

Hale, J., 1969. Ordinary Differential Equations. Wiley-Interscience,

New-York.

Harper, J.D., Lansbury, P.T., 1997. Models of amyloid seeding in

Alzheimer’s disease and scrapie: mechanistic truths and physiological

consequences of the time-dependent solubility of amyloid proteins.

Ann. Rev. Biochem. 66, 385–407.

Horwich, A.L., Weissman, J.S., 1997. Deadly conformations: protein

misfolding in prion disease. Cell 89, 499–510.

Huang, Z.W., Gabriel, J.M., Baldwin, M.A., Fletterick, R.J., Prusiner,

S.B., ECohen, F., 1984. Proposed three-dimensional structure for the

cellular prion protein. Proc. Natl Acad. Sci. USA 47, 71–79.

Jarrett, J.T., Lansbury, P.T., 1993. Seeding ‘‘one-dimensional crystal-

lization’’ of smyloid: a pathogenic mechanism in Alzheimer’s disease

and scrapie? Cell 73, 1055–1058.

Kim, B.H., Lee, H.G., Choi, J.K., Kim, J.I., Choi, E.K., Carp, R.I., Kim,

Y.S., 2004. The cellular prion protein (prpc) prevents apoptotic

neuronal cell death and mitochondrial dysfunction induced by serum

deprivation. Mol. Brain Res. 124, 40–50.

Kulkarni, R.V., Slepoy, A., Singh, R.R.P., Cox, D.L., Pázmándi, F., 2003.

Theoretical modeling of prion disease incubation. Biophys. J. 85,

707–718.

Lansbury, P., Caughey, B., 1981. The chemistry of scrapie infection:

implication of the ‘‘ice 9’’ metaphor. Chem. Biol. 2, 1–5.

Laurent, M., 1997. Autocatalytic processes in cooperative mechanisms of

prion diseases. FEBS Lett. 407, 1–6.

Li, A., Harris, D.A., 2005. Mammalian prion protein suppresses bax-

induced cell death in yeast. J. Biol. Chem. 280, 17430–17434.

Martin, R.H., 1976. Nonlinear Operators and Differential Equations in

Banach Spaces. Wiley Interscience Series of Texts, Monographs &

Tracts, New York.

Masel, J., Jansen, V.A.A., Nowak, M.S., 1999. Quantifying the kinetic

parameters of prion replication. Biophys. Chem. 77, 139–152.

Masel, J., Genoud, N., Aguzzi, A., 2005. Efficient inhibition of prion

replication by prp-fc2 suggests that the prion is a prpSc oligomer.

J. Mol. Biol. 345, 1243–1251.
Mobley, D.L., Cox, D.L., Singh, R.R., Kulkarni, R.V., Slepoy, A., 2003.

Simulations of oligomeric intermediates in prion diseases. Biophys.

J. 85, 2213–2223.

Nowak, M.A., Krakauer, D.C., Klug, A., May, R.M., 1998. Prion

infection dynamics. Integr. Biol. 1, 3–15.

Oesch, B., Westaway, D., Walchli, M., McKinley, M.P., Kent, S.B.H.,

Aebersold, R., Barry, R.A., Tempst, P., Teplow, D.B., Hood, L.E.,

Prusiner, S.B., Weissmann, C., 1985. A cellular gene encodes scrapie

prp 27–30 protein. Cell 40, 735–746.

Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D.,

IlMelhorn, S., Huang, Z., Fletterick, R.J., Cohen, F.E., Prusiner, S.B.,

1993. Conversion of a-helices into b-sheets features in the formation of

the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966.
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